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ABSTRACT

Indicator-based algorithms have become a very popular ap-
proach to solve multi-objective optimization problems. In
this paper, we contribute to the theoretical understanding of
algorithms maximizing the hypervolume for a given problem
by distributing µ points on the Pareto front. We examine
this common approach with respect to the achieved mul-
tiplicative approximation ratio for a given multi-objective
problem and relate it to a set of µ points on the Pareto
front that achieves the best possible approximation ratio.
For the class of linear fronts and a class of concave fronts,
we prove that the hypervolume gives the best possible ap-
proximation ratio. In addition, we examine Pareto fronts
of different shapes by numerical calculations and show that
the approximation computed by the hypervolume may differ
from the optimal approximation ratio.

Categories and Subject Descriptors: F.2 [Theory of
Computation]: Analysis of Algorithms and Problem Com-
plexity

General Terms: Theory, Algorithms, Performance

Keywords: Approximation, evolutionary algorithms, hy-
pervolume indicator, indicator-based algorithms, multi-ob-
jective optimization

1. INTRODUCTION

Multi-objective optimization [11] deals with the task of opti-
mizing several objective functions at the same time. Usually,
these functions are conflicting, which means that improve-
ments with respect to one function can only be achieved
when impairing the solution quality with respect to another
objective function. Solutions that can not be improved with
respect to any function without impairing another one are
called Pareto-optimal solutions. The objective vectors asso-
ciated with these solutions are called Pareto-optimal object-
ive vectors and the set of all these objective vectors consti-
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tutes the Pareto front. Often the Pareto front grows expo-
nentially with respect to the problem size or is even infinite
in the continuous case. In this case, it is not possible to
compute the whole Pareto front efficiently and the goal is to
compute a good approximation.

Evolutionary algorithms [2] are in a natural way well-
suited for dealing with multi-objective optimization prob-
lems as the population, which consists of a number of search
points, can be evolved into an approximation of the Pareto
front [8, 9].

Many researchers have worked on how to use evolutionary
algorithms for multi-objective problems and how to achieve
a good spread over the Pareto front. However, often the
optimization goal remains rather unclear as it is not stated
explicitly how to measure the quality of an approximation
that a proposed algorithm should achieve.

One approach to achieve a good spread over the Pareto
front is to use the hypervolume indicator [26] for measur-
ing the quality of a population. This approach has gained
increasing interest in recent years (see e. g. [4, 14, 15, 23]).
The hypervolume indicator implicitly defines an optimiza-
tion goal for the population of an evolutionary algorithm.
Unfortunately, this optimization goal is rarely understood
from a theoretical point of view. Recently, it has been shown
in [1] that the slope of the front determines which objective
vectors maximize the value of the hypervolume when dealing
with continuous Pareto fronts. The aim of this paper is to
further increase the theoretical understanding of the hyper-
volume indicator and examine its approximation behavior.

As multi-objective optimization problems often involve a
vast number of Pareto-optimal objective vectors, multi-ob-
jective evolutionary algorithms use a population of fixed size
and try to evolve the population into good approximation
of the Pareto front. However, often it is not stated explic-
itly what a good approximation for a given problem is. One
approach that allows a rigorous evaluation of the approxi-
mation quality is to measure the quality of a solution set
with respect to its approximation ratio [20]. We follow this
approach and examine the approximation ratio of a pop-
ulation with respect to all objective vectors of the Pareto
front.

Our aim is to examine whether a given solution set of
µ search points maximizing the hypervolume gives a good
approximation measured with respect to the approximation
ratio. We point out situations where the hypervolume prov-
ably leads to the best approximation ratio achievable by
choosing µ Pareto-optimal solutions. Later on, we carry out
numerical investigations to see how the shape of the Pareto
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front influences the approximation behavior of the hypervol-
ume indicator and point out where the approximation given
by the hypervolume differs from the best one achievable by
a solution set of µ points.

