
Theoretical Analysis of Rank-based Mutation - Combining
Exploration and Exploitation

Pietro S. Oliveto, Per Kristian Lehre, Frank Neumann

Abstract— Parameter setting is an important issue in the
design of evolutionary algorithms. Recently, experimental work
has pointed out that it is often not useful to work with a fixed
mutation rate. Therefore it was proposed that the population
be ranked according to fitness and the mutation rate of an
individual should depend on its rank. The claim is that this
allows the algorithm to explore new regions in the search
space as well as progress quickly towards optimal solutions.
Complementing the experimental investigations, we examine
the proposed approach by presenting rigorous theoretical anal-
yses which point out the differences of rank-based mutation
compared to a standard approach using a fixed mutation
rate. To this end we theoretically explain the behaviour of
rank-based mutation on various fitness landscapes proposed
in the experimental work and present new significant classes of
functions where the use of rank-based mutation may be both
beneficial or detrimental compared to fixed mutation strategies.

I. I NTRODUCTION

Determining the optimal parameters for an evolutionary
algorithm is a challenging task that has been widely studied
in the field of evolutionary computation [8]. There are many
parameters in an evolutionary algorithm and many studies
have focused on how parameters such as representation, pop-
ulation size or variation operator rates affect the algorithm’s
performance.

In this paper, we focus on the mutation rate used in an
evolutionary algorithm. The optimal mutation rate is known
only for very simple problems such as ONEMAX [2]. Often
it is useful to work not only with one fixed mutation rate but
to adapt it during the optimization process. This is usually
done in continuous optimization where the mutation strength
depends on the progress that the algorithm has achieved
during the last iterations. On the other hand, in combinatorial
optimization it is less common to adapt the mutation rate
during the optimization process. In fact most computational
complexity analyses of evolutionary algorithms for combina-
torial optimization consider algorithms with fixed mutation
rates (see [10] for a review of results).

Nevertheless, the use of different mutation rates with
respect to the runtime behaviour of evolutionary algorithms
has already been studied in literature. Jansen and Wegener [7]
have examined the choice of the mutation probability in
the (1+1) EA and proposed a dynamic (1+1) EA that uses

Per Kristian Lehre and Pietro S. Oliveto are with the Centre of
Excellence for Research in Computational Intelligence and Applications
(CERCIA), University of Birmingham, Edgbaston, Birmingham, B15 2TT,
UK (email:{P.S.Oliveto,P.K.Lehre}@cs.bham.ac.uk). Frank Neumann is
with the Department 1: Algorithms and Complexity, Max-Planck-Institut
für Informatik, Saarbr̈ucken, Germany (email: firstname.lastname@mpi-
inf.mpg.de).

different mutation probabilities at different time steps.In [4]
the effect of bit-wise neutrality with respect to the mutation
rates has been examined and it has been shown that it may
be helpful to use different mutation rates for each gene in
the genotype. Recently, in [13] an immune inspired mutation
operator has been analysed for the ONEMAX function where
the mutation rate of an individual is inversely proportional
to its fitness.

Instead of focusing on algorithms that work with a single
solution, we examine population-based algorithms where the
different individuals have different mutation rates as recently
proposed in [1]. The individuals in the current population
are ranked with respect to their fitness and the mutation rate
increases with the rank of an individual. The idea behind this
is that good individuals should produce offspring that are
close whereas bad individuals should explore regions of the
search space that are very different. The use of this approach
has been examined experimentally in [1]. In particular, based
on their experiments, the authors claim that using rank-
based mutation allows the algorithm to have a good balance
between exploration and exploitation. In this paper, we want
to show the impact that rank based mutation has on the
optimization process in a rigorous manner.

After having defined the algorithms considered throughout
the paper in Section II, we start our theoretical analysis
in Section III by pointing out some general results of the
mentioned approach. These relate it to the use of random
search by proving a general upper bound on the expected
optimization time on any pseudo-Boolean function. This
bound will be proved to be tight further on in the paper
(i.e. Section V).

After that we analyse the use of rank-based mutation on
landscapes with different difficulties that have already been
examined experimentally in [1]. Our analyses point out the
different effects that the use of rank-based mutation has
on simple unimodal functions (Section IV) as well as on
difficult deceptive trap functions (Section V). In Section IV,
through an analysis for the ONEMAX function, we show
that the rank-based mutation strategy is effective in climbing
up slopes. In Section V we give theoretical evidence of the
better performance of rank-based mutation rates compared to
fixed mutation rates for the trap functions considered in [1].
However, we also show that there exist classes of functions
which are deceptive for rank-based mutation leading to
exponential runtime while fixed-mutation rate algorithms are
efficient with high probability. In any case, when rank-based
mutation has a better performance, the runtime required by
both strategies to solve the trap functions is exponential in

the problem size.
To this end, in the last part of the paper (Section VI),

we present a class of functions where we can point out
that rank-based mutation significantly helps to speed up the
optimization process. These functions include sub-problems
with different difficulties (i. e. a deceptive and a unimodal
part).

II. A LGORITHMS

We study a simple (µ+1) EA using rank-based mutation.
The algorithm produces in each iteration one offspring by
choosing an individual of the current parent population
uniformly at random. To this individual the mutation operator
is applied which flips each bit with the probability given by
its rank in the population. Afterwards an individual with the
lowest fitness among theµ + 1 individuals is deleted such
that a new parent population of sizeµ is obtained.

