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ABSTRACT

In the last decade remarkable progress has been made in develop-
ment of suitable proof techniques for analysing randomised search

heuristics. The theoretical investigation of these algorithms on classes

of functions is essential to the understanding of the underlying sto-
chastic process. Linear functions have been traditionally studied
in this area resulting in tight bounds on the expected optimisation
time of simple randomised search algorithms for this class of prob-
lems. Recently, the constrained version of this problem has gained
attention and some theoretical results have also been obtained on
this class of problems. In this paper we study the class of linear
functions under uniform constraint and investigate the expected
optimisation time of Randomised Local Search (RLS) and a simple
evolutionary algorithm called (1+1) EA. We prove a tight bound
of ©(n?) for RLS and improve the previously best known bound
of (1+1) EA from O(n? log(Bwmax)) to O(n? log B) in expectation
and to O(n? log n) with high probability, where wpay and B are the
maximum weight of the linear objective function and the bound of
the uniform constraint, respectively.
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1 INTRODUCTION

Randomised search heuristics, such as evolutionary computing tech-
niques and randomised local search algorithms have been widely
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used in real world applications that involve optimisation. Over the
last decade a lot of progress has been obtained in understanding
the running time behaviour of these algorithms, which give us in-
sights on the underlying stochastic process, particularly for classes
of optimisation problems.

One of the classes of problems which has been studied for a
simple evolutionary algorithm, called (1+1) EA, is the class of lin-
ear pseudo-boolean functions [4, 9, 12-14, 21]. The problem is to
optimise a linear function of n Boolean variables. An upper bound
of O(nlog n) is first obtained for the optimisation time of (1+1) EA
on this problem by Droste, Jansen and Wegener in [9], where the
presented proof is highly technical. Later, using the analytic frame-
work of drift analysis [11], He and Yao presented a simplified proof
for the same upper bound of O(nlogn) [12]. Another major im-
provement was made in [13, 14], where the first precise analysis is
presented for the optimisation time of the problem. Using a frame-
work for the analysis of multiplicative drift [5], Doerr, Johannsen
and Winzen improved the precise upper bound result to the bound
(1.39 4+ 0o(1))enIn n [4]. This bound was again further improved by
Witt [21] to enlnn + O(n), who used adaptive drift [2, 3] based on
a novel potential function.

The mentioned results consider the problem without any con-
straints. However, the class of linear pseudo-boolean functions has
also been recently studied under linear constraints [10]. The prob-
lem of optimising a linear function under a linear constraint means
that the search space is split by a hyperplane and only the points
in one of the half spaces are considered feasible. This problem is
equivalent to the well-known knapsack problem in the Boolean
domain. One of the linear constraints that is studied in [10], is the
uniform constraint, in which the constraint is given by OneMax;
hence, restricting the number of 1-bits in the string. Denoting the
bound on the number of 1-bits by B, the authors of that work have
conjectured a general upper bound of O(n?) for all linear functions,
independently of B. However, their analysis only proves a general
upper bound of O(n? log(Bwmay)) for this setting, where way is
the largest weight in the objective function.

In this paper, we study two randomised search heuristics, RLS
and (1+1) EA, and analyse the expected optimisation time of these
algorithms on the linear function problem under a uniform con-
straint. We prove that an upper bound of O(n?) holds for RLS
and we improve the current upper bound of O(n? log(Bwmax)) to
O(n?log B) for (1+1) EA.

The problem of optimising a linear function under a uniform
constraint can be seen as a simplification of the classical mini-
mum spanning tree problem. The minimum spanning tree prob-
lem has been studied quite extensively in the area of randomised
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Algorithm 1 (1+1) EA

Algorithm 2 Randomised Local Search (RLS)

t:=0.

Choose uniformly at random x( € {0, 1}".

repeat
Create x’ by flipping each bit in x; independently with prob-
ability 1/n.
xt41 1= x"if f(x’) < f(x¢), and x¢41 := x; otherwise.
t:=t+1.

until some stopping criterion is fulfilled.

t:=0.

Choose uniformly at random x¢ € {0, 1}".

repeat
Choose b € {1, 2} uniformly. Create x” by flipping b bits in x;
chosen uniformly at random.
xt41 = x"if f(x’) < f(x¢), and x¢41 := x; otherwise.
t:=1+1.

until some stopping criterion is fulfilled.

search heuristics. Neumann and Wegener [18] have shown an up-
per bound of O(m?(log n + log Wmax)), where n is the number of
nodes, m is the number of edges and wpay is the largest edge weight
of the given input graph. These results have been improved for spe-
cial classes of graphs [22] and edge weights [19]. However, it still
remains an open question whether an upper bound of O(m? log n)
can be achieved for (1+1) EA on any graph.

