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ABSTRACT

Runtime analysis of evolutionary algorithms has become an
important part in the theoretical analysis of randomized
search heuristics. The first combinatorial problem where rig-
orous runtime results have been achieved is the well-known
single source shortest path (SSSP) problem. Scharnow, Tin-
nefeld and Wegener [PPSN 2002, J. Math. Model. Alg. 2004]
proposed a multi-objective approach which solves the prob-
lem in expected polynomial time. They also suggest a re-
lated single-objective fitness function. However, it was left
open whether this does solve the problem efficiently, and, in
a broader context, whether multi-objective fitness functions
for problems like the SSSP yield more efficient evolutionary
algorithms. In this paper, we show that the single objective
approach yields an efficient (1+1) EA with runtime bounds
very close to those of the multi-objective approach.

Categories and Subject Descriptors: F.2 [Theory of
Computation]: Analysis of Algorithms and Problem Com-
plexity

General Terms: Theory, Algorithms, Performance

1. INTRODUCTION

Evolutionary algorithms (EAs) have been successfully ap-
plied to a wide range of combinatorial optimization prob-
lems. Understanding the success of these randomized search
heuristics by rigorous analyses has gained increasing inter-
est in recent years. One approach to analyze evolutionary
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algorithms is by means of carrying out a rigorous runtime
analysis. The line of research has been started by analyz-
ing the behavior of EAs on simple pseudo-Boolean functions
[13, 15, 7]. Later on, some of the best known combinatorial
optimization problems have been investigated [9, 14, 18].

The first problem of this kind where rigorous runtime re-
sults have been achieved is the well-known single source
shortest path (SSSP) problem [17]. Computing shortest
paths in a given graph is one of the fundamental problems in
computer science and still an important field of research [16,
2, 11]. In the area of randomized search heuristics related
problems such as vehicle routing [8] and routing problems in
networks [6, 10] have been tackled. Therefore, it seems to
be important to understand the basic SSSP problem from
a theoretical point of view to gain new insights that will
help practitioners solving related problems arising in appli-
cations.

In [17], the authors examined a simple EA together with a
multi-objective fitness function which makes the EA mimic
Dijkstra’s algorithm for the SSSP problem [3]. Its optimiza-
tion time (that is, the number of fitness evaluations used) is
O(n3), where n is the number of vertices of the input graph.
Additionally, they have given a single-objective approach
which they suppose to be efficient. However, the authors
state that they were not able to analyze their approach with
respect to the runtime behavior. In this paper, we point
out that the multi-objective fitness function is not neces-
sary. We consider the proposed single-objective approach
and show how it solves the SSSP problem in expected poly-
nomial time.

In the case that a simple randomized local search proce-
dure is used, it is not too hard to prove that such an ap-
proach again follows the ideas of Dijkstra’s algorithm. This
follows from the fact that the new solution is constructed in
the 1-neighborhood of the previous one. Simple EAs may
construct solutions that are further away from the current
search point. For the SSSP, this may result in that shortest
paths for certain vertices can get lost in exchange for other
short paths. This is a crucial difference to what happens in
Dijkstra’s algorithm.

In fact, it has been shown recently (for a different problem
though) that this more general search behavior can increase
the optimization time from polynomial for randomized local
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(1 + 1)-EA for SSSP

Initialization:

1 u← (u1, . . . , un−1),
ui ∈ V \ {vi} chosen uniformly at random.

2 repeat

Mutation:

3 Pick S according to Pois(λ = 1)
4 u0 ← u

5 for k = 1 to S + 1
6 do

7 Choose i ∈ {1, . . . , n− 1} uniformly at random.
8 Choose vj ∈ V \ {vi} uniformly at random.
9 Generate uk from uk−1 by setting ui to vj .

Selection:

10 if f
u

S+1 ≤ fu

11 then u← uS+1

12 forever

Figure 1. The (1 + 1)-EA with single-objective fitness function f for the SSSP problem.

search to exponential for EAs, even under conditions that
look highly favorable for the EA [5]. In this light, the work
of [17] raises the question whether such a phenomenon also
occurs for the SSSP problem.