The outline of the paper is as follows. In Section 2, we
introduce the hypervolume indicator and our notation of
approximations. Section 3 gives analytic results for the ap-
proximation achievable by the hypervolume indicator and
Section 4 provides further numerical investigations. Finally,
we finish with some concluding remarks.

2. PRELIMINARIES

In this paper, we consider bi-objective maximization prob-
lems P : S → R

2 for an arbitrary decision space S. We are
interested in the so-called Pareto front of P , which consists
of all maximal elements of P (S) with respect to the weak
Pareto dominance relation. We restrict ourselves to prob-
lems with a Pareto front that can be written as {(x, f(x)) |
x ∈ [xmin, xmax]} where f : [xmin, xmax] → R is a continuous,
differentiable, and strictly monotonically decreasing func-
tion. This allows us to denote with f not only the actual
function f : [xmin, xmax] → R, but also the front {(x, f(x)) |
x ∈ [xmin, xmax]} itself. We assume further that xmin > 0
and f(xmax) > 0 hold.

We intend to find a solution set X = {x1, x2, . . . , xµ} of
µ Pareto-optimal search points (xi, f(xi)) that constitutes a
good approximation of the front f .

2.1 Hypervolume indicator

There are various indicators to measure the quality of a so-
lution set, but there is only one widely used indicator that
is strictly Pareto-compliant [27], namely the hypervolume
indicator. Strictly Pareto-compliant means that given two
solution sets A and B the indicator values A higher than
B if the solution set A dominates the solution set B. The
hypervolume (HYP) measures the volume of the dominated
portion of the objective space. The hypervolume was first in-
troduced for performance assessment in multi-objective op-
timization by Zitzler and Thiele [26]. Later on it was used to
guide the search in various hypervolume-based evolutionary
optimizers [4, 12, 14, 16, 23, 24].

Geometrically speaking, the hypervolume indicator mea-
sures the volume of the dominated space of all solutions con-
tained in a solution set X ⊆ R

d. This space is truncated at a
fixed footpoint called the reference point r = (r1, r2, . . . , rd).
The hypervolume HYP(X) of a solution set X is then de-
fined as

HYP(X) := vol

(

⋃

(x1,...,xd)∈X

[r1, x1] × · · · × [rd, xd]

)

with vol(·) being the usual Lebesgue measure (see Fig-
ure 1(a) for an illustration).

It has become very popular recently and several algo-
rithms have been developed to calculate it. The first one
was the Hypervolume by Slicing Objectives (HSO) algo-
rithm, which was suggested independently by Zitzler [22]
and Knowles [17]. The currently best asymptotic runtime

of O(n log n + nd/2) is obtained by Beume and Rudolph [5].
Bringmann and Friedrich [6] proved recently that it is #P-
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Figure 1. Point distribution X = {1, 1.6, 2} for the linear front
f : [1, 2] → [1, 2] with f(x) = 3−x, which achieves a hypervolume of
HYP(X) = 1.865 with respect to the reference point r = (0.5, 0.25)
and an approximation ratio of APP(X) = 1.25. The shaded areas
show the dominated portion of the objective space and the approxi-
mated portion of the objective space, respectively.

hard1 in the number of dimensions to calculate HYP pre-
cisely. Therefore, all hypervolume algorithms must have a
superpolynomial runtime in the number of objectives (un-
less P = NP). As the #P-hardness of HYP dashes the
hope for an exact polynomial algorithm, there are polyno-
mial estimation algorithms [3, 6, 7] for approximating the
hypervolume based on Monte Carlo sampling.

2.2 Approximations

In the following, we define our notion of approximation in a
formal way.

Let X = {x1, . . . , xµ} be a solution set and f a function
that describes the Pareto front. The approximation ratio
APP(X) of a solution set X with respect to f is defined
according to [20] as follows

Definition 1. Let f : [xmin, xmax] → R and X = {x1, x2,
. . . , xµ}. The solution set X is an δ-approximation of f iff
for each x ∈ [xmin, xmax] there is a xi ∈ X with

x ≤ δ · xi and f(x) ≤ δ · f(xi)

where δ ∈ R, δ ≥ 1. The approximation ratio of X with
respect to f is defined as

APP(X) := min{δ ∈ R | X is a δ-approximation of f}.