The investigations in this paper are on a simpler problem, but
we are hopeful that the provided techniques and insights will be
helpful to achieve an upper bound of O(m? log n) of (1+1) EA on
the minimum spanning tree problem. Many other analyses of evo-
lutionary algorithms also contain the largest input weight in the
obtained runtime bounds and getting strong results independent
of this parameter poses a significant challenge for many problems
where input weights might be exponential. This includes many re-
sults using multiplicative drift analysis when dealing with expo-
nentially large weights and using the given fitness functions as
the potential/drift function [6].

This paper is structured as follows. Section 2 includes the defini-
tion of the investigated algorithms and the analytical tools that we
are going to use in the paper. Section 3 explains the studied prob-
lem, as well as the notations that we use in this paper. In Sections 4
and 5, respectively, we present the analysis for RLS and (1+1) EA,
and finally, we finish in Section 6 with some conclusions.

2 PRELIMINARIES

We consider two classical randomised search heuristics called RLS
and (1+1) EA, see Algorithms 1 and 2, which are intensively studied
in the theory of randomised search heuristics [1, 15]. The (1+1) EA
is a globally searching hill-climber, whereas RLS samples from a
neighbourhood of size at most 2. Note that for RLS, steps that
change two bits are crucial when the current search point has a
tight constraint but is not the optimum yet.

The running time (synonymously, optimisation time) of the al-
gorithms is defined as the random number of iterations until an
optimal search point has been sampled. Denoting this number by
a random variable T, in this paper we analyse the expected value
of T, E(T), for both studied algorithms.

In our analysis for (1+1) EA, we use two important drift theo-
rems, which we list in this section in Theorem 2.1 and 2.2. The
variable drift theorem (Theorem 2.1) was independently proposed
in [16? ] and generalised in [20]. The multiplicative drift theorem
(Theorem 2.2) is due to Doerr et al. [6] and was enhanced with tail
bounds by Doerr and Goldberg [3]. Both theorems are formulated
in a unified and slightly generalised manner here. The formulation

in terms of an arbitrary stochastic process can also be found in [17].
The adaptation of the multiplicative drift theorem to arbitrary pos-
itive spyin-values has first been stated in Doerr et al. [6].

THEOREM 2.1 (VARIABLE DRIFT, CF. [16, 20]). Let (X;)r>0, be a
stochastic process, adapted to a filtration F;, over some state space
S C {0} U [Smin» Smax ], where smin > 0. Furthermore, let T = min{t |
X = 0} be the first hitting time of state 0. Suppose that there exists a
monotonically increasing function h: [syin, Smax] — R such that
1/h is integrable, and for allt < T

E(Xt = Xt+1 | 1) 2 h(Xy).
Then,

(T | F0) < Smin +on lds
7 Blsmin)  Jo RO

THEOREM 2.2 (MULTIPLICATIVE DRIFT, CF. [3, 6]). Let (X;)r>o0,
be a stochastic process, adapted to a filtration F;, over some state
space S € {0} U [Smin, Smax], Where smin > 0. Suppose that there
exists a8 > 0 such that forallt > 0

E(Xt = Xt+1 | Ft) 2 6X;.
Then it holds for the first hitting time T := min{t | X; = 0} that
In(Xo/Smin) + 1
-
Moreover, Pr(T > (In(Xo/smin) +1)/8) < e™" foranyr > 0.

E(T | %o) <

Finally, in our analysis, we will use the following simple lemma
dealing with convexity.

LEMMA 2.3. Letay,...,ag = 0 andC > 1. Then
(ar+---+ap)® < B (@) +--- + (ap)°).

Proof. We write

aB C
)
and interpret the expression in parentheses as a linear combination

of the B numbers with coefficient 1/B each. Applying Jensen’s in-
equality, we have

a
(a1+-~~+aB)C=BC(E1+-~-+

c a§
(ﬂ + ... + a_B) S _1 + o + _B,
B B B B
which, after multiplying with BC, gives the desired result. O

Notation. Throughout this paper, for natural numbers n we write
[n] ={1,...,n}.
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3 SCENARIO

In this paper we analyse the expected optimisation time of RLS
and (1+1) EA and consider an optimisation problem with a linear
objective function under a uniform constraint. In contrast to earlier
work in this area [10], we assume that the objective function has to
be minimised since this perspective more naturally coincides with
the minimisation of the distance to the target 0 that is implicit in
the drift theorems (Theorems 2.1 and 2.2). The upper bounds on the
optimisation time obtained for RLS in Section 4 and for (1+1) EA in
Section 5, respectively, would equally hold if we adopted maximi-
sation in the same way as in previous work, see also Section 5.3.

Formally, throughout this paper, we consider the search space
{0, 1}" of all bit strings x = xpXp—1 - - - x1, and the goal is to min-
imise the objective function of

n
fobj(x) = )" wixi,
i=1

where w, > - > wy are positive real weights, under the uniform
constraint

x1+---+x, 2B

for some B € {1, ...,n}. We are excluding B = 0, as it is equivalent
to having no constraints. Note that we follow common conven-
tions in the analysis of linear functions [4, 21] by writing down
search points in the order x, . ..xy, i.e., most significant bit first.
Therefore, an index i is called left of index j # i if i > j and right
of j otherwise.

