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ABSTRACT

Often the Pareto front of a multi-objective optimization
problem grows exponentially with the problem size. In this
case, it is not possible to compute the whole Pareto front
efficiently and one is interested in good approximations. We
consider how evolutionary algorithms can achieve such ap-
proximations by using different diversity mechanisms. We
discuss some well-known approaches such as the density es-
timator and the e-dominance approach and point out how
and when such mechanisms provably help to obtain good
additive approximations of the Pareto-optimal set.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems

General Terms

Algorithms, Performance, Theory

Keywords

Evolutionary algorithm, density estimator, diversity mech-
anism, e-dominance, multi-objective optimization, runtime
analysis

1. INTRODUCTION

Multi-objective optimization problems are often difficult to
solve as the task is not to compute a single optimal solution
but a set of solutions representing the different trade-offs
with respect to the given objective functions. The number
of these trade-offs can be exponential with regard to the
problem size, which implies that not all trade-offs can be
computed efficiently. In this case, one is interested in good
approximations of the Pareto front consisting of a not too
large set of Pareto-optimal solutions.
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Evolutionary algorithms (EAs) form a class of randomized
algorithms that is popular with practitioners. They are easy
to implement and often achieve good results without having
much knowledge of the problem under consideration. It has
been observed empirically that multi-objective evolutionary
algorithms (MOEA) are able to obtain good approximations
for a wide range of multi-objective optimization problems.
The aim of this paper is to contribute to the theoretical
understanding of MOEAs in particular with respect to their
approximation behavior.

One field of research that has gained increasing interest dur-
ing recent years is the rigorous analysis of simple randomized
algorithms with respect to their runtime behavior. The ad-
vantage of this line of research is that it provides rigorous
results, which often show that even simple EAs are quite
successful. On the other hand, EAs are composed of several
components that influence their behavior. The investigation
of simplified EAs often can not capture important features
of more sophisticated EAs. We want to put forward this
line of research by considering MOEAs that incorporate di-
versity mechanisms that are frequently used in successful
applications and analyzing their approximation behavior on
different multi-objective optimization problems.

Most rigorous studies of MOEAs investigate a simple MOEA
called GSEMO [5]. These studies comprise rigorous state-
ments about the runtime of MOEASs, which increase the the-
oretical understanding of when and how MOEAs are able to
solve multi-objective optimization problems. For instance,
[6] introduces an example problem where a population-based
MOEA outperforms several algorithms that are based on a
single individual, and [1] shows that the addition of objec-
tives can be advantageous as well as disadvantageous. In
recent years, even the analysis of simple MOEA for combi-
natorial optimization problems has become possible [4, 11,
12].

However, GSEMO is a quite simple MOEA with some disad-
vantages in comparison to the MOEAs used in practice. One
disadvantage of GSEMO is that the population size grows
with the number of discovered non-dominated individuals
since the population archieves all non-dominated individu-
als found so far. Most MOEAs used in practice are based on
a population of fixed size. When dealing with large Pareto
fronts, these MOEAs try to spread the individuals in the
population over the whole Pareto front. The application of
a wide range of diversity mechanism can help to achieve this



goal [3]. A popular diversity strategy is to use a density es-
timator to favor individuals in less crowded regions of the
objective space [10] (density estimator approach). Another
well-known diversity strategy is to partition the objective
space into boxes and to restrict the population to at most
one individual per box [9] (§-dominance approach). We con-
centrate in this paper on the density estimator approach (us-
ing the density estimator proposed for SPEA2 [13]) and the
d-dominance approach.

The goal of this paper is to better understand how such di-
versity mechanisms influence the approximation ability of
MOEAs. We present example problems that allow rigorous
statements about the usefulness of such diversity mecha-
nisms. In particular, we point out for each diversity mecha-
nism a typical situation, which explains when and how the
considered diversity mechanism is crucial to obtain a good
approximation of the Pareto front of the given problem.

The outline is as follows. In Section 2, we introduce the ba-
sic definitions and the algorithms that are relevant to this
paper. We present in Section 3 a problem where a proper
diversity strategy is crucial for obtaining good approxima-
tions. We show that the density estimator as well as the 6-
dominance approach lead to a significant performance boost
in comparison to GSEMO. In Section 4, we present two prob-
lems that point out the differences between both diversity
mechanisms. Finally, we discuss our results and finish with
some conclusions.