Figure 1(b) shows the area of the objective space that a
certain solution set X δ-approximates for δ = 1.25. Note
that this area covers the entire Pareto front f . Since the
objective vector (1.25, 1.75) is not δ-approximated for all
δ < 1.25, the approximation ratio of X is 1.25.

Our definition of approximation is similar to the definition
of multiplicative ε-dominance given in [18]. In this paper, an
algorithmic framework for discrete multi-objective optimiza-
tion is proposed which converges to a (1+ ε)-approximation
of the Pareto front.

2.3 Our goal

The goal of this paper is to relate the above definition of ap-
proximation to the optimization goal implicitly defined by
the hypervolume indicator. We want to find a distribution

1#P is the analog of NP for counting problems [21].
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of the points such that the whole front is captured. Using
the hypervolume the choice of the reference point decides
which parts of the front are covered. All the functions that
we consider in this paper have positive and bounded do-
mains and codomains. Hence, choosing the reference point
r = (r1, r2) for appropriate r1, r2 ≤ 0 ensures that the points
xmin and xmax are contained in an optimal hypervolume dis-
tribution. A detailed calculation on how to choose the ref-
erence point such that xmin and xmax are contained in an
optimal hypervolume distribution is given in [1]. To allow a
fair comparison, we also require that the set minimizing the
approximation ratio contains xmin and xmax.

Consider a Pareto front f . There is an infinite number
of possible solution sets of fixed size µ. To make this more
formal, let X (µ, f) be the set of all subsets of

{(x, f(x)) | x ∈ [xmin, xmax]}
∪ {(xmin, f(xmin)), (xmax, f(xmax))}

of cardinality µ. We want to compare two specific solution
sets from X called optimal hypervolume distribution and op-
timal approximation distribution defined as follows.

Definition 2. The optimal hypervolume distribution

XHYP
opt (µ, f) := argmax

X∈X (µ,f)

HYP(X)

consists of µ points that maximize the hypervolume with re-
spect to f . The optimal approximation distribution

XAPP
opt (µ, f) := argmin

X∈X (µ,f)

APP(X)

consists of µ points that minimize the approximation ratio
with respect to f . For brevity, we will in Figures 6–8 also use
Xopt(µ, f) as a short form to refer to both sets XHYP

opt (µ, f)

and XAPP
opt (µ, f).

3. ANALYTIC RESULTS

We want to investigate the approximation ratio obtained by
a solution set maximizing the hypervolume indicator in com-
parison to an optimal one. For this, we first examine condi-
tions for an optimal approximation distribution XAPP

opt (µ, f).
Later on, we consider two classes of functions f on which the
optimal hypervolume distribution XHYP

opt (µ, f) is equivalent

to the optimal approximation distribution XAPP
opt (µ, f) and

therefore provably leads to the best achievable approxima-
tion ratio.

3.1 Optimal approximations

We now consider the optimal approximation ratio that can
be achieved placing µ points on the Pareto front given by the
function f . The following lemma states a condition which
allows to check whether a given set consisting of µ points
achieves an optimal approximation ratio for a given func-
tion f .

Lemma 1. Let f : [xmin, xmax] → R be a Pareto front and
X = {x1, . . . , xµ} be an arbitrary solution set with x1 =
xmin, xµ = xmax, and xi ≤ xi+1 for all 1 ≤ i < µ. If
there is a constant δ > 1 and a set Y = {y1, . . . , yµ−1} with

xi ≤ yi ≤ xi+1 and δ = yi

xi
= f(yi)

f(xi+1)
for all 1 ≤ i < µ, then

X = XAPP
opt (µ, f) is the optimal approximation distribution

with approximation ratio δ.