A search point is optimal if it minimises fop; and is placed in
the feasible region, i. e., the part of the search space where the con-
straint is satisfied. Moreover, we say that a search point is tight (in
the constraint) if x; + - -+ + x, = B.

In Algorithms 1 and 2, x denotes the best search point found so
far, and x” is the new offspring, which replaces x if it is at least
as good as it with respect to a fitness function f that we define as
follows. We aim to handle the constraint of the problem by setting a
penalty for the violation. Therefore, we define the fitness function
below, to be used in the algorithms.

flx) = fobj(x) + max{0, (B — b(x))} - (nwWmax + 1)
where wmax = Wy is the maximal weight, and b(x) = Z?:1 xj is
the number of ones in the bit string x. For feasible search points
we have b(x) > B, which implies that max{0, (B — b(x))} = 0.
Therefore, the penalty of (B — b(x)) - (hwmax + 1) is applied to
search points that are infeasible, making the value of this fitness
function larger than that of any feasible search points. Note that
with this definition of the fitness function, the search in infeasible
region is also guided to the feasible region, because as the extent
of the constraint violation is reduced the penalty also decreases.

We first find a tight bound on the expected optimisation time of
RLS on this problem in Section 4, and then focus on the challenging
analysis of (1+1) EA in the rest of the paper. Lemma 4.1, which is
presented in Section 4 holds for (1+1) EA as well as RLS, and is
used in analysis of both algorithms (Section 4 and Section 5).
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4 ANALYSIS OF RLS

In Theorem 4.2, we prove that RLS (Algorithm 2) optimises the
linear function problem under a uniform constraint in expected
time O(n?). In Theorem 4.3 we also prove that this bound is tight.

We start with the following lemma, which proves that a feasible
search point is sampled by the studied algorithm in O(nlog(n/(n—
B))). This lemma holds for (1+1) EA as well, and is also used in
analysis of Section 5. The proof of this lemma is similar to the proof
of Lemma 7 in [10] in which a maximisation problem for a linear
function under uniform constraint is considered. Here we adapt
the proof to match the minimisation problem.

LEMMA 4.1. Starting with an arbitrary initial solution, the ex-

pected time until RLS or (1+1) EA obtain a feasible solution is O(nlog(n/(n—

B))).

Proof. Recall that we denote by b(x) the number of 1-bits in a
search point x. Due to the definition of the fitness function f, in
the infeasible region, a search point x with a larger b(x) is always
preferred to a search point with a smaller b-value. Therefore, the
problem can be seen as maximising b(x) until reaching b(x) > B,
where the initial solution may have a b-value of 0. We consider the
potential function

g(x) =

n—-b(x), ifb(x)<B.
0, otherwise.

for which the initial value is at most n and the minimum value
before reaching 0 is n — B + 1. The value of this function is never
increased during the process of RLS or (1+1) EA, as larger b-values
are always preferred to smaller b-values before reaching g(x) = 0.
We find the drift on the value of g(x;) for RLS, where x; is the
search point of the algorithm at step t, as

n=ba) _ glxr)

E(g(xt) = g(xt41) [ 9(xe)ig(xe) > 0) 2 — = = ==
since RLS performs a 1-bit flip with probability 1/2 and flips a 0-bit
with probability (n — b(x;))/n, improving g by 1. A similar drift of
B(gtxe) — 9Cxran) | e glxr) > 0) 2 250

is obtained for (1+1) EA, in which the probability of flipping one
0-bit and no other bits is % (1= %)”_1 > %.

Using the multiplicative drift theorem (Theorem 2.2) with § =
1/en, Xy < n and spin = n — B + 1 we find that the expected time
until reaching a feasible solution is upper bounded by

% =0 (nlog (ﬁ))

O

THEOREM 4.2. Starting with an arbitrary initial solution, the ex-
pected optimisation of RLS on linear functions with a uniform con-
straint is O(n?).

Proof. Due to Lemma 4.1, RLS finds a feasible solution in expected
time O(nlog(n/(n — B))). Also, since all feasible solutions have
smaller fitness values than infeasible solutions, the algorithm does
not switch back to the infeasible region again. Moreover, note that
once a feasible solution has been found for the first time, the num-
ber of ones in the solution cannot be increased. This is due to the
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fact that the penalty is 0 and all 1-bit flips flipping a 0 increase the
fitness. Also, all 2-bit flips that increase the number of ones (flip-
ping two zeros) increase the fitness as well.

We split the analysis of the algorithm after obtaining a feasible
solution into two phases. In the first phase, the algorithm starts
with a solution x with b(x) > B and obtains a solution with exactly
B 1-bits (b(x) = B). Then the second phase starts, during which the
number of 1-bits of the solution does not change, because both 1-
bit flips and 2-bit flips that change the number of ones increase
the fitness. If the first feasible solution that is obtained by the al-
gorithm has b(x) = B, then we do not have a first phase. We first
analyse the expected time until the first phase ends, then we focus
on the second phase.

