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Abstract. Dynamic constrained optimization problems have received
increasing attention in recent years. We study differential evolution which
is one of the high performing class of algorithms for constrained contin-
uous optimization in the context of dynamic constrained optimization.
The focus of our investigations are repair methods which are crucial when
dealing with dynamic constrained problems. Examining recently intro-
duced benchmarks for dynamic constrained continuous optimization, we
analyze different repair methods with respect to the obtained offline er-
ror and the success rate in dependence of the severity of the dynamic
change. Our analysis points out the benefits and drawbacks of the differ-
ent repair methods and gives guidance to its applicability in dependence
on the dynamic changes of the objective function and constraints.

Keywords: Repair Methods, Dynamic Constrained Optimization, Constraint-
Handling Techniques, Differential Evolution

1 Introduction

Differential evolution (DE) is known as one of the most competitive, reliable and
versatile evolutionary algorithm for optimization on the continuous spaces [1].
DE has shown successful results in a variety of ranges of optimization problems
including multi-objective [2], multi-modal [3], large-scale [4], expensive [5], con-
strained [6] and dynamic optimization problems [7,8]. Among these, constrained
optimization problems have a great importance, since in the real world problems,
most of the optimization problems have inequality and/or equality constraints.
Constrained optimization problems are usually harder to tackle than uncon-
strained ones, and evolutionary algorithms require a constrained handling tech-
nique to deal with the constraints. A review of the different constraint handling
techniques can be found in [9].

Another area that have attracted researcher’s attention in recent years is dy-
namic optimization and DE has been regarded as a high performing algorithm
in this area [7, 10, 11]. Considering constraints and dynamism simultaneously



(known as dynamic constrained optimization problems: DCOPs) has been even
more challenging for an algorithm, as it will be harder to track the global opti-
mum solution when the constraints or the objective function change overtime.
The algorithms that solve these kind of problems need to incorporate some
mechanisms to deal with the changes in the environment. Different mechanisms
have been proposed in the literature on DCOPs including change detection (re-
evaluation of solutions, and decreasing the quality of solutions) [12], introducing
diversity (increase the mutation) [13], maintaining diversity (adding random so-
lutions called random immigrants) [14], memory-based approaches [15], and the
population-based approaches [16].

In order to handle the constraints in these problems, different constraint
handling techniques have been applied including penalty functions [13, 17], fea-
sibility rules [8], and repair methods [7, 11, 18]. The last technique has not only
been suitable to deal with the constraints, but also has been able to improve
the algorithm performance when has been used in dynamic environments. The
reason is because this technique is not only choosing between the solutions in
the selection, but also moves the solution toward the feasible region by the re-
pair operator. Indeed, the main idea of a repair method is to convert infeasible
solutions into feasible ones. Based on the competitive results that these methods
have shown, we carry out investigations on the behaviour of these repair meth-
ods for DCOPs.

Based on the literature on the current repair methods applied in DCOPs,
four types of repair methods including i) reference-based repair [19], ii) offspring-
repair [7, 20], iii) mutant-repair [11, 21] and iv) gradient-based repair [18] have
been distinguished. (i) uses reference solutions in order to convert an infeasible
solution to a feasible one. In (ii) the repair method is similar to (i), the only
difference between these two methods is that choosing the feasible reference so-
lution in (i) is completely random, while in (ii) the nearest feasible reference
solution is selected. (iii) is a repair method which does not require feasible so-
lutions to operate, and is inspired by the differential mutation operator. (iv) is
based on gradient information derived from the constraint set to systematically
repair infeasible solutions.

Our main focus is to investigate the specifications of each of these methods
on a recent benchmark set for DCOPs [19] when applying DE. For the com-
parison of the effectiveness of each method, the offline error [19] and two newly
proposed measures are used. The analysis shows that the gradient-based method
outperforms other repair methods based on almost of the measures. However,
this method can not be used like a black-box, since it should be known if the
constraints have derivative. On the contrary, based on offline error, the worst
method seem to be mutant repair method, but this method repairs the solutions
very fast after only a few tries. Although, these small number of tries for repair-
ing a solution in this method is mostly because in this benchmark, most of the
problems have a huge feasible area. Finally, based on the analysis, the benefits
and drawbacks of each method are pointed out and directions for future work
are given.



The rest of this paper is organized as follows. In Section 2, we define our no-
tion of dynamic constrained optimization problems and provide an introduction
into differential evolution together with the different repair methods investigated
in this paper. In Section 3, the experimental investigations regarding the effec-
tiveness of repair methods with respect to different performance measures are
described and the experimental results are divided in offline error analysis and
success rate analysis and are presented in Section 4 and Section 5 respectively.
Finally, we finish with some conclusions and directions for future work.

2 Preliminaries

In this section, first we define the problem statement for DCOPs, then we give a
brief description of DE algorithm and the mechanism that we have added to it
in order to deal with the changes in the environment (called dynamic DE) and
finally we present different repair methods that have been applied.

2.1 Problem statement

A dynamic constrained optimization problem (DCOP) is an optimization prob-
lem where the objective function and/or the constraints can change over time [19,
22]. Formally, a DCOP can be defined as follows.