Figure 2. Optimal point distribution XHYP
opt (12, f) = XAPP

opt (12, f)

for the linear front f : [1, 2] → [1, 2] with f(x) = 3−x. The optimal
hypervolume distribution and optimal approximation distribution are
equivalent in this case.

Proof. We assume that a better approximation ratio
than δ can be achieved by choosing a different set of so-
lutions X ′ = {x′

1, . . . , x
′
µ} with x′

1 = xmin, x′
µ = xmax, and

x′
i ≤ x′

i+1, 1 ≤ i < µ, and show a contradiction.

Let yi be the point for which a better approximation can
be achieved. Getting a better approximation of yi means
that there is at least one point x′

j ∈ X ′ with xi < x′
j < xi+1.

We assume w. l. o. g. that j ≤ i and show that there is at least
one point y with y ≤ y′

i that is not approximated by a factor
of δ or that x′

1 > xmin holds. The case j > i can be handled
symmetrically, by showing that either x′

n < xmax or there is
a point y ≥ yi+1 that is not approximated by a factor of δ.

To approximate all points y with xi−1 ≤ y ≤ xj by a
factor of δ, the inequality xi−1 < x′

j−1 has to hold. Iterating
the arguments in order to approximate all points in xi−s ≤
y ≤ xi−s+1, xi−s < x′

j−s has to hold. Considering s =
j − 1 either one of the points y, xi−j+1 ≤ y ≤ xi−j+2 is not
approximated by a factor of δ or xmin = x1 ≤ xi−j+1 < x′

1

holds, which contradicts one of our assumptions.

We will use this lemma in the rest of the paper to check
whether an approximation obtained by the hypervolume in-
dicator is optimal as well as use these ideas to identify sets
of points that achieve an optimal approximation ratio.

3.2 Linear fronts

The distribution of points maximizing the hypervolume for
linear fronts has already been investigated in [1]. Therefore,
we start by considering the hypervolume indicator with re-
spect to the approximation it achieves when the Pareto front
is given by a linear function

f : [1, (1 − d)/c] → [1, c + d] with f(x) = c · x + d

where c < 0 and d > 1 − c are arbitrary constants.

Auger et al. [1] have shown that the maximum hyper-
volume of µ points on a linear front is reached when the
points are distributed in an equally spaced manner. We
assume that the reference point is chosen such that the ex-
treme points of the Pareto front are included in the optimal
distribution of the µ points on the Pareto front, that is,
x1 = xmin = 1 and xµ = xmax = (1 − d)/c hold. The
maximal hypervolume is achieved by choosing

xi = xmin +
i − 1

µ − 1
· (xmax − xmin)

= 1 +
i − 1

µ − 1
·
(

1 − d

c
− 1

)

(1)
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(a) c = 2. (b) c = 200.

Figure 3. Optimal point distribution XHYP
opt (12, f) = XAPP

opt (12, f)

for two concave fronts f : [1, c] → [1, c] with f(x) = c/x. The opti-
mal hypervolume distribution and optimal approximation distribution
are equivalent in this case.

due to Theorem 6 in [1].

In the following, we consider the approximation ratio that
the hypervolume using µ points achieves. Let xi < x̃ < xi+1

be a Pareto-optimal x-coordinate. The approximation given
by xi and xi+1 is

min

{

x̃

xi
,

f(x̃)

f(xi+1)

}

.

As f is monotonically decreasing, the worst-case approxima-
tion is attained for a point x̃, xi < x̃ < xi+1, if

x̃

xi
=

f(x̃)

f(xi+1)
(2)

holds. Resolving the linear equations (1) and (2), we get

x̃ =
d ((d + c − 1)i − cµ − d + 1)

c ((µ − 2)d − c + 1)
.

The approximation ratio resolves to

x̃

xi
=

f(x̃)

f(xi+1)
=

d(µ − 1)

d(µ − 2) − c + 1
.

Hence, the worst-case approximation is independent of the
choice of i and the same for all intervals [xi, xi+1] of the
Pareto front.