2. DEFINITIONSAND ALGORITHMS

In multi-objective optimization the goal is to optimize sev-
eral objective functions simultaneously. The different objec-
tive functions are often conflicting, which implies that there
is no single optimal solution but a set of solutions that rep-
resents the possible trade-offs with respect to the objective
functions. We consider problems defined on binary strings
of fixed length, i.e., the search space is B" where B = {0, 1}.
The objective function f: B™ — R™ maps search points to a
vector-valued objective space. An objective vector u weakly
dominates v (u = v) iff u; > v; for all ¢ € {1,...,m}, and
u dominates v (u > v) iff u = v and v # v. The concept of
dominance directly transfers from the objective vectors to
the corresponding search points, e.g., x > y holds for two
search points z and y iff f(z) > f(y).

The MOEA Global Simple Evolutionary Multi-objective Op-
timizer (GSEMO) (see Algorithm 1) has been analyzed with
respect to runtime behavior on various problems [1, 4, 5, 6,
11, 12]. GSEMO maintains a population P of variable size,
which serves as an archive for the discovered non-dominated
individuals as well as a pool of possible parents. P is ini-
tialized with a single individual that is drawn uniformly at
random from the decision space. In each generation an in-
dividual z is drawn uniformly at random from P, and an
offspring y is created by applying a mutation operator to x.
We resort to the global mutation operator that flips each
bit of z with probability 1/n throughout this paper. If y
is not dominated by any individual of P, y is added to P.
All other individuals that are weakly dominated by y are in
turn deleted from P. The last step ensures that P stores for
each discovered non-dominated objective vector u just the
most recently created decision vector x with f(z) = w.

Algorithm 1 GSEMO
1: choose an initial population P C B" with |P| = 1 uni-
formly at random
2: repeat
3: choose a parent « € P uniformly at random
4: create an offspring y by flipping each bit of x with
probability 1/n

5 if 2 € P: z = y then

6: set P«— (P\{z€P|y»=z})U{y}
7 end if

8: until stop

Algorithm 2 GDEMO
1: choose an initial population P C B™ with |P| = 1 uni-
formly at random
2: repeat
3: choose a parent z € P uniformly at random
4: create an offspring y by flipping each bit of x with
probability 1/n

5: if 3z € P: 2 > y vV b(2) = b(y) then

6: set P«— (P\{z€ P|bly) = b(2)}) U{y}
T end if

8: until stop

Often the number of Pareto-optimal objective vectors grows
exponentially with the problem size. In this case, it is not
possible to obtain the whole front efficiently. Hence, we are
interested in the time to obtain a good approximation of
the Pareto front and want to examine in which situations
the use of a diversity mechanism can help to achieve this
goal. In this paper, we use the additive e-dominance mea-
sure (see e.g. [9]) to judge the quality of an approximation.
An objective vector u e-dominates v (u =< v) iff u; +& > v;
for all i € {1,...,m}. A set of objective vectors T (or a set
of corresponding search points) is called an e-approximation
of f iff there is for each objective vector v € f(B") at least
one objective vector v € T' that e-dominates v.

If we are satisfied with an approximation of the Pareto front,
it might be beneficial to avoid storing similar individuals in
the population of GSEMO. We partition the objective space
into boxes and store at most one individual per box in the
population. To do this, we map an individual x to the box in-
dex vector b(z) = (b1(x),...,bm(x)) with b;(z) := | fi(z)/d]
where § € RT determines the size of the boxes. Global Di-
versity Evolutionary Multi-Objective Optimizer (GDEMO)
(see Algorithm 2) is a MOEA that incorporates this concept.

Often evolutionary algorithms work with a population of
fixed size and try to spread the individuals in the popula-
tion over the Pareto front by increasing the distance in the
objective space between the individuals. To keep a popula-
tion of size p in each generation either the offspring has to be
skipped or one individual in the current population has to
be deleted to make room for the offspring. We investigate a
simplification of the diversity mechanism incorporated into
SPEA2 [13], which relies on a so-called density estimator.