Find x, at each time t, which:

min
x∈Ft⊆[L,U ]

f(x, t) (1)

where f : S → R is a single objective function, x ∈ RD is a solution vector and
t ∈ N+ is the current time,

[L,U ] = {x = (x1, x2, ..., xD) | Li ≤ xi ≤ Ui, i = 1 . . . D} (2)

is called the search space (S), where Li and Ui are the lower and upper bound-
aries of the ith variable,

subject to:

Ft = {x | x ∈ [L,U ], gi(x, t) ≤ 0, i = 1, . . . ,m,
hj(x, t) = 0, j = 1, . . . , p} (3)

is called the feasible region at time t, where m is the number of inequality
constraints and p is the number of equality constraints at time t.

∀x ∈ Ft if there exists a solution x∗ ∈ Ft such that f(x∗, t) ≤ f(x, t),
then x∗ is called a feasible optimal solution and f(x∗, t) is called the feasible
optima value at time t. The objective function and the constrains can be linear
or nonlinear.



2.2 Dynamic differential evolution

Differential evolution (DE) was first introduced in [23] as a stochastic search
algorithm that is simple, reliable and fast. Each vector xi,G in the current popu-
lation (called at the moment of the reproduction as target vector) generates one
trial vector ui,G by using a mutant vector vi,G. The mutant vector is created
applying vi,G = xr0,G + F (xr1,G − xr2,G), where xr0,G, xr1,G, and xr2,G are
vectors chosen at random from the current population (r0 6= r1 6= r2 6= i); xr0,G

is known as the base vector and xr1,G, and xr2,G are the difference vectors and
F > 0 is a parameter called scale factor. Then the trial vector is created by
the recombination of the target vector and mutant vector using a probability
crossover CR ∈ [0, 1].

In this paper DE/rand/1/bin variant is adopted [24], where “rand” indicates
how the base vector is chosen (at random in our case), “1” represents how
many vector differences (vector pairs) will contribute in differential mutation,
and “bin” is the type of crossover (binomial in our case).

In a DCOP an important task is to verify that the solutions’ information
is correct during the search process. Because when a new change occurs in the
environment, the values of the objective function and/or the constraints may
change. For this reason a change detection mechanism is required to detect
the changes in the objective function and/or the constraints [11, 12]. A general
overview of DDE algorithm is presented in Algorithm 1.

2.3 Repair methods

Repair methods have shown competitive results compared to other constraint
handling methods in constrained optimization. The main idea of a repair method
is to use a transformation process to convert an infeasible solution into a feasible
one. Although, there is no need for special operators or any modifications of the
fitness function in this method like other constraint handling methods, in some
repair methods, reference feasible solutions are required [7, 19, 20, 25]. However,
the repair methods presented in [11] and [18] does not require feasible reference
solutions. Repair methods used in dynamic constrained optimization problems
have had an important role in the algorithm’s recovery after a change since they
help to move the infeasible solutions toward feasible region. Basically on the re-
lated literature of dynamic constrained optimization problems, there have been
four repair methods utilized for constraint handling as follows.

Reference-based repair method: This method was originally proposed
in [25], and [19] utilized this method with a simple genetic algorithm for solving
DCOPs. In this method, firstly, a reference feasible population (R) is created.
If an individual of the search population (S) is infeasible, a new individual is
generated on the straight line joining the infeasible solution and a randomly
chosen member of R. This process will continue until the infeasible solution is
repaired or a repair limit (RL=100) attempts are computed. If the new feasible
solution has better fitness value, it will be replaced by the selected reference in-
dividual. An overview of this method used for our investigations is presented in



Algorithm 1 Dynamic differential evolution (DDE)

1: Create and evaluate a randomly initial population xi,G ∀i, i = 1, . . . , NP
2: for G← 1 to MAX GEN do
3: for i← 1 to NP do
4: Change detection mechanism (xi,G)
5: Randomly select r0 6= r1 6= r2 6= i
6: Jrand = randint[1, D]
7: for j ← 1 to D do
8: if randj ≤ CR Or j = Jrand then
9: ui,j,G = xr1,j,G + F (xr2,j,G − xr3,j,G)

10: else
11: ui,j,G = xi,j,G
12: end if
13: end for
14: if ui,j,G is infeasible then
15: Use the repair method
16: end if
17: if f(ui,G) ≤ f(xi,G) then
18: xi,G+1 = ui,G

19: else
20: xi,G+1 = xi,G

21: end if
22: end for
23: end for

Algorithm 2, however the boldface part is only used for offspring-repair method.
Offspring-repair method: This method was applied in DCOPs in [7, 20].

In this method, a reference feasible population (R) is generated. For any infea-
sible solution of the search population (S), a new individual is generated on the
straight line joining the infeasible solution and the nearest member of the refer-
ence population R based on Euclidean distance. This process will continue until
the infeasible solution is repaired or a repair limit (RL=100) attempts are com-
puted. If the new feasible solution has better fitness value, it will be replaced by
the selected reference individual. This method is similar to the reference-based
repair method [19]. The only difference is in the process of selecting the reference
solution. An overview of this method is presented in Algorithm 2.

Mutant-repair method: The mutant-repair method (see Algorithm 3) is
based on the differential mutation operator, and does not require reference so-
lutions [11]. For each infeasible solution, three new and temporal solutions are
generated at random and a differential mutation operator similar to the one used
in DE is applied. This repair method is applied until the infeasible solution is
repaired or a specific number of unsuccessful trials to obtain a feasible solution
have been carried out(RL).