Algorithm 1: (µ+1) EAR

1) Let t = 0 and initializeP0 with µ individuals chosen
uniformly at random.

2) Repeat

a) Rank the individuals{x1 . . . xµ} s.t. f(xi) ≥
f(xi+1).

b) Choosexi ∈ Pt uniformly at random.
c) Createy by mutating each bit inxi with proba-

bility pi.
d) If f(y) ≥ f(xµ) thenPt+1 = Pt \ {xµ} ∪ {y};

elsePt+1 = Pt.
As in [1], the mutation rate of an individual at positioni in

the ranked population is assigned according to the following
formula:

pi = pmin + (pmax − pmin) · (i − 1)/(m − 1)

wherem is the number of different mutation rates used by the
algorithm. In [1] the following parameters were used:pmin =
0, pmax = 1 and m was set as the size of the population
plus one. Since an elitist selection strategy is used by the
algorithm, there is no advantage in having a mutation rate
of p = 0. In fact, not allowing the best individual to mutate
would probably slow down the optimization process at least
when the algorithm is hill-climbing. Given the elitist strategy,
we believe that unless the global optimum has already been
found it is always preferable to mutate the best individual
even if with a very small mutation rate. So we setpmin =
1/n, pmax = 1 andm = µ whereµ is the population size.
This way the mutation rates are linearly distributed between
pmin = 1/n andpmax = 1.

We want to point out the different effects of using
rank based mutation. The algorithm in [1] uses fitness-
proportional selection. However, on one hand it has been
proved in [6, 9] that simple evolutionary algorithms using
fitness-proportional selection are not able to optimize even
simple linear pseudo-Boolean functions such as ONEMAX

in polynomial time. In fact in Section IV it will be proved
that the (µ+1) EAR algorithm is efficient for ONEMAX . On
the other hand, since the goal of the paper is to understand

the effects of the rank-based mutation rates, we feel that it
is easier to understand how mutation is operating if good
solutions generated by mutation are not removed from the
population by the selection operator. In other words, the
mutation operator may create a good solution but at the
same time the selection operator may not consider it for the
next generation. This may happen commonly with fitness-
proportional selection as shown in [6, 9]. When this effect
happens the mutation operator could be “blamed” for an
action for which the selection operator is responsible, hence
the wrong conclusions could be derived about the effects of
rank-based mutation rates. These are the reasons for using
an elitist-strategy in our algorithm.

If the mutation rate does not depend on the rank but is the
same for all individuals, then the algorithm generalises tothe
(µ+1) EA. Here each bit is mutated with a fixed probability
p that is independent of the rank of the individual. In the
literature, this algorithm has been examined for the choice
of p = 1/n by Witt [12] for pseudo-Boolean functions and
for combinatorial optimization problems having practicalap-
plications such as Vertex Cover in [11]. If only one mutation
rate is used throughout the optimization process such a rate
seems to be reasonable. In fact, also in practical applications,
when only one mutation rate is used it is usually low. The
(µ+1) EA is obtained from Algorithm 1 by replacing linec
with the following one:

Algorithm 2: Mutation operator for the (µ+1) EA

c’) Createy by mutating each bit inxi with probabilityp.
We examine the algorithms with respect to their runtime

behaviour on functions with different properties to point out
the effects of using rank-based mutation. We will consider
some functions used in [1] to explain theoretically the
results obtained from the experiments. Furthermore we will
analyse other functions of interest and generalise our results
to greater function classes. The measure of interest is the
number of fitness function evaluations until the algorithm
has produced an optimal search point for the first time. Since
randomised algorithms are of stochastic nature, this number
varies from run to run. We are interested in the expectation of
the random variable representing the number of fitness eval-
uations. We call this expectation theexpected optimization
time of the algorithm on the examined function. Sometimes,
the expected optimization time is not a sufficiently accurate
measure to understand the performance of the algorithm for
a given function. In fact, it may happen that the expected
optimization time is exponential but at the same time the
probability that in each run the algorithm finds the optimum
be high, for example a constant. In those cases we will also
consider thesuccess probability of the algorithm, which is
defined as the probability that the optimization time is within
a given time bound.

III. G ENERAL COMPUTATIONAL COMPLEXITY

It is well known that the expected time until the (1+1) EA
finds the global optimum of any fitness function is at most
nn steps [3]. Droste et al. have also proved that the bound

is tight. A general result will be derived here for the
(µ+1) EAR. The following theorem gives an upper bound
for the expected runtime of the (µ+1) EAR for any function.
It shows that the algorithm is on any function only by a
constant factor slower than random search whose expected
optimization time on any function is2n. In Section V it will
be shown that there exist functions for which the bound is
tight up to a constant factor. This means that the (µ+1) EAR

algorithm performs better than the (1+1) EA in the worst
case. However the runtime is exponential in the function size.

Theorem 1: Let µ > 2 and µ = poly(n). The expected
optimization time of the (µ+1) EAR algorithm for an arbi-
trary fitness function is at mostO(2n).

Proof: The proof will follow the line of thought used
by Droste et al. in [3] for the (1+1)-EA.