Let @ be a given set of search points. The rankg(x) of a
search point x € @ is given by the number of search points
in Q that dominate z, i.e., rankg(z) := {y € Q | y =



Algorithm 3 SELECTION FOR REMOVAL
Input: set of search points @

Output: search point z € Q

1: set Q' «+ arg maxgeq rankg(z)

2: set Q" « argmin,cq distg(x)

3: return z € Q” chosen uniformly at random

Algorithm 4 RADEMO
1: choose an initial population P C B™ with |P| = p uni-
formly at random

2: repeat

3: choose a parent x € P uniformly at random

4: create an offspring y by flipping each bit of x with
probability 1/n

5: choose an individual z € P U {y} for removal using
Algorithm 3

6: set P — (PU{y})\ {z}

7: until stop

z}|. Additionally, a metric on the objective space is taken
into account. We consider the maximum metric d(u,v) :=
max;e(1,...,m} |u; — v;| where v and v are objective vectors.
Let distq(z) := (distg (), ... ,distlg‘fl(x)) where distf) (z)
denotes the distance d(f(x), f(y)) from =z € @ to its k-th
nearest neighbor y € ) with respect to d.

The archive truncation procedure of SPEA2 selects a search
point z € @ with the lowest distg(z) value with respect
to the lexicographic order from the search points with the
highest rankq(z) value for removal (see Algorithm 3). Us-
ing this selection procedure, we obtain a simplified version of
SPEA2, which we refer to as Rank- And Distance-based Evo-
lutionary Multi-objective Optimizer (RADEMO) (see Algo-
rithm 4).

For theoretical investigations, we count the number of gener-
ations until a desired goal has been achieved. This number is
called the runtime of the considered algorithm. The subject
of our investigations is the runtime that an algorithm needs
to achieve an additive e-approximation of a given problem
where £ € RY.

3. APPROXIMATION OF LARGE PARETO
FRONTS

In this section, we discuss how diversity mechanisms can be
provably helpful to achieve an e-approximation of an expo-
nentially large Pareto front. All the problems examined in
this paper depend on a parameter ¢ and the goal is to ex-
amine whether our algorithms are able to achieve an e-ap-
proximation of the Pareto-optimal set in polynomial time.

To simplify the following function definitions, we use the
common functions

n n .
)1 == Zﬂcz and |z|2 := Z 2"y
i=1 i=1

We assume w.l.o.g. that the number of bits is even and
refer to the first (second) half of a bit string = as 2’ ().
We consider the bi-objective example function LF.(z) =

(LFL ;(z),LFL »(z)) (Large Front) where
LF’EJ(J;)::{(Z:E’P-FZn/2,|xu2)_5 min{|x'\17|?|1}2\/ﬁ

2-2'|1-€ otherwise

L oy | A2 e i T 2 v
SET) 247 e otherwise.

Figure 1(a) shows the objective space of LF~.

The above-defined function LF’ induces the same dominance
relation on the search space as the similar function LF. (z) =
(LF¢,1(z),LFc 2(x)) [7] with

T n/2, 2! . o
LF..(z):= (1+5)2| "li+2” [z ]2 min{|2'|1,|7|1} >V
(1+e)* I="la otherwise
= n/2 o7 . i
LF.2(z):= (1 +E)2| l1+2~ |22 mln{\$/|1,|m’|1}2\/ﬁ
- =
(1+¢)>1*h otherwise

shown in Figure 1(b). In particular,

LF’E(x) =& 10g1+a(LF€(l’))

holds for each x € B"™. This allows to transfer the results
for GSEMO and GDEMO on LF provided in [7] directly to
LF’. Hence, we can state the following results.

THEOREM 1. The time until the algorithm GSEMO has
achieved an e-approzimation of LF. is 20n/%)
bility 1 — 2~ 2"/

with proba-

THEOREM 2. Choosing § = ¢ as box size, the algorithm
GDEMO has achieved an e-approzimation of LF. in ex-
pected time O(n®logn).