Lemma 1 implies that the hypervolume achieves the best
possible approximation ratio on the class of linear fronts.
Figure 2 shows the optimal distribution for f(x) = 3 − x
and µ = 12. In summary, we have shown the following
theorem.

Theorem 1. Let f : [1, (1 − d)/c] → [1, c + d] be a linear
function f(x) = c · x + d where c < 0 and d > 1 − c are
arbitrary constants. Then

XHYP
opt (µ, f) = XAPP

opt (µ, f).

3.3 A class of concave fronts

We now consider the distribution of µ points on a concave
front maximizing the hypervolume. In contrast to the class
of linear functions where an optimal approximation can be
achieved by distributing the µ points in an equally spaced
manner along the front, the class of functions considered in
this section requires that the points are distributed expo-
nentially to obtain an optimal approximation.

As already argued we want to make sure that optimal
hypervolume distribute includes xmin and xmax. For the
class of concave fronts that we consider, this can be achieved
by choosing the reference point r = (0, 0).

The hypervolume of a set of points X = {x1, . . . , xµ},
where w. l. o. g. x1 ≤ x2 ≤ · · · ≤ xµ, is then given by

HYP(X) = x1 · f(x1) + x2 · f(x2) − x1 · f(x2)

+ · · · + xµ · f(xµ) − xµ−1 · f(xµ)

= x1 · f(x1) + x2 · f(x2) + · · · + xµ · f(xµ)

− (x1 · f(x2) + · · · + xµ−1 · f(xµ)).

We consider a Pareto front given by the function

f : [1, c] → [1, c] and f(x) = c/x

where c > 1 is an arbitrary constant. Then we get

HYP(X) = c · µ − c ·
(

x1

x2
+

x2

x3
+ · · · + xµ−2

xµ−1
+

xµ−1

xµ

)

.

Hence, finding µ points that minimize

h(x1, . . . , xµ) :=

(

x1

x2
+ · · · + xµ−1

xµ

)

maximizes the hypervolume. Setting x1 = 1 and xµ = c
minimizes h, since x1 and xµ occur just in the first and
last term of h, respectively. We consider the gradient vector
given by the partial derivatives

h′(x1, . . . , xµ)

=

(

1

x2
,−x1

x2
2

+
1

x3
, . . . ,−xµ−2

x2
µ−1

+
1

xµ
,−xµ−1

x2
µ

)

.

This implies that h can be minimized by setting

x3 = x2
2/x1 = x2

2,
x4 = x2

3/x2 = x3
2,

...
...

xµ = x2
µ−1/xµ−2 = xµ−1

2 .

From the last equation we get

x2 = x
1/(µ−1)
µ = c1/(µ−1),

x3 = x2
2 = c2/(µ−1),

...
...

xµ−1 = xµ−2
2 = c(µ−2)/(µ−1).

As f is monotonically decreasing, the worst-case approx-
imation is attained for a point x, xi < x < xi+1, if

x

xi
=

f(x)

f(xi+1)

holds. Substituting the coordinates and function values, we
get

x

xi
=

x

c(i−1)/(µ−1)
and

f(x)

f(xi+1)
=

c/x

c/ci/(µ−1)
=

ci/(µ−1)

x
.

Therefore,

x2 = ci/(µ−1) · c(i−1)/(µ−1) = c(2i−1)/(µ−1),

which implies

x = c(2i−1)/(2µ−2).
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Hence, the set of search points maximizing the hypervolume
achieves an approximation ratio of

c(2i−1)/(2µ−2)

c(i−1)/(µ−1)
= c1/(2µ−2).

We have seen that the requirements of Lemma 1 are ful-
filled. Hence, an application of Lemma 1 shows that the
hypervolume indicator achieves an optimal approximation
ratio when the Pareto front is given by f : [1, c] → [1, c] with
f(x) = c/x where c ∈ R>1 is any constant. Figure 3 shows
the optimal distribution for µ = 12 and c = 2 as well as
c = 200. In summary, we have shown the following theo-
rem.