We answer this question and prove that the more flexi-
ble mutation allowed in EAs still leads to a polynomial op-
timization time, more precisely, an expected optimization
time of O(n3 log(n + wmax)), where wmax is the largest of
the (integral) edge weight. Our analysis uses new structural
insights of the SSSP problem which point out how random-
ized search heuristics may achieve progress for this kind of
problem even if they may not follow the ideas of Dijkstra.
These positive results are later on complemented with lower
bounds for the examined algorithms which show that our
analyses are almost tight.

We should note that the results in [17] have recently been
improved in [4]. In addition to n denoting the number
of vertices of the input graph, let ℓ denote the maximum
number of edges of a shortest path. Then [4] shows that
the optimization time of the multi-objective EA proposed
in [17] is O(n2 max{log(n), ℓ}) with high probability. The
methods of [17] would only yield an optimization time of
O(n2ℓ log(n)) in expectation. Hence the improvements are
both a stronger bound on the expected optimization time for
graphs having small diameter and a sharper concentration
bound for the optimization time in general graphs. How-
ever, no progress was made on whether the SSSP can be
approached via single-objective methods

The outline of the paper is as follows. In Section 2, we
present the single-objective approach that will be analyzed
throughout this paper. Section 3 shows that the single-
objective approach solves the SSSP in expected polynomial
time and Section 4 gives almost matching lower bounds. Fi-
nally, we finish with some concluding remarks.

2. ALGORITHM

We consider the well-known single source shortest paths
problem (SSSP). Given a directed graph G = (V, E) with

V = {v0, . . . , vn−1} and E = {e1, . . . , em}. Additionally, a
weight function w : E → N is given which assigns integer
distance values to the edges. Let wmax = maxe∈E w(e). We
may extend w to all (u, v), u 6= v, by setting w((u, v)) =∞
iff (u, v) /∈ E. Given a distinguished vertex s ∈ V , say
s = v0, the single source shortest path problem is to com-
pute for each vertex vi, 1 ≤ i ≤ n− 1, a shortest path from
s to vi. Without loss of generality, we assume that such a
path exists for each vi. It is both a well known fact and easy
to see that a set of such shortest paths always forms a tree,
which is therefore called a shortest path tree.

We examine the (1+1) EA for the SSSP problem (see
Figure 1) already investigated in [17]. The search space
consists of all candidate solutions u = (u1, . . . , un−1) ∈
{v0, . . . , vn−1}

n−1 where ui 6= vi. The goal of the algorithm
is to find a u = (u1, . . . , un−1) such that the edges (ui, vi)
form a shortest path tree T rooted at s (that is, for each
vertex vi, 1 ≤ i ≤ n − 1, ui is the predecessor of vi in the
shortest path from s to vi contained in T ).

The initial solution is chosen uniformly at random from
the search space. In each iteration one single offspring is
produced by mutation. The mutation consists of changing
the predecessor of some S +1 vertices uniformly at random,
where the value of S is chosen according to the Poisson dis-
tribution with parameter λ = 1. This distribution is as
proposed in [17].

There are many invalid solutions, i. e., search points that
do not represent trees. Assigning a cost of ∞ to such solu-
tions, it is hard for a randomized search heuristic to obtain
a valid solution. Due to this a multi-objective fitness func-
tion has been investigated for this problem and an upper
bound of O(n3) on the expected optimization time has been
proven. Additionally, a single-objective fitness function has
been given which leads the algorithm towards valid solu-
tions. Instead of using the value ∞ for solutions that do
not represent trees each vertex that is not connected to the
source is penalized. Using penalty values is a common ap-
proach for handling constraints (see e. g. [12]) and leads the
algorithm towards feasible solutions.

In [17] the authors state that they are not able to analyze
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this approach. Our goal is to show that this single-objective
approach indeed works and finds an optimal solution in ex-
pected polynomial time.

Now we describe the single objective function that is in-
vestigated in the rest of this paper. Consider a candidate
solution u = (u1, . . . , un−1) where ui is supposed to be the
immediate predecessor of the vertex vi. Associated with u

consider the subgraph Tu of the input graph G consisting
of those pairs (uj , vj) which are edges in G. For a vertex v,
if there is a path in Tu from the source s to v it has to be
unique. Let γv denote the unique path in such cases. When-
ever such unique path γv exists for a vertex v we define its
cost fu(v) to be the sum of the weights of the edges in γv.
On the other hand if v is unreachable from s in Tu, then the
cost fu(v) is set to dpenalty := n · wmax. The fitness fu of a
candidate solution u is given by

fu :=

n−1
∑

i=1

fu(vi).