The reason for the stated negative result for GSEMO on
LF’ is that the algorithm produces many Pareto-optimal
objective vectors with roughly n/4 1-bits in the first half of
the bitstring. However, to achieve an e-approximation it is
necessary that for each 4, 0 < ¢ < n/2, a solution with ¢ 1-
bits in the first half of the bitstring is obtained. This implies
that at least n/2 4+ 1 search points are necessary to achieve
an e-approximation. In contrast to the negative result for
GSEMO, the algorithm GDEMO is able to obtain an e-ap-
proximation efficiently when choosing the value of §, which
determines the size of the boxes, as in the definition of LF".
This has the effect that the algorithm keeps for each fixed
number of 1-bits in the first half exactly one individual in
the population.

In the extreme case when the parameter ¢ in the GDEMO al-
gorithm becomes small, the algorithm collapses to GSEMO.
This shows that the right choice of ¢ is crucial for dealing
with large Pareto fronts. In the following, we show that the
density estimator ensures in a natural way a spread over the
Pareto front of LF’. We already know that n/2 + 1 points
are necessary to achieve an e-approximation of LF’. There-
fore, we assume that the population size of RADEMO is
at least n/2 4+ 1 and show that the algorithm constructs an
e-approximation efficiently.
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Figure 1: Objective space of LF; (see (a)) and LF. (see (b)) for ¢ =1 and n = 36.

THEOREM 3. Choosing u > n/2 4+ 1 as population size,
the algorithm RADEMO has achieved an e-approximation
of LF. in expected time O(unlogn).

Proof. Let z and y be two individuals. If ||y = |¢|1,
the distance between the two search points in the objective
space is small, i.e., d(LF.(x), LF.(y)) < ¢ holds. Otherwise,
d(LF.(z),LF.(y)) > € holds. This implies that once a solu-
tion with a specific number of 1-bits in the first half of the
bitstring is obtained, such a solution will remain in the popu-
lation during the whole optimization process as u > n/2+1.
We therefore have to consider the different times to produce
the individuals with ¢, 0 < i < n/2, 1-bits in the first half of
the bitstring. An offspring y with |y|1 = i is created with
probability at least
. 9 it 14l 1 1

min{n/2 —i+ 1,7 + }.,u.en
if the population contains an individual z with |z'|; =i —1
or |z'|1 = ¢+ 1. Note that such an i always exists as long as
an e-approximation has not been obtained.

Therefore, we can sum up the waiting times for the different

values of i, which leads to an upper bound of

n/2

> " =
min{n/2 —i+1,i+1}

=0

O(unlogn)

for the time needed to obtain an e-approximation of LF’. [

4. COMPARISON OF
ADDITIVE §-DOMINANCE WITH
THE DENSITY ESTIMATOR

In the previous section, we have shown that both diversity
mechanisms may help to achieve a good approximation of an
exponentially large Pareto front. The goal of this section is
to work out the difference between the additive j-dominance
approach and the use of the density estimator in a rigorous
way. To do this, we examine functions that illustrate the

different behavior. Our functions are simple in the sense that
they have a small Pareto front which can be easily computed
by the GSEMO algorithm. However, we will show that the
examined diversity mechanisms may even have difficulties to
achieve a good approximation of the Pareto-optimal set.

4.1 TheRight Parameter for

the §-Dominance Approach

In the following, we want to point out how the choice of § in
GDEMO influences the ability of this algorithm to achieve
a good approximation. We have already seen in Section 3
that the right choice of § may help to achieve good approx-
imations for an exponentially large Pareto front. Now, we
illustrate that the right value of § is crucial for the success
of the algorithm. In particular, we point out that GDEMO
may fail on problems with a small Pareto front which may
be easily solved by GSEMO.

For this reason, we consider the bi-objective example func-
tion SFL(z) = (SFL(z),SFL 5(x)) (Small Front) where
SF.1(2) = (|z]y/n+ |zl /n]) - e
SFLa(@) = (17l /n + [[7la/n)) -

Figure 2(a) shows the objective space of SF.. To obtain an
e-approximation of SF’ the search points 0™ and 1™ have to
be obtained.

The above-defined function SF’ induces the same dominance
relation on the search space as the similar function SF.(z) =
(SF.,1(x), SFe 2(x)) [7] with

SF.1(z) = (1 + ¢)/#l/ntleli/n)
SF.2(z) := (1 + ¢)lFh/ntLizl/n)
shown in Figure 2(b). In particular,
SF,E(HC) =¢-log,, (SF- (z))
holds for each x € B".