Theorem 2. Let f : [1, c] → [1, c] be a concave front with
f(x) = c/x where c > 1 is an arbitrary constant. Then

XHYP
opt (µ, f) = XAPP

opt (µ, f).

4. EMPIRICAL EVALUATION

The analysis of the distribution of an optimal set of search
points tends to be hard or is impossible for more complex
functions. Hence, resorting to numerical analysis methods
constitutes a possible escape from this dilemma. This sec-
tion is dedicated to the numerical analysis of a larger class
of functions.

4.1 Fronts under investigation

For this, we examine a family of fronts of the shape xp for
p > 0. To allow for a proper scaling in both dimension we
consider fp : [x1, xµ] → [yµ, y1] with

fp(x) := yµ − (yµ − y1) ·
(

1 −
(

x − x1

xµ − x1

)p)1/p

.

We use the notation yi = f(xi) for the function value f(xi)
of a point xi. As we assume the reference point to be suf-
ficiently negative, the leftmost point (x1, y1) and the right-
most point (xµ, yµ) are always contained in the optimal hy-
pervolume distribution as well as in the optimal approxi-
mation. For p = 1 the considered function corresponds to
the test function DTLZ1 [10]. For p = 2 the shape of the
front corresponds to DTLZ2, DTLZ3, and DTLZ4. We will
mainly concentrate on two parameter sets of fp, that is,

• the symmetric front f sym
p : [1, 2] → [1, 2] and

• the asymmetric front fasy
p : [1, 201] → [1, 2].

4.2 Our approach

We calculate for different functions fp and µ ≥ 3

• the set of µ points XHYP
opt (µ, fp) which maximizes the

dominated hypervolume, and

• the set of µ points XAPP
opt (µ, fp) which minimizes the

multiplicative approximation ratio.

In the first case, it suffices to find the x2, x3, . . . , xµ−1 that
maximize the dominated hypervolume, that is, the solutions

(a) Set XHYP
opt (12, f sym

2 ). (b) Set XAPP
opt (12, f sym

2 ).

Figure 4. Optimal point distributions for symmetric front f sym
2 .

Note that the optimal hypervolume distribution and the opti-
mal approximation distribution differ in this case. The set of
points maximizing the hypervolume yields an approximation ratio
of APP(XHYP

opt (12, f sym
2 )) ≈ 1.025, which is 0.457% larger than the

optimal approximation ratio APP(XAPP
opt (12, f sym

2 )) ≈ 1.021.

(a) Set XHYP
opt (12, fasy

2 ). (b) Set XAPP
opt (12, fasy

2 ).

Figure 5. Optimal point distributions for asymmetric front fasy
2 .

Note that the optimal hypervolume distribution and the opti-
mal approximation distribution differ in this case. The set of
points maximizing the hypervolume yields an approximation ratio
of APP(XHYP

opt (12, fasy
2 )) ≈ 1.038, which is 0.839% larger than the

optimal approximation ratio APP(XAPP
opt (12, fasy

2 )) ≈ 1.030.

of

argmax
x2,...,xµ−1

(

(x2 − x1) · (f(x2) − f(xµ))

+

µ−1
∑

i=3

(xi − xi−1) · (f(xi) − f(xµ))

)

We solve the arising nonlinear continuous optimization prob-
lem numerically by means of sequential quadratic program-
ming [13].

In the second case, we have to solve the following system
of nonlinear equations

z1

x1
=

z2

x2
= · · · =

zµ−1

xµ−1
=

=
f(z1)

f(x2)
=

f(z2)

f(x3)
= · · · =

f(zµ−1)

f(xµ)

with auxiliary variables z1, . . . , zµ−1 due to Lemma 1. The
numerical solution of this system of equations can be deter-
mined easily by any standard computer algebra system.
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(a) APP(Xopt(3, f1/3)). (b) APP(Xopt(3, f1/2)). (c) APP(Xopt(3, f1)). (d) APP(Xopt(3, f2)). (e) APP(Xopt(3, f3)).