An individual of ranki flips each bit with probability:

pi =
1

n
+

(

1 −
1

n

)

·
i − 1

µ − 1
=

i − 1

µ − 1
+

1

n

(

1 −
i − 1

µ − 1

)

We consider all individualsxi of the population withµ/3+
1 ≤ i ≤ (1/2)µ.

Using µ/3 + 1 ≤ i ≤ µ/2 we get

1

3
≤ pi ≤

1

2
+ o(1) ≤

2

3

Let x∗ be a global optimum of the function to be optimized
and H(xi, x

∗) < n be the Hamming distance between the
bit-string representingxi and that representingx∗. Hence, the
probability that each individualxi, with µ/3 + 1 ≤ i ≤ µ/2
is turned into the global optimum in one mutation step is

(

pi)
H(xi,x

∗) ·
(

1 − pi

)n−H(xi,x
∗)

≥
(

1/3)H(xi,x
∗) ·

(

1 − 2/3
)n−H(xi,x

∗)
≥

(

1/3
)n

= 3−n

Since, the probability bound holds whatever the current
bit-string representing thexi individuals is, 3n expected
mutation steps of thesexi individuals are required for the
optimum to be found. The probability that an individualxi

with µ/3 + 1 ≤ i ≤ µ/2 is chosen for mutation in each
generation is

µ/2 − µ/3 − 1

µ
=

µ/6 − 1

µ
≥

µ/7

µ
=

1

7

giving an expected time of7 generations for this event to
happen. Multiplying, the expected time for the optimum to
be found is at most7 · 3n = O(2n).

In Section VI functions will be introduced where the
(µ+1) EAR algorithm performs better than the (1+1) EA
and the difference in runtime is a more practical polynomial
versus super-polynomial.

IV. ONEMAX

In this section we will show that the (µ+1) EAR algorithm
is efficient for the ONEMAX function by proving a runtime
of O(µn log n).

Theorem 2: If the population size is bounded byµ =
poly(n), then the expected optimization time of the
(µ+1) EAR on the ONEMAX function isO(µn log n).

Proof: To prove the upper bound, note that the first
individual in the ranked population (i.e.x1) flips each bit
with probability 1/n. We can therefore follow the ideas of
the proof of the (1+1) EA for the ONEMAX function used in
[3]. The best individual in the ranked population gets selected
for mutation in each generation with probability1/µ. This
implies it is expected to be chosen once inµ generations.
Since the fittest individualx1 requiresO(n log n) steps to
reach the optimum (i.e. [3]), we get an upper bound of
O(µn log n) for the optimum to be found.

In [12], Witt proves that the expected time for the
(µ+1) EA to optimize ONEMAX is O(µn + n log n). The
(µ+1) EA obtains a short runtime because at each fitness
level L (i.e. there areL ones in the best individual of the
population), many copies of the best individual are obtained
(i.e. the whole population or at leastn/(n − L)) in time
O(µ log(n/(n − L))). Then any of these individuals may
reach the next fitness level, rather than only the best. It
could be that the (µ+1) EAR algorithm cannot always take
advantage of these multiple copies to quickly climb up the
ONEMAX function because the individuals that flip each
bit with high probability end up turning many one-bits
into zero-bits when approaching the optimum. Hence, by
applying different mutation rates according to the rank of
the individuals, the algorithm may climb up slopes more
slowly than a population of individuals that flip each bit with
probability1/n. In any case the process needs to be analysed
more carefully to understand whether the given bound is
tight or not. We leave a theorem about the lower bound on
ONEMAX as an interesting open question for future work.

V. DECEPTIVEFUNCTIONS

In this section we consider the performance of the
(µ+1) EAR algorithm on deceptive functions. Trap functions
have been considered several times in the analysis of EAs
to show how this class of algorithms may be attracted by a
local optima which leads the population far away from the
global optimum. As a consequence the expected runtime of
the algorithms is exponential.

First we will address a question that appears from the
analysis of the (µ+1) EAR for ONEMAX presented in the
previous section. Although, the (µ+1) EA requiresO(µn +
n log n) expected time to optimise the ONEMAX function,
a O(µn log n) bound of has been proved in Theorem 2 for
the (µ+1) EAR. The best individual in the ranked population
flips each bit with probability1/n and the expected time for
it to be selected for mutation isµ. So, it may be assumed that
the upper bounds obtained in the analysis of the (1+1) EA
could be extended to the analysis of the (µ+1) EAR by
multiplying the upper bounds of the former algorithm byµ to
obtain an upper bound on the runtime of the latter algorithm.
To show that this is not the case we consider a function
that we call LEADINGTRAPJUMP. Theorem 3 proves that
the (µ+1) EA is efficient for this class of functions with
overwhelming probability, while the expected runtime of the
(µ+1) EAR is exponential in the problem size. Hence, not
only is the upper bound of the (1+1) EA not generalisable to

the (µ+1) EAR, but a class of functions is presented where
the former algorithm (and the (µ+1) EA) is efficient while
the latter is not.