All search points ¢ {0™,1"} are mapped to the box index



Figure 2: Objective space of SF. (see (a))

vector (0,0) if § > € is chosen in the GDEMO algorithm.
Therefore, we can transfer the results for GSEMO on SF
provided in [7] directly to SF’ and state the following theo-
rem.

THEOREM 4. Choosing § > € as box size, the time until
the algorithm GDEMO has achieved an e-approrimation of
SF. is 2™ with probability 1 — 2~ )

The proof given in [7] relies on the phenomenon that an
offspring of an individual = with |z]; < n/2 (|Jz|1 > n/2)
tends to have more (less) 1-bits inducing a drift towards the
middle of the front. Since GDEMO is limited to at most
one individual per box, it takes a long time to reach the
outskirts of the Pareto front, which are necessary for an e-
approximation.

For the middle part of the Pareto front of SF’ holds that all
distances between neighboring objective vectors are equal.
In addition, the objective vectors corresponding to the search
points 0" and 1™ have a large distance to all other objec-
tive vectors. This helps the algorithm RADEMO to achieve
an e-approximation of SF’ as the density estimator enforces
the algorithm to produce solutions that have a large dis-
tance in the objective space. The next theorem shows that
RADEMO obtains an e-approximation efficiently if the pop-
ulation size is at least 2.

THEOREM 5. Choosing p > 2 as population size, the al-
gorithm RADEMO has achieved an e-approzimation of SFL.
in ezxpected time O(unlogn).

Proof. Consider the potential pot(P) := max{||z|1 — |y|1] |
z,y € P}. It holds 0 < pot(P) < n. The optimization
goal has been reached if pot(P) = n. Let z,y € P be
two individuals leading to the potential and assume that
|z|1 < |y|l1. Flipping a single 1-bit in z or a single 0-bit

20 2t 22

(b)

and SF. (see (b)) for e =1 and n=38.

in y increases the potential. Therefore the probability of
increasing the potential is at least

n—1
(e noh ey (1)
m n n n

> n — pot(P) .

eun

The upper bound O(unlogn) is the result of the summation
of the expected waiting times for increasing the different
potential values. O

The following theorem shows that GSEMO is able to com-
pute the Pareto front of SF. efficiently. The theorem stems
from the result for GSEMO on SF provided in [7].

THEOREM 6. The expected time until GSEMO has com-
puted the Pareto front of SFL is O(n?logn).

4.2 TheDistance Measure of the Density Esti-
mator

In the following, we showcase a simple function, which ex-
emplifies how the diversity mechanism of RADEMO might
hamper the optimization process if the population is not
large enough.

Let SP := {1°0"™" | 0 < i < n}. We consider the bi-
objective example function TF.(z) = (TFL;(z), TFL 5(z))
(Two Fronts) where

|Z|1-€/(4n) x ¢ SP

TF. 1 (z):=% e/4+i-2¢/n r=10"""0<i<n/4
3e/4— (i —n/4)-e/n x=10"""n/4<i<n
0 x ¢ SP

TF. 2(z):=< /4 —i-e/n r=10"""0<i<n/4
(i —n/4)-2e/n z=10"""n/4<i<n.
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Figure 3: Objective space of TF. for ¢ = 1 and n = 20.

Figure 3 shows the objective space of TF.. The Pareto-
optimal set of TF’ is

{1°0" " |n/a<i<n}
and the Pareto front consists of the objective vectors of

((3e/d—i-e/n,i-2/n) | 0<i<3n/d}.

The next technical lemma, which is used in the proof of the
following theorem, describes how RADEMO spreads the in-
dividuals in the population over a linear front. The lemma
considers the following abstract scenario. At the beginning,
> 2 tiles are placed within a discrete interval {0,1,...,n}.
In each step, a new tile is added and afterwards a most
closely surrounded tile is removed. How often do we need to
add a new tile next to an existing tile until the minimal dis-
tance between neighboring tiles exceeds a certain threshold
m?