Gradient-based repair method: The gradient-based repair method (see
Algorithm 4) was first applied into a simple GA [26] to handle constraints in a
static optimization problem and in [18] was applied for solving DCOPs. In this



Algorithm 2 Reference-based and offspring-repair methods

Require: ui,G {trial vector}
counter = 0

2: while ui,G is infeasible and counter ≤ RL do
Select the reference individual r ∈ R based on:

4:

{
Randomly <reference-based>

Min distance between ui,G and r <offspring>

6: Create random number a = U [0, 1]
Create a new individual in the segment between ui,G (s ∈ S) and r

8: ui,G = a ∗ r + (1− a) ∗ ui,G

if ui,G is infeasible then
10: go to step 2

else
12: Update reference population if the repaired solution has better fitness value

than R
end if

14: counter = counter + 1
end while

16: Return ui,G

Algorithm 3 Mutant-repair method

Require: ui,G {trial vector}
counter = 0

2: while ui,G is infeasible and counter ≤ RL do
Generate three random vectors (ur0,G, ur1,G and ur2,G)

4: ui,G = ur0,G + F (ur1,G − ur2,G)
counter = counter + 1

6: end while
Return ui,G

method, the gradient information of the constraints are utilized to repair the
infeasible solutions [26]. For this purpose the gradient of the constraints based
on the solution vector (that represent the rate of change of constraints based on
each variable) will be calculated. At the next step the constraint violations are
calculated and based on this amount and the vector of gradient, the solutions will
move toward the feasible region with the proportional quantity. The constraints
that are non-violated are not considered in these calculations. In this method
the main idea is to only change the effective variables over the constraints that
have a violation. More detail about this method can be found in [18].

3 Experimental investigations

In this section, the utilized test problems, the performance measures and the
experimental setup are presented.



Algorithm 4 Gradient-based repair method

Require: ui,G {trial vector}
counter = 0

2: while ui,G is infeasible and counter ≤ RL do
Calculate the constraint violation

4: Calculate the amount of solution movement ∆ui,G based on the current con-
straint violation and the gradient information
ui,G = ui,G +∆ui,G

6: counter = counter + 1
end while

8: Return ui,G

3.1 Test problems and performance measures

The chosen benchmark problem originally has 18 functions [19], however in this
work, 10 functions among them were used for the experiments. The reason for
this selection was that part of these functions were not constrained and part
of them did not have derivative for the constraints and could not be applied in
Gradient-based method. The test problems in this benchmark consist a variety
of characteristics like i) disconnected feasible regions (1-3), ii) the global optima
at the constraints’ boundary or switchable between disconnected regions, or iii)
the different shape and percentage of feasible area. In the experiments, for the
objective function, only medium severity is considered (k = 0.5), while different
change severities are considered for the constraints (S = 10, 20 and 50). Based
on the definition of the constrains in this benchmark [19], S = 10 represents
for large severity, S = 20 for medium severity and S = 50 for the small severity
of changes on the constraints. The frequency of change (fc) is considered equal
to 1000 evaluations (only in the objective function). Worth to mention that,
in the repair methods, the constraints evaluations are not considered as extra
evaluations when using for DCOPs [21]. More details on the benchmark can be
found in [19].

For the purpose of comparing the effectiveness of each repair method, the
following performance measures were used:

Offline error(off e) [27]: This measurement is equal to the average of the
sum of errors in each generation divided by the total number of generations. The
zero value of offline error indicates a perfect performance [22]. This measure is
defined as:

off e =
1

Gmax

Gmax∑
G=1

e(G) (4)

where Gmax is the number of generations computed by the algorithm and e(G)
denotes the error in the current iteration G (see 5):

e(G) = |f(x∗, t)− f(xbest,G, t)| (5)



where f(x∗, t) is the feasible global optima1 at current time t, and f(xbest,G, t)
represent the best solution (feasible or infeasible) found so far at generation G
at current time t.

Success rate: This measure is calculated such that considers how many
of the infeasible solutions were successful to be repaired after 100 iterations.
For each infeasible solution, a repair is needed and at the end of repair itera-
tion(Maximum 100 tries), if the solution is feasible a counter is increased. In
another words, it is considered a success if before achieving to the maximum
number of allowed iterations for repair (100 in our case) a solution is feasible.
The total number of these successful repaired solutions (s) divided by the total
number of solutions that need repair (nT )is equal to success rate percentage.
Based on this, the repair methods with success rate values equals to 100%, are
able to convert all the solutions.

sr =
s

nT
(6)

Required number of iterations: In order to distinguish the difference
between the number of evaluations that each method consumes for repairing the
solution, a measurement is defined called as required number of iterations (rni).
In this way, it is possible to compare the efficiency of each repair method. The
range of values of this measure is ∈ (1 − 100). The more efficient method uses
lower number of evaluations in order to repair an infeasible solution. The final
amount for this measurement value is the average between the number of tries
taken to convert each infeasible solution into feasible one.