After the analysis of the LEADINGTRAPJUMP function
we will consider the trap function used in [1] which we
choose to callTRAP1. It will be proved in Theorem 4 that the
(µ+1) EAR is efficient for the function. However, this only
occurs because the global optimum is located at a Hamming
distance ofn from the local optimum. As it will be shown
in the proof of Theorem 4, the position of the local optimum
gives the (µ+1) EAR a rather unfair advantage over the
(µ+1) EA. To this end, we consider a more generic trap
function which we callTRAP2. The only difference between
the two trap functions is that we place the global optimum
in a generic point having lower Hamming distance from the
local optimum. Theorem 5 shows that the expected runtime
of the (µ+1) EAR on theTRAP2 function isΘ(2n) which is
exponential in the problem size. This means that, although
its expected runtime is better than that of the(µ+1) EA (i.e.
Ω(nn)) its performance is no better than that of Random
Search. Theorem 5 also shows that the generic upper bound
given in Theorem 1 of Section III (i.e.O(2n)), which
holds for every pseudo-Boolean function is tight. Hence, the
expected runtime of the (µ+1) EAR algorithm on a generic
pseudo-Boolean function isΘ(2n).

Now we present the LEADINGTRAPJUMP function class
to tackle the first goal proposed in this section. The LEAD-
INGTRAPJUMP is a class of functions designed to show
that whatever the population size of the (µ+1) EAR may
be (as long as polynomial in the problem size), there exists
a class of functions where the (µ+1) EA is efficient while
the (µ+1) EAR is not. This is obtained by considering that if
the population size of the (µ+1) EAR is µ = poly(n) = nk

with k a constant, then as proved in Theorem 3 its expected
runtime is exponential for the following function:

LEADINGTRAPJUMP(x) =

0 if x = 1(9/10)n∗
LO(xi|i > 2k + 1) + 2k + 1 if x = 02k+11(9/10)n−2k−1∗
n − 1 if x = 0n/10∗
LO(x) otherwise.

The LEADINGTRAPJUMP function consists of a leading
ones path incrementing the fitness by one for each leading
one until (9/10)n − 1 leading ones are reached. Then at
least2k leading zeroes need to be created to increment the
fitness. Once these leading zeroes have been obtained by
an individual, it may insert the lastn/10 leading ones to
reach the optimum. However, there is a trap havingn/10
leading zeroes. The only better point than this one is the
global optimum.

Theorem 3: Let 2 ≤ µ ≤ nk andk a constant. With con-
stant probability the (µ+1) EAR optimises the LTJ function
in time 2Ω(n). With probability 1 − 2−Ω(n) the (µ+1) EA
optimises the LTJ in timeO(µn2k+2).

Proof: The probability that both algorithms are ini-
tialised with strings having the first2k + 1 bits set to zero

and the next(9/10)n− 2k− 2 set to one is2−Ω(n) which is
exponentially small. The same asymptotic probability holds
for both algorithms being initialised with the firstn/10 bits
set to zero. The rest of the proof of the statement regarding
the (µ+1) EA follows.

We consider the following three phases:
1) The phase lasts until a solution with(9/10)n − 1

leading ones has been found by at least one individual
for the first time;

2) Starting with at least one individual with(9/10)n −
1 leading ones, the phase lasts until a solution with
2k + 1 leading zeroes has been found by at least one
individual;

3) The phase lasts until the global optimum of the LEAD-
INGTRAPJUMP function has been found.

Now we calculate the expected runtimes for each of the
phases conditional to the event that the trap point is not found
in the mean time. Then we will calculate the probability of
the event that the trap is found first.

The expected time for the (µ+1) EA to find the point with
(9/10)n − 1 leading ones (i.e. the end of the first phase),
if the trap is not reached first isO(µn2). This is because
at each time step the probability the individual with most
leading ones is selected for mutation is1/µ and it creates
the next leading one with probability1/n and does not flip
any other bit with probability(1−1/n)n−1 ≥ 1/e, giving an
expected time of at mosteµn for each improvement. Since
at most (9/10)n − 1 leading ones need to be created the
expected time is less thant = e(10/9)µn2 = O(µn2). In fact
with slightly more sophisticated arguments an upper bound
of O(µn log n+n2) can be proved for the leading ones part
[12], but is not necessary here.

Following arguments in Droste et al. [3], there exists a
constantc > 0 such that the probability that9n/10 leading
ones have not been obtained withincµn2 iterations ise−Ω(n).

The expected time to conclude the second phase is
O(µn2k+1), because1/µ is the probability the individual
with (9/10)µ−1 leading ones is selected and1/(en2k+1) is
a lower bound on the probability that the first2k+1 bits are
mutated into zeroes. This gives an expected time ofeµn2k+1.
The probability that this does not happen in timeeµn2k+2

is
(

1 − µn−(2k+1)

)µn2k+2

≤

(

1

e

)n

,

meaning that phase2 is concluded in timeO(µn2k+2) with
probability 1 − e−Ω(n) if a trap point is not found first.

Once the2k + 1 leading zeroes have been found, the last
n/10 + 1 leading ones may be added, phase3 concluded
and the optimum found. Just like for phase1 this happens
in time O(µn2) with probability 1 − e−Ω(n) if a trap point
is not found first. Summing up we get a total runtime of
O(µn2k+2) with probability at least1− e−Ω(n) to reach the
optimum conditional to not finding the trap first.