LEMMA 1. Letn € N, I ={0,1,...,n}, 2 < pu €N, and
(Pr)ten be a sequence of multisets Py = {pt,1,...,pe,u} C 1
where Piy1 = (P U{z}) \ {y} withz € I and

Y€ argz Htlbl}z}(dlSt}Dtu{z}(ZLdlSt?:’tU{z}(Z))

€P,

Assume w. l. 0. g. that pti+1 > pt,i. In addition, let D(P;) =
{di1,...,de,u—1} be the set of all distances

di,i = d(pt,i+1,Pt,i) = Drit1 — D

between neighboring points. Then it suffices to add succes-
sively O(m3,u + mu3) certain points next to a point in the
actual multiset to increase the minimal distance min D(P;)
to at least m if

p—1

n>L:= Z(m—i—i—?) =0(u’* +m)
i=1

holds.

Proof. The addition of a point x to P; can have two conse-
quences.

Ly l3+44
(a)
o——0—>e
AV by i+
[ )
0=C
by=L3+1Ly
(c)

o—)o—)o/éz\o
0 Ly=t LNy A+l
l3+Ly
(b)
e A bt

0 63\._).
Ly l3+0y
(d)

Figure 4: Illustration for changing interval lengths.
A thin arrow from a to b stands for a < b and a thick
arrow from a to b stands for a < b

1. If & < py,1 or & > py,u, a new interval of length p, 1 —
or & — py,u is created.

2. If py1 < < piu, an existing interval of length ¢1 + ¢
is divided creating two neighboring intervals of length
él and ﬁz.

Thereafter two neighboring intervals of length ¢35 and ¢4 are
merged creating an interval of length f3 + (4.

We consider the first case. If p;, — pe,1 < L then per >0
or pi,u < n. Therefore adding x = p;, 1 —1or o =psu+1to
P, increases p,,, — pt,1. Hence, at most L+ 1 = O(u2 +m)
steps are sufficient to achieve p;,, — pe,1 > L.

In the second case, at most three intervals are affected. In
particular, D(Pt+1) = D(Pt)U{fh [2,£3+£4}\{£1+52, 53744}
holds. We distinguish four cases where we assume w.l.0.g.
that ¢1 < ¢2 and ¢3 < ¢4. Note that the selection of y en-
sures that (¢3,£4) is at most (£1,£2) with respect to the lex-
icographic order. The situation is illustrated in Figure 4(a).

o If 0 =/¢3 = /{1 then D(Pt+1) = D(Pt)

o If 0 < #3 = /{1 then D(Pt+1) = D(Pt) U {42,£3 + €4} \
{(1 —|—€2,€4} with ‘62 — (63 +f4)| < ‘(61 —|—42) —£4| (see
Figure 4(b)).

e If 0 =/¢3 < /1 then D(PtJrl) = D(Pt) U {[1,62} \ {Zl +
ZQ, 63} with |€1 —€2| < |(€1 —l—éz) —ﬂg‘ (see Figure 4((3)).

e If0 < /3 < /1 then D(PH_l) = D(Pt)U{£1,€2,€3+é4}\
{51 + 62,83,£4} with min{£1,£2,£3 + £4} > min{& +
L2, 03,04} (see Figure 4(d)).

Consider the functions

fi(Py) := max{(m —1— min d¢;) - (u—1)

1<i<p

+ | arg 1211_12# dt;i‘vo}a
f2(P) == g(de,1) + -+ g(de,u—1)

where g(d; ;) = Z;’Z“_Q_dt'ij < (m+ p)?. An inspection

of the above cases shows that fi(P;) is monotone decreasing



and that f2(P:) does not increase in all cases except the last
where f2(Pt+1) — fQ(Pt) is

(g(1)+g(l2)+g(ls+La)) = (g(lr1+£2)+g(l3)+g(£a))
= (g(€1) —g(lr+£2))+(g(€2) —g(€3)) + (g (€3 +La) —g(£a))
< g(l)—g(li+2) < g(l1) < (m+p)°.

Hence, the potential
pot(P:) == f1(P) - (m+ p)* + fa(Pr)

is monotone decreasing. Additionally,

pot (%)
<((m=1)-(p=D+p=1)-(m+p)?+ (p—1)-(m+ p)?
= O(m’u+mpy®)
holds.