In the first phase, the algorithm starts with a solution x with
b(x) > B. In this situation, as explained above, b(x) does not in-
crease. Moreover, a 1-bit flip that flips a 1 to 0, which happens with
probability b(x)/(2n), is always accepted because it decreases the
fitness, while not violating the constraint yet. By defining a poten-
tial function g(x) as

(o) = {b(x), if b(x) > B.

0, otherwise.

and using multiplicative drift theorem with § = 1/2n, Xy < n and
smin = B + 1, we find the expected time of O(nlog(n/B)) until a
solution with g(x) = 0 is found, which implies b(x) = B.

Now we analyse the second phase. Having obtained a solution
with exactly B ones, only 2-bit flips flipping a zero and a one are ac-
cepted. Let r be the number of bits of weight wg among wp, . . ., wi,
ie.r = [{i | wi = wp,1 < i < B}|. An optimal solution contains
all weights of weight less than wp and exactly r weights of weight
WB.

Let x be the current solution and s(x) = max{0,r — |{i | w; =
Wg A x; = 1}|} be the number of 1-bits of weight wg missing in x.
Furthermore, let

t(x) =i | wi <wp Ax;=0}|

be the number of 1-bits of weight less than wg missing in x.
We denote by
k = s(x) + t(x)
the number of weights that are missing in the weight profile of the
current solution x compared to an arbitrary optimal solution.
As there are exactly B 1-bits in the current solution x, it implies
that there are exactly

k={i|wi>wgAx;=1}+max{0,|{i | wi =wg Ax; =1} —r}

weights chosen in x that do not belong to an optimal weight profile.
Note that for a given solution x

r—ilwi=wpAx;=1}|

is a fixed value which is greater than 0 if 1-bits of weight wp are
missing and less than 0 if there are too many 1-bits of weight wg.

This implies that there are at k 1-bits which can be swapped
with an arbitrary 0-bit of the missing k weights in order to reduce k.
Hence, the probability of swapping a 1-bit with a 0-bit of the miss-

2
ing weights is at least 2k7 and the expected waiting time for this

event is bounded from above by 2n2/k?. Since k cannot increase,
it suffices to sum up these expected waiting times following the

Frank Neumann, Mojgan Pourhassan, and Carsten Witt

idea of fitness-based partitions [? ]. Hence, the expected time until
reaching k = 0 is

B
D@t /k?) = o(n?),
k=1

which completes the proof. O
We now show that the previous bound is asymptotically tight.

THEOREM 4.3. There is a linear function f and a bound B such
that, starting with a uniformly random initial solution, the expected
optimisation time of RLS on f under uniform constraint B is Q(n?).

Proof. The same lower bound is proved for (1+1) EA in Theorem 10
of [10]. Since RLS does not flip more than 2 bits at each step, the
proof of this theorem is simpler. We use a function f that is similar
to the function that is used in [10] and is adapted for a minimisa-
tion problem. We define f as

B n
f =) x+ Y (1+e)x
i=1

Jj=B+1

where ¢ is an arbitrary positive real number. Since the weights
that are assigned to the first B bits are smaller than the weights
of other bits, the optimal solution is selecting the first B bits. We
prove that with B = n/4, the expected optimisation time of RLS is
lower bounded by Q(n?).

We denote the Hamming distance of a solution x to the optimal
solution by dg(x). By Chernoff bounds the initial solution has at
least n/3 1-bits with probability exponentially close to 1, which
implies a Hamming distance of at least n/12 to the optimal solution.
Since RLS can only decrease the Hamming distance by one or two
at each step, in order to reach the optimal solution, a solution x
has to be obtained at some point such that 2 < dg(x) < 3. We
investigate the process based on the number of 1-bits of solution x,
which we denote by |x|;. Since the initial solution is feasible with
probability exponentially close to 1, we either have |x|; = B or
|x|; > B.

If x|; = B, then di(x) = 2 and x can only have one 0-bit among
the first B bits and one 1-bit among other bits. In this case only a
swap on the two misplaced bits can improve the fitness, the proba-
bility of which to happen is at most 1/n?; hence, the waiting time
is Q(n?) and the theorem follows.

If |x|; > B, then flipping any of the 1-bits improves the fitness.
Since there are more than n/4 1-bits in the solution, the probability
of decreasing the number of 1-bits is at least 1/8 at each time step
of RLS. Furthermore, the number of 0-bits does not decrease by
RLS due to the fitness function. Using a drift argument on |x|; — B,
we find that in expected constant time (at most 13%) a solution x’
is obtained such that |x’|; = B. This implies that in a phase of
logn steps, with probability 1 — o(1) the solution x’ is obtained.
If x” is not optimum, then we have to swap at least two bits and
the theorem follows as above. What remains is to show that x’
is not optimum with probability 1 — o(1). Since d(x) < 3, the
probability of flipping a one-bit from x that is outside the first B
positions is at most 3/n at each step. Therefore, with probability at
least 1 — (1 — (1 — 1/n)198™)3 = 1 — o(1) at least one of these bits
does not flip in a phase of log n steps; hence, x’ is not the optimal
solution with probability 1 — 0(1), which completes the proof. O
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5 ANALYSIS OF (1+1) EA

In this section we analyse the expected optimisation time of (1+1) EA
for the linear function under a uniform constraint. In Section 5.1
we present the statement of our results, and then in the following
section we prove the statement.