In our analysis of the runtime behavior of the algorithm,
we bound the number of evaluations of the fitness function
required to reach an optimal solution. The expected opti-
mization time refers to the expectation of this value. The
difficulty in analyzing the stated approach lies in the occur-
rence of mutation steps that change more than one prede-
cessor. In this case, shortest paths found during the run of
the algorithm may get lost. Assuming that in each muta-
tion step just one vertex changes its predecessor it is easy
to prove an upper bound of O(n3) as for the multi-objective
approach given in [17] by following the ideas of Dijkstra’s
algorithm.

3. UPPER BOUND

We now prove an upper bound on the running time of the
(1+1) EA. As mentioned before we will assume that the
input graph is a complete graph. We start the algorithm
with each vertex picking one of the edges incident on it at
random. It then proceeds in stages where in each stage it
decides to mutate k + 1 vertices, k picked according to the
Poisson distribution of mean 1, accepting the mutation if
and only if it does not lead to an increase in the objective
function.

Let ui denote the candidate solution after i mutations.
Recall the definition of the objective function fui . For ease
of notation let fi(v) denote the cost fui(v) associated with
the vertex v and let fi denote the fitness fui of the candidate
solution ui. Similarly let Ti denote the subgraph Tui of
valid edges (i.e. edges of the input graph G) present in the
candidate solution ui.

The key idea behind our upper bound is the following:
We prove that in each mutation the value of the objective
function reduces at least by a factor of 1 − Ω(n−3) with
high probability. Thus in time O(n3) the value of the objec-
tive function reduces by a multiplicative factor of at most
c < 1. The value of the objective function is less than
n · dpenalty initially. Assuming the edge weights are integers,
after O

(

n3 · (log n + log dpenalty)
)

mutations the algorithm
will find the shortest distance tree with high probability.
Note, that this approach is similar to the expected multi-
plicative weight decrease for the analysis of the (1+1) EA
and the minimum spanning tree problem [14]. The differ-
ence of our approach to this one is that we do not give a set

of operations that turn the current solution into an optimal
one. Instead of this we give a set of operations that lead to
a solution whose distance to an optimal one is by a factor of
(1 − 1/n) smaller than the distance of the current solution
to an optimal one.

We now define two parameters called delay and gap which
we use to analyze the rate at which the objective function
decreases. Let T be the shortest path tree in the graph (if
there are more than one pick one and fix it for the rest of the
section). Let δ(s, v) denote the distance of v from s in T .
The delay of the vertex v after i mutations is defined to be
di(v) = fi(v) − δ(s, v). By gap gi of the candidate solution
after i mutations we mean gi = fi −

∑

v δ(s, v). Notice
that gi =

∑

v di(v). When the gap drops to 0 we have the
desired shortest distance tree. Thus gap measures how far
the fitness function is currently from the final optimal value
∑

v δ(s, v).

Lemma 1. Let gi denote the gap after i mutations then
the conditional expectation E[gi+1 | gi = g] is given by.

E[gi+1 | gi = g] ≤ g

(

1−
1

3 · n3

)

Proof. Let the current gap gi be g. Since the total delay
∑

v di(v) is g, there is at least one vertex v such that its
delay di(v) is at least g

n
. Let T be the shortest path tree in

the graph that we have fixed for our analysis. Let γ = 〈s =
v0, . . . , vℓ = v〉 be the path from s to v in T . Denote by
E(γ) the set of its edges. For an edge e = (vk, vk+1) ∈ E(γ)
let D(e) = di(vk+1)− di(vk) be the difference of the delays
of the end points of e. Since di(s) = 0 we have

D(γ) :=
∑

e∈E(γ)

D(e)

= di(vℓ)− di(vℓ−1) + . . . + di(v1)− di(v0)

= di(vℓ)− di(v0)

≥
g

n
. (1)

We define an edge e in γ to be positive if the difference
of the delays of its end points, D(e), is positive. Let E+(γ)
denote the set of positive edges in γ. Then

D(E+(γ)) :=
∑

e∈E+(γ)

D(e) ≥
∑

e∈E(γ)

D(e) ≥
g

n
(2)

Consider any positive edge e = (x, y) in the path γ. We
claim that x has to be connected to the source s in the
graph Ti. Otherwise the value of the fitness function fi(x) =
dpenalty. Since fi(y) ≤ dpenalty, it follows that D(e) = d(y)−
d(x) ≤ 0 and hence e is not positive.