Now we calculate the probability of finding the trap before
O(µn2k+2) steps. As discussed at the beginning of the
proof, a trap point is not created during initialisation with

probability 1 − 2−Ω(n). We consider any individual withx
leading ones and the remainingn/10 − x bits which are
uniformly distributed. The probability that a trap point is
created in a step is less than

(

1/n
)x

·
(

1/2
)n/10−x

≤
(

1/2
)n/10

= 2−Ω(n)

Hence the probability is highest during initialisation. The
higher the number of leading ones the lower is the probability
that a trap point is created. The above discussion holds until
the end of phase2.

For the individuals with2k + 1 leading zeroes (i.e. phase
2 has ended) the probability that they reach a trap point is
less than

(

1/n
)n/10−(2k+1)

≤
(

1/n
)n/20

≤ n−Ω(n)

because at leastn/10−(2k+1) one-bits have to flip into zero-
bits. Summing up in each step the probability of reaching a
trap point is less than2−Ω(n). This means that the probability
that in O(µn2k+1) steps the trap is found is less than:

O(µn2k+1) · 2−Ω(n) = O(nk+2k+1) · 2−Ω(n) = 2−Ω(n)

This completes the proof of the second statement of the
theorem.

Each individual of the (µ+1) EAR algorithm will not be
initialised with a gap point with probability1−2Ω(n) because
(8/10)n consecutive ones are required. Like in the proof of
the first part of the theorem we consider the following phases:

1) The phase lasts until all the population of the
(µ+1) EAR reaches the point with(9/10)n−1 leading
ones or a trap point;

2) The phase lasts until all the population reaches a trap
point;

We will consider the time required to end each phase
assuming that the gap is not jumped first. Afterwards, we
will consider the probability that an individual jumps over
the gap before the two phases have finished.

Since the best ranked individual mutates each bit with
probability1/n and it gets selected with probability1/µ, the
ideas from the proof of the (1+1)-EA for LEADINGONES

[3] may be adapted here. This individual will maintain
the same mutation probability unless some individual gets
more leading ones and gets ranked in first position. Since
we are assuming the gap is not jumped over, in time at
most eµn2 the first individual in the population reaches
(9/10)n − 1 leading ones. At this point, a copy of the
best individual of the population is created with probability
(1/µ)

(

1 − 1/n)n ≥ 1/(4µ) and µ copies are created in at
most time4µ2. Summing up the expected time for phase1
to finish is

eµn2 + 4µ2 = en2k + 4n2k ≤ 7n2k.

Now we consider the second phase assuming that no
trap points have been found yet first. Since the population
has converged, the last ranked individual will mutate all its
bits with probability1 when selected, hence create a point
with n/10 leading zeroes. Actually(9/10)n − 1 leading

zeroes will be created and only the lastn/10 + 1 bits will
be uniformly distributed. Since the probability for the last
ranked individual to be selected is1/µ this event has an
expected time ofµ = nk. Then, the only improvement the
individual may obtain is to reach the optimum which does
not happen by hypothesis (i.e. it is a solution on the other side
of the gap). Furthermore, no other individual may be ranked
better unless it reaches the trap (i.e. under the assumptionthat
the gap is not overtaken). Hence, just like at the end of phase
1, in expected time less than4n2k all the population will have
been copied into a trap point and phase2 concluded. This
second part holds even when at least a trap point had been
created before the end of phase1. Summing up we get a
total expected runtime of at most11n2k +nk ≤ 12n2k steps
for the two phases to end. By Markov’s inequality with a
probability of 1/2 the phases are concluded in time24n2k.

Now we consider the failure probability (i.e. the gap is
jumped over before the two phases are concluded).

First we consider the probability if the number of leading
ones in an individual is less thann/10. Then, the probability
to jump over the gap is less than

(

pm

)(2/10)n(

1 − pm

)(2/10)n
≤

(

1/2
)

−Ω(n)

because more than(6/10)n uniformly distributed bits have
to be turned into leading ones. This means that in expectation
there are at least(3/10)n zero-bits (and also at least(3/10)n
one-bits) and by Chernoff bounds they are at least(2/10)n
with probability 1 − e−Ω(n).

Now we assume that there are more than(n/10) leading
ones. Then the probability to jump over the gap is less than
the following

(

pm

)2k+1(
1 − pm

)(1/10)n−(2k+1)
≤

(

1/n
)2k+1

because at least the2k+1 leading ones need to be turned into
zeroes and the remaining(1/10)n−(2k+1) ones should not
be flipped. This implies that in each step the probability that
a jump over the gap occurs is less thann−(2k+1). Hence the
probability that the gap is not jumped over in24n2k steps is

(

1 − (1/n)2k+1
)24n2k

≥ 1/e

Multiplying, the probability that the two phases occur in
24n2k steps without any gap-jumps is1/(2e) = Ω(1).

Now, the only way to escape from the trap is to flip back
at least all the(8/10)n − 2k zero-bits into one-bits without
flipping any of the one-bits of the lastn/10 bits of the string
which are uniformly distributed. Such a probability is upper
bounded as follows:

p(7/10)n
m ·

(

1 − pm

)n/30
≤ (1/2)n/30 = 2−Ω(n)

This proves the exponential runtime for the (µ+1) EAR

algorithm with probability at leastΩ(1).
Now that it has been proved that there exist functions that

are deceptive for the (µ+1) EAR but not for the (µ+1) EA,
we will concentrate on the simple trap functions considered
in [1]. The following trap function was considered.