3.2 Experimental setup

The experimental results are divided as i) offline error analysis and ii) success
rate and required number of iterations. In these experiments we investigate the
behaviour of different repair methods in DDE algorithm based on the previous
defined measures. In the analysis, the effects of different severities on the con-
straints are considered for these ten test problems. We do not bring the results
for changes of frequency since it does not have any effect in the behaviour of the
repair methods.

The configurations for the experiments are as follows. The number of runs in
the experiments are 50, and number of considered times for dynamic perspective
of the test algorithm is 5/k (k = 0.5). Parameters relating to DDE algorithm
are as follows: DE variant is DE/rand/1/bin, population size is 20, scaling factor
(F) is a random number ∈ [0.2, 0.8], and crossover probability is 0.2. In the
experiments, four repair methods including Reference-based, Offspring, Mutant
and Gradient-based as explained in Section 2.3 have been applied for handling
the constraint in DDE algorithm.

1 This global optima is an approximation, which is the best solution found by DE in
50 runs for the current time.



Table 1: Average and standard deviation of offline error values obtained by all the repairs methods
with k = 0.5, S = 10, 20 and 50, and fc = 1000. Best results are remarked in boldface.

Algorithms
S = 10

G24 1 G24 f G24 2 G24 3 G24 3b

Reference 0.07(±0.029) 0.029(±0.022) 0.394(±0.212) 0.041(±0.025) 0.058(±0.027)

Offspring 0.07(±0.053) 0.036(±0.036) 0.451(±0.317) 0.068(±0.056) 0.073(±0.048)

Mutant 0.271(±0.051) 0.095(±0.048) 0.29(±0.021) 0.159(±0.031) 0.193(±0.041)

Gradient 0.043(±0.028) 0.004(±0.003) 0.259(±0.012) 0.01(±0.004) 0.033(±0.015)

G24 3f G24 4 G24 5 G24 7 G24 8b

Reference 0.007(±0.004) 0.071(±0.035) 0.071(±0.024) 0.12(±0.088) 0.105(±0.062)

Offspring 0.04(±0.083) 0.067(±0.031) 0.089(±0.035) 0.253(±0.128) 0.114(±0.056)

Mutant 0.046(±0.019) 0.187(±0.045) 0.126(±0.021) 0.208(±0.034) 0.338(±0.048)

Gradient 0.002(±0.003) 0.032(±0.013) 0.024(±0.007) 0.021(±0.008) 0.031(±0.009)

Algorithms
S = 20

G24 1 G24 f G24 2 G24 3 G24 3b

Reference 0.078(±0.042) 0.026(±0.019) 0.406(±0.328) 0.02(±0.009) 0.06(±0.036)

Offspring 0.086(±0.061) 0.03(±0.025) 0.416(±0.321) 0.039(±0.033) 0.035(±0.023)

Mutant 0.246(±0.047) 0.1(±0.05) 0.296(±0.02) 0.156(±0.033) 0.207(±0.031)

Gradient 0.048(±0.026) 0.004(±0.004) 0.258(±0.009) 0.004(±0.002) 0.035(±0.017)

G24 3f G24 4 G24 5 G24 7 G24 8b

Reference 0.008(±0.005) 0.06(±0.032) 0.075(±0.033) 0.107(±0.045) 0.108(±0.041)

Offspring 0.023(±0.029) 0.043(±0.038) 0.092(±0.048) 0.213(±0.075) 0.12(±0.069)

Mutant 0.05(±0.019) 0.218(±0.033) 0.132(±0.024) 0.267(±0.039) 0.333(±0.044)

Gradient 0.002(±0.002) 0.033(±0.015) 0.029(±0.013) 0.021(±0.009) 0.033(±0.008)

Algorithms
S = 50

G24 1 G24 f G24 2 G24 3 G24 3b

Reference 0.069(±0.031) 0.031(±0.024) 0.371(±0.232) 0.011(±0.005) 0.045(±0.025)

Offspring 0.06(±0.032) 0.039(±0.037) 0.39(±0.187) 0.037(±0.069) 0.029(±0.025)

Mutant 0.26(±0.051) 0.1(±0.047) 0.298(±0.023) 0.1(±0.023) 0.161(±0.024)

Gradient 0.043(±0.018) 0.003(±0.003) 0.257(±0.01) 0.002(±0.002) 0.027(±0.011)

G24 3f G24 4 G24 5 G24 7 G24 8b

Reference 0.008(±0.009) 0.053(±0.042) 0.062(±0.018) 0.084(±0.024) 0.096(±0.041)

Offspring 0.03(±0.049) 0.038(±0.046) 0.08(±0.032) 0.2(±0.078) 0.111(±0.065)

Mutant 0.046(±0.018) 0.162(±0.022) 0.145(±0.025) 0.289(±0.037) 0.351(±0.04)

Gradient 0.003(±0.003) 0.026(±0.011) 0.033(±0.012) 0.026(±0.011) 0.031(±0.007)