Having proved that x is reachable from s we prove that
the edge e is not present in the current candidate solution.
Otherwise e will be present in the graph Ti and since the
vertex x is reachable from s in Ti, so will be y. Let γ′ be
the path from s to x in Ti. Then the path to the vertex y
from the source s in Ti is the path γ′ followed by the edge e
(see Figure 2).

Notice that since the edge e is present in the shortest path
tree T we have δ(s, y) = δ(s, x)+w(e). As a result the delay
of y is given by di(y) = fi(x)+w(e)−(δ(s, x)+w(e)) = di(x)
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Figure 2. How a good edge enters the solution.

and hence D(e) = di(y) − di(x) = 0. This contradicts the
fact that the edge e is positive and hence it is not present in
the graph Ti.

Let Mi be the event that in the ith mutation only one ver-
tex is mutated. The events Mi’s are mutually independent.
In the ith mutation step ki + 1 vertices are mutated, where
ki follows a Poisson distribution with mean 1. Therefore, we
have P[Mi] = 1

e
≥ 1

3
. Consider any positive edge e = (x, y).

Given that the event Mi+1 has occurred the probability that
the vertex y switches its predecessor to x is at least 1/n2. If
such a switch occurs the gap reduces by an amount equal to
D(e). This is because, as noted in the previous paragraph,
x is reachable from s in the current solution, and the edge e
between x and y is in the shortest path tree T , the delay of
y will become the same as that of x as e comes into the so-
lution. Therefore given Mi+1 the expected decrease in gap,
∆g, is given by

E[∆g | gi = g, Mi+1] ≥
∑

e∈E+(γ)

1

n2
D(e) ≥

1

n3
g.

Since the P[Mi+1] ≥
1
3
, the expected decrease in gap is

at least 1
3·n3 g. Hence the expected gap after the i + 1st

mutation will be less than or equal to (1 − 1
3·n3 )g provided

the gap after i mutations is g.

As a corollary of Lemma 1 we have:

Corollary 2.

E[gi+j | gi = g] ≤ g

(

1−
1

3 · n3

)j

.

Theorem 3. The expected optimization time of the
(1+1) EA on the shortest path problem with integer edge
weights is O

(

n3 · (log n + log wmax)
)

, where wmax is maxi-
mum of the weights of all edges in the graph.

Proof. Recall that the gap g0 at the beginning of the algo-
rithm is at most n · dpenalty and we have set dpenalty to be
n·wmax. We partition the sequence of iterations into epochs.
Each epoch consists of a sequence of 6n3 iterations in the
algorithm. Consider any such epoch. It follows from Corol-
lary 2 that conditioned on the event that the epoch begins
with gap gbegin = g, the expected value of the gap gfinal after
the epoch is given by

E[gfinal | gbegin = g] ≤ g

(

1−
1

3n3

)6n3

≤
g

e2
.

Using Markov’s Inequality it follows that

Pr
[

gfinal ≥
gbegin

e

]

≤ 1/e

Figure 3. The worst case graph. The edges at the bottom form the
shortest path tree. All edges not drawn have weight wmax.

We call an epoch good if the gap at the end of the epoch
is less than 1/e times the gap in the beginning of the epoch.
It follows that an epoch is good with probability at least
1−1/e. Furthermore, each epoch is good or bad independent
of other epochs (owing to the independence of mutations in
each iteration). Thus it follows that ⌈ln g0⌉ good epochs
suffice to reduce the gap below 1. Since each epoch consists
of 4n3 iterations, the expected number of iterations in the
(1+1) EA is O(n3 log g0).