TRAP1(x) =

{

n + 1 if x = 0n

ONEMAX(x) otherwise.

The function consists of a ONEMAX path except for the
optimum which is the bit string with all zeroes.

In the experiments performed in [1] the Rank-GA us-
ing mutation, crossover and fitness proportional selection
required exponential time to optimise theTRAP1 function.
The following theorem proves that the (µ+1) EAR is efficient
for the function.

Theorem 4: Let µ > 1. The expected optimization time of
the (µ+1) EAR on theTRAP1 function isO(µ2 + µn log n).

Proof: The function consists of a ONEMAX path except
for the 0n bit-string which is the global optimum. If the
global optimum is not found first, from Theorem 2 we know
that the local optimum consisting of the1n bit-string will be
found in timeO(µn log n). From this point of time, due to
the elitist nature of the selection mechanism this solutionwill
not be removed from the population until the global optimum
has been found because it has higher fitness than any other
point in the search space. For the same reason, any copy of
the local optimum will be accepted if the optimum has not
been found,

As shown in the proof of Theorem 3, the expected time
for the whole population to be a copy of the1n bit-string
conditional to no fitness improvement (i.e. the optimum not
being found) isO(µ2). Now, since individualxµ flips each
bit with probability (n/n) = 1, it will flip all its bits (which
are all ones) into zero-bits with probability1 when it is
selected for mutation. The expected time forxµ to be selected
for mutation isO(µ). Summing up, if the optimum is not
found previously, it will be found in timeO(µ2 + µn log n)

The above theorem proves that the (µ+1) EAR is efficient
for the TRAP1 function. However, this only happens because
the global optimum is the opposite of the local optimum
(or if it is placed at a constant Hamming distance from the
opposite). The following function changes the location of the
local optimum to permit a fair comparison between the two
algorithms.

TRAP2(x) =

{

n + 1 if x = {0n/41(3/4)n}
ONEMAX(x) otherwise.

The following theorem shows that the expected optimiza-
tion time of the (µ+1) EAR on the TRAP2 function is
exponential in the function size.

Theorem 5: Let µ = poly(n). The expected optimization
time of the (µ+1) EAR on theTRAP2 function isΘ(2n).

Proof: The proof of the upper bound follows directly
from Theorem 1.

The probability that the optimum is generated during
the initialisation phase is(1/2)n for each individual. The
expected number of zero bits for each individual isn/2.
By Chernoff bounds, with overwhelming probability each
individual has at leastn/3 zero bits after initialisation. Hence
for the optimum to be found at leastn/12 zero bits have to

be flipped into one bits. The probability that each individual
is mutated into the optimum is

pH(xi,x
∗)

m ·
(

1 − pm

)n−H(xi,x
∗)

≤ pn/12
m · (1 − pm)(11/12)n ≤ (1/2)n/12 = 2−(n/12)

Hence, the expected number of mutation steps for the opti-
mum to be found is at least2n/12.

From the proof of Theorem 4 we know that the expected
time for the best ranked individual (i.e.x1) to find the1n

bitstring and then to createµ identical copies of itself are
respectivelyO(µn log n) and O(µ2). By using Markov’s
inequality, we prove that with probability1−o(1) the whole
population consists of copies of the1n bitstring in timeµ2n.
Once this point has been reached, the probability that any
individual is mutated into the optimum is upper bounded as
follows.

p(n/4)
m ·

(

1 − pm

)(3/4)n
≤ (1/2)n = 2−n

Hence, the expected time for the optimum to be found is
2Ω(n).
The expected time of the (µ+1) EA on the trap function
is Ω(nn) [3] meaning that the (µ+1) EAR does require
less time to optimize the function. However, none of the
two algorithms perform better than Random Search on this
function, which means they are inefficient for the function.
In the next section a class of functions will be introduced
were the better performance of the (µ+1) EAR compared to
the (µ+1) EA is a more practical gap between polynomial
and super-polynomial runtimes. Thus a practical advantage
of using the (µ+1) EAR rather than the (µ+1) EA on that
class of functions will be proved.

VI. COMBINING RANDOM AND GUIDED SEARCH

In this section, we want to point out where using rank-
based mutation considerably speeds up the optimization
process compared to algorithms using a fixed mutation rate.
Here, we will show that the different individuals using differ-
ent focuses on exploration and exploitation can significantly
help to deal with landscapes that require different mutation
rates at different stages of the optimization process.

To exemplify where the use of rank-based mutation can
make the difference between a super-polynomial and poly-
nomial runtime we consider the function TRAP-ONEMAX

introduced in [5].

TRAP-ONEMAX(x) =

(k
∏

i=1

xi

)(n
∑

i=k+1

xi

)

+

k
∑

i=1

(1−xi).

We call the firstk-bits the TRAP-part and the remaining
n−k bits the ONEMAX -part of a bitstring. The function has
the property that the ONEMAX -part can only be optimized
after the optimum of the TRAP-part has been found. Other-
wise, the function leads an algorithm to search points that
have a large Hamming distance in the TRAP-part from the
set of optimal solution with respect to the TRAP-part which
consists of all search points having at leastk leading ones.