4 Offline error analysis

The results obtained for the four repair methods using offline error are summa-
rized in Table 1. Furthermore, for the statistical validation, the 95%-confidence
Kruskal-Wallis (KW) test and the Bergmann-Hommels post-hoc test, as sug-
gested in [28] are presented (see Table 2). Non-parametric tests were adopted
because the samples of runs did not fit to a normal distribution based on the
Kolmogorov-Smirnov test. Based on the results, for the constraint’s change sever-
ity S = 10, the gradient-based repair outperformed almost all of the other meth-
ods in nine test problems (G24 f, G24 2, G24 3, G24 3b, G24 3f, G24 4, G24 5,
G24 7 and G24 8b) except one test problem (G24 1) that in which offspring-
repair has similar performance. For this severity, reference-based repair and
offspring-repair performed almost the same for nine test problems (G24 1, G24 f,
G24 2, G24 3, G24 3b, G24 3f, G24 4, G24 5 and G24 8b) except one test prob-
lem (G24 7) where reference-based repair outperformed offspring-repair. As Ta-



Table 2: Statistical tests on the offline error values in Table 1. “X(−)” means that the corresponding

algorithm outperformed algorithm X. “X(+)” means that the corresponding algorithm was dominated
by algorithm X. If algorithm X does not appear in column Y means no significant differences between
X and Y.

Functions
S = 10

Reference(1) Offspring(2) Mutant(3) Gradient(4)

G24 1 (44.2%) 3(−) and 4(+) 3(−) 1(+), 2(+) and 4(+) 1(−) and 3(−)

G24 f (44.2%) 3(−) and 4(+) 3(−) and 4(+) 1(+), 2(+) and 4(+) 1(−), 2(−) and 3(−)

G24 2 (44.2%) 4(+) 4(+) 4(+) 1(−) , 2(−) and 3(−)

G24 3 (7.1-49.21%) 3(−) and 4(+) 3(−) and 4(+) 1(+), 2(+) and 4(+) 1(−), 2(−) and 3(−)

G24 3b (7.1-49.21%) 3(−) and 4(+) 3(−) and 4(+) 1(+), 2(+) and 4(+) 1(−), 2(−) and 3(−)

G24 3f (7.1%) 3(−) and 4(+) 3(−) and 4(+) 1(+), 2(+) and 4(+) 1(−), 2(−) and 3(−)

G24 4 (0-44.2%) 3(−) and 4(+) 3(−) and 4(+) 1(+), 2(+) and 4(+) 1(−), 2(−) and 3(−)

G24 5 (0-44.2%) 3(−) and 4(+) 3(−) and 4(+) 1(+), 2(+) and 4(+) 1(−), 2(−) and 3(−)

G24 7 (0-44.2%) 2(−), 3(−) and 4(+) 1(+) and 4(+) 1(+) and 4(+) 1(−), 2(−) and 3(−)

G24 8b (44.2%) 3(−) and 4(+) 3(−) and 4(+) 1(+), 2(+) and 4(+) 1(−), 2(−) and 3(−)

S = 20
Reference(1) Offspring(2) Mutant(3) Gradient(4)

G24 1 (44.2%) 3(−) and 4(+) 3(−) and 4(+) 1(+), 2(+) and 4(+) 1(−), 2(−) and 3(−)

G24 f (44.2%) 3(−) and 4(+) 3(−) and 4(+) 1(+), 2(+) and 4(+) 1(−), 2(−) and 3(−)

G24 2 (44.2%) 4(+) 4(+) 1(−) and 3(−)

G24 3 (7.1-49.21%) 3(−) and 4(+) 3(−) and 4(+) 1(+), 2(+) and 4(+) 1(−), 2(−) and 3(−)

G24 3b (7.1-49.21%) 2(+), 3(−) and 4(+) 1(−) and 3(−) 1(+), 2(+) and 4(+) 1(−) and 3(−)

G24 3f (7.1%) 3(−) and 4(+) 3(−) and 4(+) 1(+), 2(+) and 4(+) 1(−), 2(−) and 3(−)

G24 4 (4.75-44.2%) 2(+), 3(−) and 4(+) 1(−) and 3(−) 1(+), 2(+) and 4(+) 1(−) and 3(−)

G24 5 (4.75-44.2%) 3(−) and 4(+) 3(−) and 4(+) 1(+), 2(+) and 4(+) 1(−), 2(−) and 3(−)

G24 7 (4.75-44.2%) 2(−), 3(−) and 4(+) 1(+) and 4(+) 1(+) and 4(+) 1(−), 2(−) and 3(−)

G24 8b (44.2%) 3(−) and 4(+) 3(−) and 4(+) 1(+), 2(+) and 4(+) 1(−), 2(−) and 3(−)

S = 50
Reference(1) Offspring(2) Mutant(3) Gradient(4)

G24 1 (44.2%) 3(−) and 4(+) 3(−) 1(+), 2(+) and 4(+) 1(−) and 3(−)

G24 f (44.2%) 3(−) and 4(+) 3(−) and 4(+) 1(+), 2(+) and 4(+) 1(−), 2(−) and 3(−)

G24 2 (44.2%) 3(+) 1(+) and 4(+) 3(−)

G24 3 (7.1-18.63%) 3(−) and 4(+) 3(−) and 4(+) 1(+), 2(+) and 4(+) 1(−), 2(−) and 3(−)

G24 3b (7.1-18.63%) 2(+), 3(−) and 4(+) 1(−) and 3(−) 1(+), 2(+) and 4(+) 1(−) and 3(−)

G24 3f (7.1%) 3(−) and 4(+) 3(−) and 4(+) 1(+), 2(+) and 4(+) 1(−), 2(−) and 3(−)