4. LOWER BOUND

In this section we show a lower bound matching the upper
bound presented in the previous section up to the logarith-
mic factor. More precisely, for any n ∈ N we define a graph
Gn on n vertices for which the algorithm has an optimization
time of at least Ω(n3) with high probability.

The worst case graph Gn is a weighted complete graph
(V, E) with V = {v0, . . . , vn−1}, E = V ×V \{(v, v) | v ∈ V },
and edge weights w(vi, vj), i, j ∈ [0..n− 1], i 6= j defined by

w(vi, vj) :=







2, if 0 ≤ i, j < n, j = i + 1,
2j + 1, if i = 0, 2 ≤ j < n,
wmax, otherwise.

We choose wmax = 4n. This implies that
(v0, v1, v2, . . . , vn−2, vn−1) is the unique shortest path tree
starting from s = v0. Figure 3 illustrates the graph. We
prove the following theorem.

Theorem 4. The optimization time of the (1 + 1)-EA on

Gn is Ω(n3) with probability 1− e−Ω(n).

To prove this lower bound, we need the following Chernoff-
type inequalities.

Theorem 5. Let Xi, i ∈ [1..n], be independent random
variables X :=

∑n
i=1 Xi. Let 0 < p < 1 and δ > 0.

a) If Pr[Xi = 1] = p and Pr[Xi = 0] = 1 − p for all
i ∈ [1..n], then

Pr[X ≤ (1− δ)E[X]] ≤ exp

(

−
δ2

E[X]

2

)

,

Pr[X ≥ (1 + δ)E[X]] ≤ exp

(

−
min{δ, δ2}E[X]

3

)

.

b) If the Xi are geometrically distributed random vari-
ables with Pr[Xi = j] = (1 − p)j−1p for all j ∈ N,
then

Pr[X ≥ (1 + δ)E[X]] ≤ exp

(

−
δ2

2

(n− 1)

1 + δ

)

.
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Proof. Part a) is a classical Chernoff bound, cf. [1]. To
prove part b), let Y1, Y2, . . . be an infinite sequence of in-
dependent, identically distributed biased coin tosses (bi-
nary random variables) such that Yi is one with probability
Pr[Yi = 1] = p and zero with probability Pr[Yi = 0] = 1− p.
Note that the random variable “smallest j such that Yj = 1”
has the same distribution as each Xi. In consequence,
X has the same distribution as “smallest j such that ex-
actly n of the variables Y1, . . . , Yj are one”. In particular,
Pr[X ≥ j] = Pr[

∑j−1
i=1 Yi ≤ n− 1] for all j ∈ N. This manip-

ulation reduces our problem to the analysis of independent
Bernoulli trials and will enable us to use the classical Cher-
noff bounds.

The expected value of each Xi is E[Xi] = 1
p
, thus E[X] =

n
p
. Let Y :=

∑⌈(1+δ)E[X]−1⌉
i=1 Yi. By the above,

Pr[X ≥ (1 + δ)E[X]] = Pr[Y ≤ n− 1].

The expected value of Y is bounded by

E[Y ] = ⌈(1 + δ)E[X]− 1⌉p ≥ (1 + δ)n− p > (1 + δ)(n− 1).

Now let δ′ := 1 − n−1
E[Y ]

. Then 0 < δ′ ≤ 1 and Pr[Y ≤

n − 1] = Pr[Y ≤ (1 − δ′)E[Y ]]. Hence we can apply the
classical Chernoff bound from part a) to get

Pr[X ≥ (1 + δ)E[X]]

= Pr[Y ≤ (1− δ′)E[Y ]]

≤ exp

(

−
1

2
E[Y ]

(

1−
n− 1

E[Y ]

)2
)

≤ exp

(

−
1

2
E[Y ]

(

1−
1

1 + δ

)2
)

≤ exp

(

−
1

2
(n− 1)(1 + δ)

(

δ

1 + δ

)2
)

.

As the last preparation to prove Theorem 4, we show the
following lemma. We use u to denote an individual. The
predecessor of a vertex v is then called u(v).

Lemma 6. Let u be an individual, v 6= s be a vertex and
y ∈ V \ {v,u(v)}. Let u′ be the outcome of applying a mu-
tation step (without selection) to u. Then Pr [u′(v) = y] ≤
2e(n− 1)−2.