As done in [4, 5], we consider the function for the case
k = log n and show that the use of rank-based mutation
can considerably reduce the runtime. A similar effect has
already been observed in [4] where the effect of using
neutrality in evolutionary algorithms has been analyzed. In
this paper it has been pointed out that a variant of the
(1+1) EA has for each fixed mutation rate a super-polynomial
expected optimization time. The arguments used in the proof
of this lower bound can be generalized to (µ+1) EA if
the population size is not too large. For a sufficiently large
population size, e. g.µ = n2 log n, and mutation rate1/n the
expected optimization time becomes polynomial as with high
probability at least one individual in the initial population is
optimal with respect to the TRAP-part.

In [4] it has been shown that the function TRAP-ONEMAX

may also be optimized by EAs with a small population size.
Incorporating neutrality into the (1+1) EA an upper bound on
the runtime ofO(n2 log n) has been shown in this paper. The
model of neutrality examined in this paper ensures that each
bit in the TRAP-part is flipped with probability1/2 while
each bit in the ONEMAX -part is flipped with probability
1/n. For the ONEMAX -part the choice of the mutation rate
is optimal. However, after having reached a solution withk
leading ones and at leastk + 1 ones in the ONEMAX -part it
is better to work with a smaller mutation rate in the TRAP-
part as a mutation rate of1/2 implies that a solution withk
leading ones is just re-sampled after an expected number of
Θ(n) and the optimization of the ONEMAX -part is slowed
down by Θ(n). Using these arguments together with the
lower bound for the (1+1) EA on ONEMAX given in [3], it is
not to hard to prove a matching lower bound ofΩ(n2 log n)
for the algorithm using bit-wise neutrality investigated in [4]
on TRAP-ONEMAX .

We show that the (µ+1) EAR optimizes the function
TRAP-ONEMAX in time O(n log n) if the population size is
constant. The improvement compared to the use of neutrality
investigated in [4] is due to the fact that the mutation rate of
the best individual is1/n which implies that the optimum
of the TRAP-part is re-sampled with a constant probability if
the best individual of the population is chosen for mutation.
Basically, our proof consists of the idea that individuals with
a high mutation rate are necessary to sample the optimum
of the TRAP-part for the first time. Later on, the ONEMAX -
part is optimized by considering the best individual in the
population, i. e. the individual with mutation rate1/n.

Theorem 6: Choosingµ > 2, the expected optimization
time of the (µ+1) EAR on the TRAP-ONEMAX function with
k = log n is O(µn log n).

Proof: To prove the theorem, we consider two phases.
The first phase ends when a search point consisting ofk
1-bits in the TRAP-part and at leastk + 1 1-bits in the
ONEMAX -part has been found for the first time. After having
reached this intermediate goal the second phase begins and
ends when the optimal search point has been found for the
first time.

In the first phase we consider the individuals of ranki

whereµ/3+1 ≤ i ≤ µ/2. The probability of choosing such
an individual in the next iteration isµ/2−µ/3−1

µ = Ω(1).
The TRAP-part consists oflog n bits. Therefore, an expected
number of at most3log n = O(n) mutation steps applied to
such individuals is necessary to reach a solution consisting
of k leading ones. Such a solution is accepted if it has at
leastk + 1 1-bits in the ONEMAX -part.

As long as the TRAP-part has not been optimised, the
ONEMAX -part does not contribute to the fitness, and the
last n − k bits in each individual are therefore uniformly
distributed. Hence, by a Chernoff bound, with exponentially
high probability, the ONEMAX -part contains at leastn/4 −
k/4 > k + 1 ones when the TRAP-part has been optimised.

Altogether, the expected time until a solution withk 1-bits
in the TRAP-part and at leastk + 1 1-bits in the ONEMAX -
part has been achieved is upper bounded byO(n).

To optimize the ONEMAX -part, we can follow the ideas
in the proof of Theorem 2 to obtain the upper bound of
O(µn log n) on the expected time until an optimal solution
has been achieved.

VII. D ISCUSSION ANDCONCLUSION

We have presented a rigorous analysis of rank-based
mutation EAs on function classes with significant structures.
We have considered the (µ+1) EAR, which is a rank-based
mutation steady state EA with elitism, and we have compared
it with the (1+1) EA and the (µ+1) EA. The experiments
performed in [1] discussed the impact of rank-based mu-
tation rates by using an algorithm called Rank-GA with
fitness-proportional selection and a crossover operator which
chooses the mating individuals according to their rank. This
could imply that some of the effects that were seen through
the experiments were caused by the selection or the crossover
operators. Now we discuss how the results presented in this
paper compare with those obtained experimentally in [1].

The first result we have presented is a general bound
of O(2n) for the (µ+1) EAR which holds for any pseudo-
Boolean function. This implies that the (µ+1) EAR algorithm
may only perform by a constant factor worse than Random
Search. This runtime reflects the one obtained experimentally
by the Rank-GA (i.e. with fitness-proportional selection and
crossover) in [1] for functions such asNEEDLE and TRAP1

since the number of fitness evaluations reported in the paper
appear like exponential in the problem sizes (i.e.105 for
n = 16). This seems to imply that for these functions
neither the selection or the crossover operator are of any help
because there seems to be no evident runtime improvement
compared to our upper bound.