G24 4 (28.9-44.2%) 2(+), 3(−) and 4(+) 1(−) and 3(−) 1(+), 2(+) and 4(+) 1(−) and 3(−)

G24 5 (28.9-44.2%) 3(−) and 4(+) 3(−) and 4(+) 1(+), 2(+) and 4(+) 1(−), 2(−) and 3(−)

G24 7 (28.9-44.2%) 2(−), 3(−) and 4(+) 1(+), 3(−) and 4(+) 1(+), 2(+) and 4(+) 1(−), 2(−) and 3(−)

G24 8b (44.2%) 3(−) and 4(+) 3(−) and 4(+) 1(+), 2(+) and 4(+) 1(−), 2(−) and 3(−)

ble 2 illustrates, mutant-repair is the worst between all the methods for eight
test problems (G24 1, G24 f, G24 3, G24 3b, G24 3f, G24 4, G24 5 and G24 8b)
except two test problems in which has similar results with reference-based repair
(G24 2) and offspring-repair (G24 2 and G24 7).

For the constraint’s change severity S = 20, the gradient-repair excelled al-
most all the other methods in seven test problems (G24 1, G24 f, G24 3, G24 3f,
G24 5, G24 7 and G24 8b) with exceptions including G24 2, G24 3b and G24 4,
that in which offspring-repair had similar performance. For this change severity,
reference-based repair and offspring-repair performed almost the same for seven
test problems (G24 1, G24 f, G24 2, G24 3, G24 3f, G24 5 and G24 8b) except
three test problems (G24 3b, G24 4 and G24 7). For these three problems, while
in two test problems (G24 3b and G24 4) offspring-repair had better results,



in one test problem (G24 7) reference-based repair outperformed the offspring-
repair. Mutant-repair had the worst results between all the methods for eight
test problems (G24 1, G24 f, G24 3, G24 3b, G24 3f, G24 4, G24 5 and G24 8b)
except two test problems in which had similar results with reference-based repair
(G24 2) and offspring-repair (G24 2 and G24 7).

For the constraint’s change severity S = 50, the gradient-repair excelled
the other methods in six test problems (G24 f, G24 3, G24 3f, G24 5, G24 7
and G24 8b) with exceptions of having similar performance with offspring-repair
(G24 1, G24 2, G24 3b and G24 4) and reference-based repair (G24 2). For this
change severity, reference-based repair and offspring-repair performed almost the
same for seven test problems (G24 1, G24 f, G24 2, G24 3, G24 3f, G24 5 and
G24 8b) except three test problems (G24 3b, G24 4 and G24 7). For these three
problems, while in two test problems (G24 3b and G24 4) offspring-repair had
better results, in one test problem (G24 7) reference-based repair outperformed
the offspring-repair. Mutant-repair had the worst results between all the methods
for nine test problems (G24 1, G24 f, G24 3, G24 3b, G24 3f, G24 4, G24 5,
G24 7 and G24 8b) except one test problem (G24 2) in which showed similar
results with offspring-repair.

Gradient-repair for all severities outperformed other methods, because in
this work, all of the test problems have the global optimum on the constraints’
boundaries, and since this method moves slowly toward the feasible area its
less probable that loses the information of global optima in the boundaries by
crossing it. Although, this method cannot be applied for the functions that do not
have derivative for their constraints. For this reason, the four functions G24 6a,
G24 6b, G24 6c and G24 6d (that are functions inside this set of benchmark),
were not used in our experiments. Therefore, for this method an understanding
about the behaviour of the constraints is specifically needed. Changes in severity
do not decrease the performance of this method. Even if for severity S = 50,
it outperformed other methods in less test problems, this is because offspring-
repair performance increased for some test problems for this severity. Similar
behaviour in reference-based repair and offspring-repair based on offline error
for all the severities is due to the similar procedure (uniform crossover in GA)
that they use for repairing the infeasible solutions. The only difference is the
way that they choose the reference solution.

5 Analysis of success rate and required number of
iterations for repairing solutions

Regardless of severity the total number of infeasible solutions (nT ) that needed
repair for different functions were in the range between 1882 and 2981. The nT
values were increased for the functions that had dynamic constraints like G24 3,
G24 3b, G24 4, G24 5 and G24 7. The reason is because, when the constraints
are changing, it is more probable that some feasible solutions be converted to
infeasible ones after a change occurs.

The results for the success rate (sr) and required number of iterations (nri)



Table 3: Average and standard deviation of: i)Success rate(sr), ii) required number of
iterations(rni) for each of the repairs methods with k = 0.5, S = 10, 20 and 50, and fc = 1000.
Best results are remarked in boldface.