The minimal distance min D(F;) is as least m if pot(P;) is
at most (p—1)-> 74" 2 4. If pot(P;) is greater than (u — 1) -
ijl Jj then thereis an dy; < m+p—3 with ds ;-1 > dy,i+2
or dt i+1 > di,;+2 due to the pigeonhole principle. Therefore
adding « = p;,; — 1 or = p¢,;+1 + 1 decreases the potential.
Hence, O(m?>u + mu®) such steps are sufficient to increase
the minimal distance min D(P;) to at least m. O

The next theorem shows that RADEMO does not achieve
an c-approximation of TF. within polynomial time w.h. p.
if the size of the population is not too large. The main
idea of the proof is that the individuals spread out over
{(e/4+1-2¢/n,e/4 —i-g/n) | 0 <i< n/4} in an almost
equally spaced manner before the Pareto front is reached.
Thereafter RADEMO’s diversity mechanism prevents the
algorithm from spreading out on the Pareto front. Hence,
RADEMO does not obtain the objective vectors in the top
left part of the Pareto front, which are necessary to achieve
an e-approximation.

THEOREM 7. Choosing 2 < pu = O(nl/?’fc) as population
size where 0 < ¢ < 1/3 is a constant, the time until the al-
gorithm RADEMO has achieved an e-approzimation of TFL
is 2°0°°) with probability 1 — 2~ 27,

Proof. We use the method of considering a typical run of the
algorithm and regard the first 2°("") steps of the algorithm.
Our goal is to show that the probabﬂlty of obtaining an
e-approximation within this phase is 27

The probability of flipping at least 7 bits in a single step is

at most
YNONGRORES
i n i n i
Therefore at least n® bits flip with probability at most
(e/n)"" = 27 %n“logn)  This implies that the probabil-

ity of ﬂlppmg more than n° bits in a single step within the
considered phase is at most 27 (" legn),

Since the initial population P is chosen uniformly at ran-
dom, z ¢ SP and n/12 < |z|; < 11n/12 hold for all z € P

with probability at least 1 — 27 ) Let z be an individual
of the initial population with \m|1 = 4. This search point is
uniformly distributed in {y € B" | |y|1 = ¢}. Consider an
offspring z that is accepted before for the first time an indi-
vidual of SP has been obtained. This individual in uniformly
distributed in {y € B" | |y|1 = |2]1}. Hence, the probabil-
ity of obtaining a solution of SP whose number of 1-bits
is at least m/12 is upper bounded by 1/(n712) = 92~ %),
It follows that 0 < |z|1 < n/12 applies for the first in-
dividual x € SP that is added to P w.h.p. Afterwards,
maxgep |z)1 < n/12 4 (u — 1) - n° holds. Hence, when the
first individual z € SP with n/6 < |z|1 < n/6+ n° is added
to P, P consists of different individuals from SP.

Thereafter, the probability to create an offspring y with
lyl1 > maxgep |z|1 is at most O(u_ln_l) Consider a phase
until an individual 1°0"~* with n/4 — n® < i < n/4 is added
to the population. The phase involves Q(un®~¢) steps with

probability at least 1 — 27~ 2" que to Chernoff bounds.

Let m be the minimal distance between two different individ-
uals in the population. The probability to increase m to at
least 6n° within Q(un?~2°) consecutive steps is at least (1)
due to Lemma 1 since a certain bit of a certain individual
is flipped with probability at least Q(pu~'n~'). Therefore,
this event occurs at least once in the considered phase with
probability at least 1 — 2~ ), Hence, at the end of the
phase m > 6n° holds w. h. p.

Now, we regard the situation after an individual 1°0" % with
n/4 —n° < i < n/4 has been added to P. It holds j <
n/4 —6n° for the nearest individual 170" 7 of 1°0"~*. Each
individual 1°0™~* with n/4 +2n° < k < n/44 3n° does not
dominate any individual in the population since

TFL,(1°0" %) = 3¢/4 — (k —n/4) - ¢/n
<3e/4—(n/4+2n°—n/d)-e/n
=¢e/4+ (n/4—n°)-2¢/n
<e/A+i-2/n=TF.,(1°0")

and

TF.L (10" %) = (k — n/4) - 2¢/n
< (n/4+3n°—n/4)-2¢/n
=¢/4—(n/4—6n°)-¢/n
<e/d—j-e/n=TF.,(170"7).

Therefore these individuals are rejected since accepting such
an individual would decrease m. Hence, more than n° bits
have to be flipped in a single mutation step to approach the
top left part of the Pareto front, which shows the theorem.