Figure 6. Approximation ratio of the optimal hypervolume distribution ( ) and the optimal approximation distribution ( ) depending on the
scaling xµ of the fronts fp (cf. Definition 2). Note that as analytically predicted in Theorem 1, both curves coincide in (c) for the linear function
f1 independent of the scaling.

4.3 Discussing the results

In the following, we present the results that have been ob-
tained by our numerical investigations. We first examine the
case of f2. Figures 4 and 5 show different point distributions
for f2. It can be observed that the hypervolume distribution
differs from the optimal distribution. Figures 4(a) and 4(b)
show the distributions for the symmetric front

f2(x) = 1 +
√

1 − (x − 1)2

with (x1, y1) = (1, 2) and (xµ, yµ) = (2, 1). Figures 5(a)
and 5(b) show the asymmetric front

f2(x) = 1 +
√

1 − (x/200 − 1/200)2

with (x1, y1) = (1, 2) and (xµ, yµ) = (201, 1).

It can be observed that the relative positions of the hyper-
volume points stay the same in Figures 4(a) and 5(a) while
the relative positions achieving an optimal approximation
change with scaling (cf. Figures 4(b) and 5(b)). Hence, the
relative position of the points maximizing the hypervolume
is robust with respect to scaling. But as the optimal point
distribution for a multiplicative approximation is dependent
on the scaling, the hypervolume cannot achieve the best pos-
sible approximation quality.

In the example of Figures 4 and 5 the optimal multiplica-
tive approximation factor for the symmetric and asymmetric
case is 1.021 (Figure 4(b)) and 1.030 (Figure 5(b)), respec-
tively, while the hypervolume only achieves an approxima-
tion of 1.025 (Figure 4(a)) and 1.038 (Figure 5(a)), respec-
tively. Therefore in the symmetric and asymmetric case of
f2 the hypervolume is not calculating the set of points with
the optimal multiplicative approximation.

We have already seen that scaling the function has a high
impact on the optimal approximation distribution but not
on the optimal hypervolume distribution. We want to inves-
tigate this effect in greater detail. The influence of scaling
the parameter xµ ≥ 2 of different functions fp : [1, xµ] →
[1, 2] is depicted in Figure 6 for p = 1/3, 1/2, 1, 2, 3. For
fixed µ = 3 it shows the achieved approximation ratio. As
expected, the larger the asymmetry (xµ) the larger the ap-
proximation ratios. For convex fronts (p > 1) the approx-
imation ratios seem to converge quickly for large enough
xµ. The approximation of f2 tends towards the golden
ratio

√
5 − 1 ≈ 1.236 for the optimal approximation and

4/3 ≈ 1.333 for the optimal hypervolume. For f3 they tend
towards 1.164 and 1.253, respectively. Hence, for f2 and f3

the hypervolume is never more than 8% worse than the op-
timal approximation. This is different for the concave fronts

(p < 1). There, the ratio between the hypervolume and the
optimal approximation appears divergent.

Another important question is how the choice of the pop-
ulation size influences the relation between an optimal ap-
proximation and the approximation achieved by an optimal
hypervolume distribution. We investigate the influence of
the choice of µ on the approximation behavior in greater de-
tail. Figure 7 shows the achieved approximation ratios de-
pending on the number of points µ. For symmetric fp’s with
(x1, y1) = (yµ, xµ) and µ = 3 the hypervolume achieves an
optimal approximation distribution for all p > 0. The same
holds for the linear function f1 independent of the scaling
implied by (x1, y1) and (yµ, xµ).