Functions
Success rate(sr) Required number of iterations(rni)

Reference Offspring Mutant Gradient Reference Offspring Mutant Gradient

S = 10

G24 1 99.95(±0.08) 99.94(±0.08) 100.00(±0.00) 99.72(±0.15) 67.98(±7.99) 79.78(±4.33) 2.26(±0.03) 4.30(±0.24)

G24 f 99.97(±0.05) 99.97(±0.05) 100.00(±0.00) 99.71(±0.17) 64.77(±8.41) 74.95(±8.33) 2.26(±0.03) 3.96(±0.23)

G24 2 99.99(±0.02) 99.96(±0.08) 100.00(±0.00) 99.78(±0.18) 51.20(±10.65)70.18(±5.94) 2.26(±0.04) 3.80(±0.26)

G24 3 99.98(±0.04) 99.96(±0.06) 99.98(±0.02) 95.19(±1.73) 60.35(±7.92) 70.91(±6.07) 4.74(±0.13) 8.03(±1.64)

G24 3b 99.97(±0.07) 99.97(±0.06) 99.99(±0.03) 95.96(±1.38) 66.51(±7.95) 71.81(±7.50) 4.74(±0.11) 7.60(±1.30)

G24 3f 99.88(±0.11) 99.85(±0.12) 99.94(±0.05) 93.33(±2.21) 84.66(±3.47) 89.90(±3.49) 14.04(±0.25) 10.26(±2.10)

G24 4 99.98(±0.04) 99.94(±0.07) 99.99(±0.02) 95.45(±1.75) 62.23(±9.58) 72.54(±6.27) 4.77(±0.15) 8.05(±1.66)

G24 5 95.76(±3.55) 74.16(±11.24) 71.44(±0.69) 74.31(±1.90) 47.28(±6.52) 72.00(±3.66) 38.09(±0.74) 28.79(±1.78)

G24 7 92.79(±6.18) 75.81(±9.57) 72.40(±0.66) 75.55(±2.06) 63.57(±6.47) 73.20(±4.76) 37.30(±0.73) 27.44(±1.97)

G24 8b 99.97(±0.06) 99.95(±0.06) 100.00(±0.00) 99.75(±0.13) 63.29(±6.01) 69.54(±6.26) 2.26(±0.03) 3.94(±0.19)

S = 20

G24 1 99.97(±0.05) 99.94(±0.08) 100.00(±0.00) 99.75(±0.11) 66.87(±7.25) 78.58(±5.85) 2.25(±0.04) 4.22(±0.24)

G24 f 99.98(±0.04) 99.97(±0.07) 100.00(±0.00) 99.67(±0.19) 65.19(±8.69) 76.88(±6.91) 2.26(±0.04) 4.02(±0.26)

G24 2 99.97(±0.05) 99.95(±0.10) 100.00(±0.00) 99.83(±0.11) 50.61(±10.83)69.63(±6.42) 2.26(±0.03) 3.75(±0.22)

G24 3 99.96(±0.07) 99.93(±0.09) 100.00(±0.01) 92.37(±2.48) 69.44(±5.67) 74.51(±4.81) 6.11(±0.14) 11.09(±2.37)

G24 3b 99.96(±0.07) 99.89(±0.11) 100.00(±0.01) 92.12(±2.83) 71.79(±6.88) 79.61(±3.70) 6.08(±0.14) 11.60(±2.68)

G24 3f 99.90(±0.11) 99.84(±0.13) 99.94(±0.04) 92.96(±2.17) 85.00(±3.61) 90.97(±2.55) 14.12(±0.23) 10.63(±2.04)

G24 4 99.96(±0.07) 99.89(±0.10) 99.99(±0.02) 92.54(±2.23) 72.50(±6.14) 79.75(±3.84) 6.12(±0.12) 11.22(±2.11)

G24 5 97.47(±1.19) 82.19(±9.70) 100.00(±0.00) 92.46(±2.64) 39.24(±11.07)69.08(±4.56) 4.96(±0.11) 10.85(±2.53)

G24 7 96.09(±1.84) 86.39(±5.93) 100.00(±0.00) 93.03(±2.25) 56.24(±6.08) 69.03(±4.75) 4.90(±0.11) 10.41(±2.17)

G24 8b 99.97(±0.05) 99.95(±0.07) 100.00(±0.00) 99.70(±0.20) 61.55(±5.67) 68.86(±7.18) 2.27(±0.04) 3.95(±0.26)

S = 50

G24 1 99.97(±0.05) 99.91(±0.10) 100.00(±0.00) 99.70(±0.15) 68.09(±8.06) 78.75(±4.43) 2.26(±0.04) 4.28(±0.23)

G24 f 99.97(±0.05) 99.95(±0.07) 100.00(±0.00) 99.69(±0.15) 64.98(±10.06)74.94(±7.47) 2.26(±0.04) 4.02(±0.27)

G24 2 99.99(±0.02) 99.93(±0.11) 100.00(±0.00) 99.84(±0.08) 50.01(±10.05)69.64(±5.59) 2.27(±0.04) 3.76(±0.17)

G24 3 99.92(±0.09) 99.89(±0.13) 99.99(±0.01) 92.90(±2.42) 75.99(±4.35) 80.88(±4.04) 8.63(±0.15) 10.62(±2.31)

G24 3b 99.92(±0.10) 99.86(±0.12) 99.99(±0.02) 93.04(±2.19) 77.14(±5.02) 83.60(±2.87) 8.63(±0.18) 10.82(±2.12)

G24 3f 99.91(±0.09) 99.84(±0.11) 99.95(±0.04) 93.18(±2.16) 84.12(±3.39) 90.11(±3.96) 14.01(±0.25) 10.40(±2.08)

G24 4 99.90(±0.10) 99.85(±0.13) 99.99(±0.02) 93.36(±2.01) 78.17(±4.62) 84.28(±2.89) 8.66(±0.15) 10.51(±1.91)