5.1 Main Theorem

For a linear function under uniform constraint of B, we aim to
prove that (1+1) EA finds an optimal solution in expected time
O(n?log™ B), where log*(x) := max{1,logx}. Since Lemma 4.1
proves that a feasible solution is obtained by (1+1) EA in expected
time O(nlog(n/(n — B))) and this upper bound is asymptotically
smaller than O(n? log® B), we only focus on the analysis of the al-
gorithm after finding a feasible solution. The main theorem that
we prove in this section is stated below.

THEOREM 5.1. Given an arbitrary linear function under a uniform
constraintx1 + - -+ +x, > B for B € {1, ..., n}, the expected optimi-
sation time of the (1+1) EA is upper bounded by O(n® log* B), where
log™ (x) := max{1,logx}. Also, the time is O(n? log n) with proba-
bility 1 — O(n™°) for any constant ¢ > 0.

5.2 Adaptive Drift Analysis

To prove Theorem 5.1, we conduct an adaptive drift analysis, where
the underlying potential function g(x), to be minimised, depends
on both the weights (w1, ..., wy) of the linear function and the
constraint value B. The exact definition of the potential function is
to some extent inspired by the techniques developed in Witt [21]
and further applied in Doerr and Pohl [7] and Doerr et al. [8]. How-
ever, as these papers are concerned with unconstrained problems
only, additional effort has been made to transfer these techniques
to our scenario.

Once having defined the potential function, the idea is to anal-
yse the potential X; := g(x(t)) of the random search point x(0)
maintained by the (1+1) EA on f at time . We bound its expected
one-step change E(X; — X;+1 | X;), i. e, the expected decrease of
the potential function from time ¢ to time ¢ + 1. Then we use this
bound in the drift argument that proves the main theorem.

The following lemma (Lemma 5.2) states this bound as well as
a bound on the maximum value of the potential function, which
will be required in the drift theorems. We define g(x) later in Defi-
nition 5.3, and prove the statements of Lemma 5.2 for this function
afterwards. We first bring the statement of this lemma and show
how it can be used to prove Theorem 5.1.

LEMMA 5.2. Considering a random variable X; = g(x(t)), where
the function g is given in Definition 5.3 and x\9) is the random search
point of (1+1) EA at time t, for all time steps t we have

1) E(X; — Xp11 | X¢) > 21X may(x?/7/B1/7 1),
t

en?
(2 1<X; <nt ifx(t) is not optimal.

Deferring the definition of the potential function g and the proof
of the previous lemma, we obtain our theorem.

Proof of Theorem 5.1. We apply the variable drift theorem (The-
orem 2.1) given the statements of Lemma 5.2. Using that X; > 1 =
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smin and X; < n® as well as the drift bound

0.11X;
en?

h(X;) = max{Xg/7/Bl/7,l},

the expected optimisation time is bounded by

n&

Smin 1
+ — dx
h(smin) Smin h(x)

2 B n®
—om?) 4 £ 1 1/7f R
=0(n )+0'11 (ﬁ xdx+B - x8/7dx
= 0(n?) + O(n?)(O(log B) + O(1)) = O(n’ log* B),

which completes the proof of the O(n? log™ B) bound.

For the tail bound we use the multiplicative drift theorem (The-
orem 2.2) with the simple bound E(X; — X471 | X;) > % of
Lemma 5.2 along with X; < n® that implies In(X; /smin) = O(log n).
Note that the theorem gives the upper bound O(n? log n) on the ex-
pected optimisation time so that the tail bound can be obtained by
setting r = cInn. O

In the following, we unroll the proofs of the drift statements.
The proof of Lemma 5.2 relies on the analysis of the one-step drift
of the potential function g: {0,1}"" — R. We now introduce the
setup required to define g(x).

Definition 5.3. Let an arbitrary linear function f = »7_, wix;,
where w, > --- > wy, under uniform constraint x; + -+ + x, >
B be given and let xopt be the (not necessarily unique) optimal
search point having one-bits at the B least significant positions
only. Let m := {wp41, ..., wn}| be the number of distinct weights
at the n — B most significant positions and define s(i) = min{j |
{wB+1,...,wj}| > i}, where i € {1,...,m}, as the start of the
block of indices having the ith largest weight as well as s(m+1) :=
n+1. Also, let K; := {s(i), ..., s(i+1)—1} be the indices comprising
the ith block of equal weights.