(]

We have seen that RADEMO does not compute an e-ap-
proximation of TF. within polynomial time w.h.p. if the
size of the population is at most O(n'/37¢). Note that re-
stricting the population size to O(n'/3~¢) does not seem to
be too limited since an e-approximation of TF. can be ob-
tained by choosing a single search point of {170"™% | n/2 <
i1 < n}.



GSEMO [ GDEMO [ RADEMO
LE. | \ / /
SF. | / N /
TF. | / / N

Table 1: Overview of the performance of the algo-
rithms GSEMO, GDEMO, and RADEMO on the
functions LF., SF., and TF.. \, means exponential
time w. h. p. and " expected polynomial time.

We will show next that GDEMO with the right choice of ¢
performs much better.

THEOREM 8. Choosing § = € as box size, the algorithm
GDEMO has achieved an e-approzimation of TFL in ex-
pected time O(n®).

Proof. If there is no solution of SP in the population, the
population size is 1 and the algorithm maximizes the num-
ber of 0-bits. Note that no steps increasing the number of
0-bits are accepted in this case as such search points are
dominated by the current one constituting the population.
This implies that after an expected number of O(nlogn)
steps the population consists of an individual from SP. Af-
terwards, the individual starts a random walk on SP. The
population has converged to an e-approximation if an indi-
vidual of the second box has been obtained. This happens
after an expected number of O(n?) steps (see [8]). O

The next theorem shows that the quite small Pareto front of
TF. can also be efficiently computed by the simple algorithm
GSEMO.

THEOREM 9. The expected time until GSEMO has com-
puted the Pareto front of TFL is O(n®).

Proof. Since the population size is 1 as long as SP has not
been found, the expected time until the first individual from
SP is created is at most O(nlogn) following the proof ideas
in [2] for the (1+1) EA and the function | - 1. As long as
the Pareto front has not been found, the population size is
at most n/4. The probability to create an individual y with
lyl1 > maxzep |z|1 is therefore at least

n—1
Ly
n/4 n n “n/d4 en
Hence, the first Pareto-optimal individual is added to the
population after an expected number of at most n/4-n/4 -

en = O(n?) steps. Finally, the expected time until the last
Pareto-optimal search point is revealed is at most

3n 3n

_ 3
1 4-enf0(n)

using similar arguments. O

5. DISCUSSION AND CONCLUSIONS

We have pointed out how different diversity strategies used
by MOEAs can help to achieve a good approximation of
the Pareto-optimal set. Table 1 gives an overview of the
different results.

For problems where many search points map to different
Pareto-optimal objective vectors (see function LF’), we have
shown that MOEAs that do not incorporate any diversity
mechanism have difficulties to obtain a good approxima-
tion as the different individuals may only cover parts of the
Pareto front that are close to each other. In contrast to this
both diversity mechanisms examined in this paper lead to a
good additive approximation of the Pareto-optimal set.

Afterwards, we compared the two diversity strategies. It
turned out that the investigated density estimator may pre-
vent the MOEA from obtaining new Pareto-optimal search
points even if these search points are Hamming neighbors
of search points already contained in the population (see
function TF’). The reason for this is that the search points
already contained in the population may have a relatively
large distance to each other and may not be be dominated
by the search points that can be introduced into the popu-
lation. In such cases, the algorithm rejects the new search
points of the Pareto-optimal set if their insertion into the
population would lead to a worsening with respect to the
distance measure. Finally, this has the effect that it is not
possible to achieve a good approximation of the problem at
hand.

To obtain good approximations by using the J-dominance
approach, it is necessary to choose the right value for §. We
have pointed out that even problems with a small Pareto
front that is easy to compute without any diversity mecha-
nism (see function SF’) may not be optimized by the men-
tioned approach as it looses the information obtained by
sampling Pareto-optimal search points.

The results obtained in this paper are a first step to under-
stand how simple randomized algorithms may achieve good
approximations for multi-objective optimization problems.
The goal for future research is to analyze such algorithms
on classical problems from multi-objective combinatorial op-
timization. As such problems may have Pareto fronts of ex-
ponential size diversity strategies are clearly necessary for
the success of such algorithms.
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