For larger populations, the approximation ratio of the
hypervolume distribution and the optimal distribution de-
creases. However, the performance of the hypervolume mea-
sure is especially poor even for larger µ for concave asym-
metric fronts, that is, fasy

p with p < 1 (e.g. Figures 7(f)
and 7(g)). Our investigations show that the approximation
of an optimal hypervolume distribution may differ signifi-
cantly from an optimal one depending on the choice of p.
An important issue is whether the front is convex or con-
cave [19]. The hypervolume was thought to prefer convex
regions to concave regions [25] while [1] showed that the den-
sity of points only depends on the slope of the front and not
on convexity or concavity. To illuminate the impact of con-
vex vs. concave further, Figure 8 shows the approximation
ratios depending on p. As expected, for p = 1 the hyper-
volume calculates the optimal approximation. However, the
influence of the p is very different for the symmetric and
the asymmetric test function. For f sym

p the concave (p < 1)
fronts are much better approximated by the hypervolume
than the convex (p > 1) fronts (cf. Figure 8 (a)–(d)). For
fasy

p this is surprisingly the other way around (cf. Figure 8
(e)–(h)).

5. CONCLUSIONS

Using the hypervolume indicator to measure the quality of a
population in an evolutionary multi-objective algorithm has
become very popular in recent years. Understanding the
optimal distribution of a population consisting of µ individ-
uals is a hard task and the optimization goal when using
the hypervolume indicator is rather unclear. Therefore, it
is a challenging task to understand the optimization goal by
using the hypervolume indicator as a quality measure for
a population. We have examined how the hypervolume in-
dicator approximates Pareto fronts of different shapes and

6



related it to the best possible approximation ratio. Con-
sidering linear fronts and a class of concave fronts we have
pointed out that the hypervolume indicator gives provably
the best multiplicative approximation ratio that is achiev-
able. Further, numerical investigation points out that the
shape as well the scaling of the objectives heavily influences
the approximation behavior of the hypervolume indicator.
Examining fronts with differrent shapes we have shown that
the approximation achieved by an optimal set of points with
respect to the hypervolume may differ from the set of µ
points achieving the best approximation ratio.
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(a) APP(Xopt(µ, f sym
1/3

)). (b) APP(Xopt(µ, f sym
1/2

)). (c) APP(Xopt(µ, f sym
1 )). (d) APP(Xopt(µ, f sym

2 )). (e) APP(Xopt(µ, f sym
3 )).

(f) APP(Xopt(µ, fasy
1/3

)). (g) APP(Xopt(µ, fasy
1/2

)). (h) APP(Xopt(µ, fasy
1 )). (i) APP(Xopt(µ, fasy

2 )). (j) APP(Xopt(µ, fasy
3 )).

Figure 7. Approximation ratio of the optimal hypervolume distribution ( ) and the optimal approximation distribution ( ) depending on
the number of points µ for symmetric and asymmetric fronts fp and different parameters p (cf. Definition 2). Note that (c) and (h)

show that the approximation ratio of the optimal hypervolume distribution APP(XHYP
opt (µ, f sym

1 )) and the optimal approximation distribution

APP(XHYP
opt (µ, f sym

1 )) are equivalent for all examined µ. That maximizing the hypervolume yields the optimal approximation ratio can also be

observed for all symmetric f sym
p with µ = 3 in (a)–(e).

(a) APP(Xopt(3, f sym
p )). (b) APP(Xopt(4, f sym

p )). (c) APP(Xopt(5, f sym
p )). (d) APP(Xopt(6, f sym

p )).

(e) APP(Xopt(3, fasy
p )). (f) APP(Xopt(4, fasy

p )). (g) APP(Xopt(5, fasy
p )). (h) APP(Xopt(6, fasy

p )).

Figure 8. Approximation ratio of the optimal hypervolume distribution ( ) and the optimal approximation distribution ( ) depending on the
convexity/concavity parameter p for symmetric and asymmetric fronts fp and different population sizes µ (cf. Definition 2). The x-axis is

scaled logarithmically. Note that (a) shows that the approximation ratio of the optimal hypervolume distribution APP(XHYP
opt (3, f sym

p )) and

the optimal approximation distribution APP(XAPP
opt (3, f sym

p )) are equivalent for all examined p.
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