Forje {B+1,...,n},let

vj=G-B)
and y; = --- = yp = 0. Based on this, define for all blocks i € [m]

9s(i) = = Is(i+1)—1 = min{ys(i), Gs(iz1) - Ws(i)/ Ws(i-1)}

aswellasggy1 = 1,91 = -+ = gp = 0,and g(x) = X7 gix;. For
any block i € {1,...,m}, we also define:

o k(i) = max{j < i | g5y = ¥s(;)) the most significant
block right of i (possibly i itself) capping according to the
sequence y;j,

o L(i) := {m,...,Kk(i)}, the block indices left of (and including)
the block «(i),

e R(i) := {k(i)—1,...,1}, the block indices right of block x(i).

Considering the original weights wi, . . ., W, in increasing order,
the potential function assigns the same g-value to all indices within
ablock K; of equal w-value. Note that blocks may be of size 1. We
also observe that the weights of g can be equivalently defined as
gj = min{yj,gj-1 - wj/wj-1} forje {B+1,...,n}.

The idea of the potential function is to cap the original weights
at y; at the indices where the original weights increase too steeply
and to rebuild their slope otherwise. In particular, we have g; < y;
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for all i € [n]. The intuition is that the potential function will un-
derestimate the progress made at blocks being at least as signif-
icant as k(i), i.e., the blocks in L(i). In all less significant blocks
(those in R(i)), we will pessimistically assume that they contribute
a loss, and the choice of k(i) guarantees that this loss is overesti-
mated.

Also, the potential function assigns a value of zero to one-bits
at the rightmost B positions since these correspond to an optimal
setting.

As mentioned above, we will analyse the stochastic process (X;); >0

where X; = g(x(t)) for all t, and define A; := X; — X;41. Recall
that we are interested in the first point in time t where X; = 0
holds. The one-step drift E(A; | X;) of the potential function will
be worked out conditioned on certain events depending on two
flipping bits. The following notions prepare the definition of these
events.

Definition 5.4. Given x(®) € {0,1)", denote by x’ the random
search point created by mutation of x(*) (before selection). We de-
fine
I:={ie[n]| xgt) = 1) the one-bits in x{?),

I := {i € I | x] = 0} the one-bits flipping to 0,

Z :={i€[n]| xgt) = 0} the zero-bits in x(0),

Z* = {i € Z | x] = 1} the zero-bits flipping to 1.

oi = |I* N K;| — |Z* N Kj| the surplus of flipping one-bits
within block K;, where i € [m].

Note that the random sets I* and Z* are disjoint and that the
remaining bits in [n] contribute nothing to the A;-value.

Obviously, for A; # 0itis necessary that x(*1) # x(*) We fix an
arbitrary search point x(*) and let A be the event that x(/+1) # x(®),
Then event A requires that

I" # 0 and ZWj— Z wj > 0.
jer jezr

To simplify the analysis of blocks of equal weights, we from now

on use the equivalence

m

D Wim D, W= ) o)
JjeI* jez* i=1

Hence, for A to occur it is necessary that

Z loilwg iy — Z

ilo;>0 ilo;<OAi>k

loilws () 2 0,

for arbitrary k € [m] since we only ignore the loss due to the bits
right of block k. In the following, k = k(i) will be used where i is
the leftmost block such that o; > 0.

We now decompose the event A according to two indices i €
[m], ¢ € [n], where i relates to the leftmost block that flips more
ones than zeros, and ¢ to the leftmost flipping one-bit from block i.

Definition 5.5. The event A; o, where i € [m] and £ € [n], occurs
iff the following conditions hold simultaneously.

(1) I* # 0.

(2) i = max{i| o; > 0}.

(3) € = max(I* N Kj;)

(@) Xjlo;>0l0jlws(y = Ljloj<onjzk(i) loj1Ws(j) = 0.
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(5) A feasible search point is obtained by flipping the bits from
rFuztinx®.

Obviously, the events A; p are mutually disjoint. Since each ac-
cepted, non-copying mutation must flip at least one one-bit, the
union of the events A; ¢ is a superset of A (in other words, is nec-
essary for A). The key inequality used to bound the one-step drift
is stated in the following lemma.

Lemma 5.6. E(A¢ | Aj¢) 2 0.11g,(;) foralli € [m] and £ € K;
such thatPr(A; ¢) > 0, and all t > 0.

Before we prove Lemma 5.6, let us show how it can be used to
prove Lemma 5.2.

Proof of Lemma 5.2. We still fix an arbitrary search point x(*),
denote by X; = g(x(*)) its potential and investigate the following
step. As observed above, in the step the potential remains either
unchanged or a certain event A; ¢ occurs. The total drift can then
be expressed as

E(Xy = Xp1 | X¢) = E(Ar [ Aj¢) - Pr(A; ¢).
i€[m],leK;,Pr(A; ¢)>0

Using Lemma 5.6, the last expression is at least

O.llgs(i) Pr(Ai,f), (1)
i€[m],€K;,Pr(A; ¢)>0

so we have to bound Pr(A; ) from below for those events that are
possible.