Let vi1 , . . . , vik
∈ V \ {s} pairwise different and

y1, . . . , yk ∈ V such that yj /∈ {vij ,u(vij )} for all j ∈ [1..k].

Then Pr[∀j ∈ [1..k] : u′(vij ) = yj ] ≤ 2e(n− 1)−k−1.

Proof. To have u′(v) 6= u(v), at least one of the S + 1 el-
ementary mutations performed in the mutation step has to
regard the vertex v (“first event”), and to have u′(v) = y, the
last one of these elementary mutations has to change u(v)
to y (“second event”). The probability of the first event is
at most

∞
∑

S=0

1

S!

S + 1

n− 1
= (1/(n− 1)

(

∞
∑

S=1

S

S!
+

∞
∑

S=0

1

S!

)

= (1/(n− 1))

(

∞
∑

S=1

1

(S − 1)!
+ e

)

= 2e/(n− 1).

Conditional on the first event, the second happens with
probability exactly 1/(n− 1).

For the second claim, note that the above shows that
Pr[u′(vi1) = y1] ≤ 2e(n − 1)−2. Even assuming that vij ,
j ≤ 2, is touched by the mutation, the probability that the
last change of its predecessor is to yj , is exactly (n − 1)−1,
and this event is independent of all other random deci-
sions.

Clearly, the second part of the lemma is not best
possible—the probability should be of order n−2k—but suf-
ficient for our purposes. We can now prove Theorem 4.

Proof of Theorem 4. As we are only interested in asymp-
totic bounds, implicit we assume that n is sufficiently large.
Also, we will not try to find the best possible constants.
To prove the claim, we analyze how long it takes until
the individual u for the first time is the path P := (s =
v0, v1, . . . , vn−1). To this aim, we analyze how the length
L = L(u) of the longest subpath of P starting in s that is
contained in u grows. Note that, contrary to the multi-
objective setting, this length L may decrease. We shall
adopt the proof of [4] for the multi-objective setting to deal
with this issue. In particular, we denote by Lt the maximum
length ℓ such that the path (v0, . . . , vℓ) was contained in the
individual at some time t′ ≤ t.

We first convince ourselves that for all times t and all
i > Lt + 1, we have Pr[u(vi) = vi−1] ≤ ν := 2e2/(2e2 +
1) ≈ 0.936. This is clearly true for t = 0, since the initial
individual satisfies Pr[u(vi) = v] = 1/(n− 1) for all v 6= vi.

Assume that the claim is correct for some t ≥ 0. Let
i > Lt+1. Fix a mutation chosen by the algorithm. We may
assume i > Lt+1 + 1 (otherwise there is nothing to show).
Denote by u′ the individual resulting from this iteration,
that is, from applying the mutation to u in case this does not
worsen the fitness. With the help of Lemma 6 we compute

Pr[u′(vi) = vi−1]

= Pr[u′(vi) = vi−1 | u(vi) = vi−1] Pr[u(vi) = vi−1]

+ Pr[u′(vi) = vi−1 | u(vi) 6= vi−1] Pr[u(vi) 6= vi−1]

≤ (1− (1/e)(n− 1)−2) Pr[u(vi) = vi−1]

+ 2e(n− 1)−2 (1− Pr[u(vi) = vi−1])

≤ ν(1− (1/e)(n− 1)−2 − 2e(n− 1)−2) + 2e(n− 1)−2

= ν.

Note that the above holds independent of the values of
u(v), v ∈ V \{s, vi} (of course, still assuming i > Lt+1). For
this reason, the claim Pr[u(vi) = vi−1] ≤ ν also holds if we
condition on arbitrary values for these u(v). In consequence,
for any k ≥ 1, i1, . . . , ik pairwise distinct element of [Lt +
1..n− 1], we have

Pr[∀j ∈ [k] : u
′(vij ) = vij−1]

= Pr[u′(vi1) = vi1−1]

Pr[u′(vi2) = vi2−1 | u
′(vi1) = vi1−1] . . .