G24 5 97.64(±1.30) 86.30(±8.46) 100.00(±0.00) 91.57(±3.13) 40.28(±9.01) 66.52(±6.61) 2.83(±0.05) 11.66(±2.99)

G24 7 96.88(±1.65) 89.71(±6.01) 100.00(±0.00) 93.04(±2.82) 55.12(±6.69) 66.17(±5.68) 2.82(±0.04) 10.38(±2.70)

G24 8b 99.97(±0.06) 99.97(±0.07) 100.00(±0.00) 99.77(±0.16) 63.97(±7.20) 71.18(±6.15) 2.27(±0.03) 3.89(±0.24)



measures are presented in Table 3. Regarding to these results, some general
observations can be concluded. The number of required iterations (nri), was
the smallest for mutant-repair with a range between 2 to 8 and in second place
is gradient-repair with the range between 4 to 10. An exception of this trend
was seen in the function G24 3f in all the severities, and functions G24 5 and
G24 7 for the severity S = 10, which gradient-repair excelled mutant-repair since
the percentage of feasible area in these cases were small (see Table 2 for the
feasibility percentages). Overall, in mutant-repair method since the process of
producing a feasible solution is completely random and in this applied benchmark
functions, the percentage of feasible area is huge, so this method achieved to
feasible solutions after a few tries. In another words, this method is roughly
dependent to the percentage of the feasible area. As mentioned before, the second
smallest values for this measure was for gradient-based method; but in this
case the reason was based on this method’s wise selection and the fact that it
only moves in the direction and with the amount of satisfying the constraint
violations.

The worse results for this measure belonged to offspring-repair with an av-
erage number of required iterations ranging from 66 to 91 and reference-based
repair with a range from 47 to 85. Compared to offspring-repair, reference-based
repair required lower number of iterations, and this was because offspring-repair’s
step sizes are smaller and for this reason it needed more iterations to convert
the infeasible solution to a feasible one. Other drawback in these two methods is
that a number of evaluations is needed to produce feasible reference population.
This can be expensive in high computational complex problems [5].

Generally based on considering all the measures, offspring and reference-
based repair methods in most functions had similar behaviours. This is mostly
because, the process of converting the infeasible solutions to feasible ones are
approximately the same in these methods, and the only difference is the way that
they choose the feasible reference solution. They do not loose the information of
infeasible solution completely, as they use this individual to move in the direction
of one of the feasible solutions (this is more evident in offspring as it uses the
nearest reference feasible solution).

As regards to the third measure (success rate), although mutant-repair has
the best values, but this is because in this set of benchmark, most of the func-
tions has a huge percentage of feasible area. For this reason reaching to a feasible
solution randomly after a few tries is easily possible based on this method. Obvi-
ously, for the cases of small percentage of feasible area, this method’s efficiency
will decrease. This was the case for the functions G24 5 and G24 7; as can be seen
from Table 1, the values for this measure dropped drastically for this method
as the percentage of feasible area is small for some time periods in these two
functions. Reference-based and offspring were on the second place based on the
values of this measure and the results of these two methods are roughly similar.
Although, gradient-based method seemed to have worse results based on this
measure, the differences between these values and the values for other methods
were not significant. Moreover, practically, there is no need to convert all the



Table 4: Main features of each repair method
Method Advantages Disadvantages

Reference i) Maintain infeasible solution information, ii)
increase diversity

i) Random behavior ii) high number of re-
quired iterations and iii) reference solutions
needed

Offspring i) Maintain infeasible solution information i) High number of required iterations and ii)
roughly random behavior

Mutant i) High success rate, ii) low iterations needed,
iii) no reference solution needed, iv) increase
diversity

i) Not a good performance (offline error) ii)
loose the information and iii) random behavior

Gradient i) Prominent performance when the optimal
solution is in the boundaries of the feasible
area, ii) good performance (offline error), iii)
no reference solution needed, iv) maintain in-
feasible solution information and v) low itera-
tions needed

i) Knowledge about the characteristic of con-
straints needed and ii) only can be applied
when the constraints have derivate

infeasible solutions. In Table 4 a review of the advantages and disadvantages of
each method is presented.

6 Conclusion and future work

In this paper, an investigation on different current repair methods in DCOPs
were carried out. For the comparison, three different measures called: offline
error, success rate and average number of required iterations for repairing the
infeasible individuals, for each method were used. The results showed regardless
of the change severities, in most cases gradient-based method outperformed the
other methods based on offline error. This method especially performs much
better than the other methods for the problems that have the optimal solution
in the boundaries of the feasible area. Indeed, this method, moves very small
steps and will not lose the optimal solution in the boundaries. Although, this
method can not be applied for the functions that do not have derivative of the
constraints. For the other measurement criteria, the number of required repair
for mutant repair was the smallest and the second rank was for gradient-based
method. Finally, based on the success rate, all of the repair methods were able to
repair most of the infeasible solutions; such good performance was based on the
fact that the feasible region of the main static test problem (G24) [29], occupy
around 79% of the whole search space [11]. For future work, a combination
of different repair methods can be investigated in order to make the most of
each method. In addition, other constraint handling methods like ε-constrained,
stochastic ranking and multi objective concepts that have not been applied in
DCOPs can be applied and compared as well.
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