IfPr(A;, ¢) > 0 then there is a one-bit at position £. If the current
search point is not tight, already flipping bit ¢ only is accepted.
Hence, we now pessimistically assume that the constraint is tight
so that there are B—1 other one-bits in x(*). Considering a mutation
that flips bit £ the mutation is accepted if it flips a zero-bit right of £
and does not flip any further bits. Even if all B one-bits are right
of (and including) bit ¢, there are at least £ — B zero-bits right of £.
Noting that the probability of not flipping n— 2 bits is (1 - 1/n)"2,
we conclude that

Pr(Al',[) > 1-- >

n Z

€—B( 1)”—2 t-B @

n en?

if A; ¢ is possible. We will now relate this bound to the factor g, ;)
appearing in (1). First of all, since ¢ appears in block i and all bits in
a block have equal weight, we have g,(;) = g¢. Next we note that
ge < y¢ = (€—B)” by Definition 5.3. Plugging this into Equation (2),
we obtain (if A; ¢ is possible) that

(g5’

Pr(A; () > 5 3

en
and of course also Pr(A; ¢) > 1/(en?) by just estimating £ — B > 1
in (2).

Furthermore, the one-bits outside positions 1, . .., B altogether
make up the current g-value. Let I be the set of these bits. Since
for each i € [m] there are K; NI disjoint events Aj ¢ of probability
at least (gs(i))1/7/(en2) each, namely one for each one-bit £ within
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block i, we obtain by combining (1) and (3) that

E(Xy — Xp11 | Xy)

)

ie[m]|K;NI#0

IKi N 110.11g,(;) Pr(A; ¢)

\%

L 0.11(gqy()87
Z K; N (95(21))
en

ie[m]|K;NI#0
. 0.11(g(x()8/7)
Bl/7en?

where the last inequality used the estimate

(a1 +---+ap)®” < B ((a)*7 + - + (ap)*’")

proved in Lemma 2.3. Using also the simple bound Pr(4; ;) >
1/(en?) and recalling that X; = g(x(t )y, we altogether have

0.11X;

E(Xr = Xp41 | Xp) 2 3
en

max {X;N/Blﬁ, 1} .

This proves the first statement of Lemma 5.2.

For the second statement of Lemma 5.2, we simply use that g; <
i, so for all x(*) it holds that g(x(*)) < >rigi<n: n’ = n8. Also,
since gp+1 = 1 each non-optimal search point x(*) must satisfy
g(x(’)) > 1. O

The still outstanding proof of Lemma 5.6 requires a careful anal-
ysis of the one-step drift, taking into account the specific structure
of the drift function.

Proof of Lemma 5.6. Recall that we want to condition on the
event A; ¢ (Definition 5.5), where i is the leftmost block flipping
more ones than zeros. Moreover, recall the notions introduced in
Definitions 5.3 and 5.4. Let

Ap(i) = Z |Uj|gs(j) - Z |0j|g$(j) L,
jloj>0 Jloj<0Ajzk(i)
AR ={ Do lojlesy |- Tas

Jloy>0nj<i(i)

where 1 4 denotes the indicator random variable of event A. Recall
that A; = 0if Adoes not occur. Otherwise, A; = 2jlo;>0 lo(N1gs(jy—
2jloj<0 lo(7)1gs(j)- Hence, we have Ay = (AL (i) —Ag(i)) foralli €
[m]. By linearity of expectation, we obtain

E(Ar | Aje) =E(AL() | Ajp) —E(AR() | Ay g). 4

We first show that (A (i) [ A; [) is a non-negative random vari-
able, i.e., the probability of any negative outcome is 0. To prove
this, assume that A; ¢ holds, which implies that no block left of i
flips more ones than zeros.

We now inspect the relation between the weights of the original
function and the potential function. Here we exploit that the ratio
of g-values and w-values of two blocks i > j is the same unless
the weight of block i is capped by the minimum operator in the
definition of g(;) in Definition 5.3. Otherwise, the ratio may be
smaller. Looking also into symmetrical cases, for any i € [m] we
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obtain from Definition 5.3 that

IO 0 i i (). )
Is(x(i))  Ws(x(i))
_Is6) < _WsG) for j > (i) )
Is(ie(i))  Ws(x(i)
) Wers
Is0)_ > =0 for j < x(i). (7)
Is(k(i))  Ws(x(i))

Hence,

(AL() [ Aj¢) =

Z lojlgs(jy — Z

lojlgs(j)

Jjloj>0 jloj<OAj =k (i)
i Ws(j)
> Z |O'j|gs(1<(i))w N Z |O-j|gs(1<(i))w o )
Jjloj>0 sk@) oy <0njzk(i) s(x ()
>0

where the first inequality uses (5)-(7) along with the fact that no
block left of i has positive o-value, and the last inequality holds by
the fourth item from the definition of A; , (Definition 5.5)

We note that according to the fifth item of Definition 5.5, this
event may imply that a bit j* € Z flips to 1 simultaneously with
a one-bit in block i flipping to 0. This is the case if the constraint
is tight in the search point x(®), which we again pessimistically
assume to be the case (if x(*) had more than B one-bits, flipping
only ¢ would already be accepted).