Pr[u′(vik
) = vik−1 | u

′(vi1) = vi1−1, . . . ,

u
′(vik−1

) = vik−1−1]

≤ (2e/(2e + 1))k.
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We start our analysis of the growth of Lt by noting
that with high probability L0 is constant. More precisely,
the probability that in the initial individual some vertex
vi ∈ {v1, . . . , vn−1} is already linked to vi−1, is exactly 1

n−1
independent of all other values of u. Hence the probability
that L0 ≥ k, is (n− 1)−k for all k ∈ N.

We now analyze the growth Dt := Lt−Lt−1 of the path in
iteration t. For Dt to be positive, the mutation has to change
u(vLt+1) to vLt . By Lemma 6, this happens with probability
at most 2e(n− 1)−2. Dt can be larger than one due to two
effects: (i) the mutation can change u(vj) to vj−1 for further
vertices on the path, and (ii), some vertices vj not touched at
all by the mutation can already be connected to vj−1. Again
by Lemma 6, the probability of an event of type (i) is at most
2e(n−1)−2 independently of all other random decisions now
or in the past. By the above reasoning, the probability of an
event of type (ii), i. e., that certain k vertices not touched by
the mutation in this iteration were already connected with
their natural predecessor, is at most νk.

Hence Pr[Dt ≥ k] ≤ 2e
(n−1)2

(2e(n − 1)−2 + ν)k−1 ≤

2en−2 (0.95)k−1 for n sufficiently large. For all t, Dt is dom-
inated by a random variable D with distribution Pr[D =
k] = 2en−2 (0.95)k−10.05 and Pr[D = 0] = 1−2en−2 as this
implies Pr[D ≥ k] = 2en−2 (0.95)k−1. Similarly, we see that
L0 − 1 is dominated by a random variable with distribution
D. Hence Lt − 1 = L0 − 1 +

∑t
k=1 Dk is dominated by the

sum of t independent random variables with distribution D.

The probability that after t = (2e)(1/80)(n − 2)n2 steps
the optimal solution is found is Pr[Lt = n − 1]. This
is at most Pr[

∑t
i=1 Xi ≥ n − 2] by the above considera-

tions, where the Xi are independent random variables with
distribution D. Denote by x the number of Xi that are
positive. Then E[x] = 2en−2t = (1/80)(n − 2) and thus
Pr[x > 4en−2t] ≤ exp(−E(x)/12) = exp(−(n− 2)/960). We
compute

Pr[Lt = n− 1]

≤ Pr

[

t
∑

i=1

Xi ≥ n− 2

]

≤ Pr

[

t
∑

i=1

Xi ≥ n− 2 | x ≤ (1/40)(n− 2)

]

+ Pr[x > 2 · 2en−2t]

≤ Pr

[

t
∑

i=1

Xi ≥ n− 2 | x = (1/40)(n− 2)

]

+ exp(−(n− 2)/960).

For all i, define the random variable Yi = (Xi | Xi ≥ 1).
Then Yi has the geometric distribution Pr[Yi = k] =
Pr[Xi = k]/ Pr[Xi ≥ 1] = (0.95)k−1 0.05 and E[Yi] = 20.
Hence by Theorem 5, we have

Pr

[

t
∑

i=1

Xi ≥ n− 2 | x = (1/40)(n− 2)

]

= Pr





(1/40)(n−2)
∑

i=1

Yi ≥ n− 2





≤ Pr





(1/40)(n−2)
∑

i=1

Yi ≥ 2 · 20 · (1/40)(n− 2)





≤ exp(−((1/40)(n− 2)− 1)/4).

This shows that

Pr[Lt = n− 1]

≤ exp(−((1/40)(n− 2)− 1)/4) + exp(−(n− 2)/960)

= exp(−Ω(n)).

5. CONCLUSION

The single source shortest path problem is one of the fun-
damental problems in computer science and the first com-
binatorial optimization problem for which a rigorous run-
time analysis of evolutionary algorithms has been carried
out. We have shown that a multi-objective approach is not
necessary to solve this problem efficiently by evolutionary
algorithms and analyzed the single-objective one given in
[17]. The upper bound obtained is similar to the multi- ob-
jective result. Additionally, our analyses give new insights
how evolutionary algorithms may achieve progress towards
an optimal solution even if the proof ideas can not follow
the run of Dijkstra’s algorithm.
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