In Theorem 2 we prove an upper bound ofO(µn log n) for
the (µ+1) EAR for ONEMAX meaning that the algorithm is
efficient for the function although it may be slower compared
to the (µ+1) EA. The question of whether the bound is tight
is left open for future work. In any case the algorithm does
not require more thanO(µn log n) expected time. This seems
in line with the experimental results regarding the Rank-GA
for ONEMAX presented in [1]. The algorithm seems to be

efficient for the ONEMAX function with a bitstring length of
n = 100.

However, this does not explain the much worse perfor-
mance of the Rank-GA for theTRAP1 function. In Theorem
4 of Section V we prove that the (µ+1) EAR is efficient
for the TRAP1 function. This happens because, once all
the individuals in the population reach the local optimum
by climbing up the ONEMAX path of the function, the
individuals ranked badly flip many bits and end up on the
global optimum which has Hamming distancen from the
local optimum. In fact the last ranked individual will end up
on the optimum with probability1, once selected, because
it flips all its bits. If the Rank-GA is really efficient for
the ONEMAX function as claimed in [1], then it would
be expected that once the top of the ONEMAX function
is reached then the algorithm should be able to jump to
the global optimum of theTRAP1 function. However, this
does not seem to be the case. One answer could be that,
although the optimum of the ONEMAX part is found by the
algorithm, the population of the Rank-GA algorithm does
not converge to the top of the ONEMAX part. Hence the
individuals with low rank and high mutation rate do not have
a chance of jumping to the optimum in polynomial time.
From the experimental results of [1] the answer is not clear.

For the functions discussed above, when the rank-based
mutation performs better than fixed-mutation the runtime is
exponential in the problem size and not better than Random
Search. These results do not justify any practical advantage
of using rank-based mutation rather than fixed mutation with
a sensible mutation probability such asp = 1/n. For this
reason in Section VI we have presented functions where we
highlight that the optimization time of rank-based mutation
is polynomial with good probability while algorithms with
fixed-mutation rates are inefficient.

For fairness in the comparison, in Section V we have also
proved the existence of functions where the (µ+1) EAR is
inefficient while the (µ+1) EA is efficient with a success
probability converging fast to1.

ACKNOWLEDGEMENT

Pietro S. Oliveto was supported by an EPSRC grant
(EP/C520696/1). Per Kristian Lehre was supported by an
EPSRC grant (EP/D052785/1).

The authors are grateful to Jonathan E. Rowe for an
interesting discussion on the use of rank-based variation
operators.

REFERENCES

[1] J. Cervantes and C. R. Stephens. Rank based vari-
ation operators for genetic algorithms. InProc. of
GECCO ’08, pages 905–912. ACM Press, 2008.

[2] S. Droste, T. Jansen, and I. Wegener. A rigorous com-
plexity analysis of the (1 + 1) evolutionary algorithm for
separable functions with boolean inputs.Evolutionary
Computation, 6(2):185–196, 1998.

[3] S. Droste, T. Jansen, and I. Wegener. On the analysis of
the (1+1) evolutionary algorithm.Theor. Comput. Sci.,
276:51–81, 2002.

[4] T. Friedrich and F. Neumann. When to use bit-wise
neutrality. Natural Computing, 2009. To appear. A
preliminary version appeared in Proc. of CEC 2008.

[5] W. J. Gutjahr and G. Sebastiani. Runtime analysis of
ant colony optimization with best-so-far reinforcement.
Methodology and Computing in Applied Probability, 10
(3):409–433, 2008.

[6] E. Happ, D. Johannsen, C. Klein, and F. Neumann.
Rigorous analyses of fitness-proportional selection for
optimizing linear functions. InProc. of GECCO ’08,
pages 953–960. ACM Press, 2008.

[7] T. Jansen and I. Wegener. On the choice of the mutation
probability for the (1+1) EA. InProc. of PPSN ’00,
pages 89–98. Springer, 2008.

[8] F. G. Lobo, C. F. Lima, and Z. Michalewicz, editors.Pa-
rameter Setting in Evolutionary Algorithms, volume 54
of Studies in Computational Intelligence. Springer,
2007. ISBN 978-3-540-69431-1.

[9] P. S. Oliveto and C. Witt. Simplified drift analysis for
proving lower bounds in evolutionary computation. In
In Proceedings of the 10th International Conference on
Parallel Problem Solving From Nature (PPSN X), pages
82–91, 2008.

[10] P. S. Oliveto, J. He, and X. Yao. Computational com-
plexity analysis of evolutionary algorithms for combi-
natorial optimization: A decade of results.International
Journal of Automation and Computing, 4(3):281–293,
2007.

[11] P. S. Oliveto, J. He, and X. Yao. Analysis of population-
based evolutionary algorithms for the vertex cover
problem. In In proceedings of the 2008 IEEE world
congress on computational intelligence (WCCI2008),
pages 1563–1570. IEEE, 2008.

[12] C. Witt. Runtime analysis of the (µ + 1) EA on simple
pseudo-boolean functions.Evolutionary Computation,
14(1):65–86, 2006.

[13] C. Zarges. Rigorous runtime analysis of inversely fit-
ness proportional mutation rates. InProc. of PPSN ’08,
pages 112–122. Springer, 2008.