Now let S; ¢ be the event that the following three events happen
simultaneously:

(1) {I' v Z*ynKj| = 0forall j € {x(i),...,m}\ {i}

(2) IIFNKj|=1and ¢ € I* NK;,

() 1Z* NKil =0,

i.e., block i is the only one in L(i) that contributes to Ay, by flipping
exactly one one-bit at position £. We have

E(AL() | Ajg) =E(ALG) | A e NSie) - Pr(Sie | Aie)
+E(AL() [ A e N Si¢) - Pr(Sie | A r)

by the law of total expectation. Since the random variable (A (i) | A, g)
cannot have any negative outcomes, all these conditional expecta-
tions are non-negative as well. From (4) we thus derive

E(A¢ [ Aie) 2 E(ALG) | Ay enSi o) Pr(Sie | Ai ¢)=E(AR() | Ay ¢)-
(®)
We will now bound the terms from (8) from below to obtain our
result. For (S; ¢ | A; ¢) to occur, it is sufficient that all bits in the
blocks in L(i) except the one-bit € in block i and bit j* do not flip
(note that these bits flip since we condition on A; ). Consequently,
Pr(S;¢ | Aje) 2 (1 - 1/n)""2 > 1/e. Moreover, since no zero-bits
in L(i) flip under A; p N S; ¢, j* must be in a block in R(i). Hence,
E(AL(i) | Aj ¢ N Si ) = gs(iy- Altogether,

. 9s(i
BOALG) | Ape 05,0 - Pr(Sie 1A > =2 (9)

Finally, we need a bound on E(Agr(i) | A;¢), which is deter-
mined by the bits in R(i) that flip to 1, 1. e., bits from blocks 1, . . . , k(i) —
1. Note that event A; , might imply that at least one of these bits
flips to 1 for sure to maintain feasibility of the search point. We
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still pessimistically assume this to happen and denote by j* the
random index of the zero-bit that is forced to flip. Furthermore,
we pessimistically assume that bits 1,...,B—1areall 1in x®) so
that the contribution of bit j* becomes as large as possible. Then,
since the flips in R(i) are not part of the fourth item in the defi-
nition of A; ; (Definition 5.5), we conclude that j* is uniform on

{B,...,s(k(i)) — 1} and contributes at most
1 s(x(i))-1 1 s(K(Zi):)fl
W . n 9k = T n 9k -
@) -8B 2 TSk B L

With respect to the bits different from j*, we exploit that they are
flipped independently. Hence, on A; ¢, the probability that k € ZN
{B+1,...,s(x(i)) — 1} \ {j*} flips is bounded from above by %
Pessimistically, we assume that A occurs in such a mutation. By
using linearity of expectation and combining with the contribution
of j*, it follows that

s(x(i))-1 1 1 s(x(i))-1

E(ARG) | Ae) < )0 —gk+

L 7T (@) - B Ik

k=B+1
which is at most

s(xe(i))-1 s(xe(i))-1

Z Ik = S(K l))—

k=B+1 k=B+1

2
S(K
where we used that g; < yj for all k € [n] by Definition 5.3. Along
with (8) and (9), we get
s(k(i))-1

gs(z) 2
Yk

s(k(i)) - B
We are left with the sum over k. Plugging in the definition of yy,
this is estimated by

s(x(i))-1

E(Ar | Aje) 2
k=B+1

s(x(i))-1-B
Yk = Z K’
k=B+1 k=1

< (s(x(i)) - B)®
8
(S(K(i)) - B)gS(K(i))
8
(s(x(i)) = B)gs(i)
P

= s

8

where we used that gg(c(i)) = Vs(x(i)) = (S(x(i))
to the definition of k(i) as well as gg(;y > gs(ic(i))-
Hence, finally,

— B)7 according

9s(i)  29s(i)(s(k(i)) — B)

E(At | Ajg) = e 8(s(x(i)) - B)

> 0'1195(1')-

5.3 Minimisation versus Maximisation

The results we presented in this paper have been formulated with
respect to the minimisation of the linear function under a uniform
lower constraint xj+- - -+x, > B. This perspective of minimisation
fits more naturally the minimisation of potential functions used
in drift theorems (Theorems 2.1 and 2.2) and is therefore de-facto
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standard in many recent papers dealing with the optimisation of
linear functions [4, 21].

However, previous works about the optimisation of linear func-
tions under constraints considered the maximisation of a linear
function under an upper uniform constraint x; +- - - +x, < B.Itis
not difficult to see that our main theorems (Theorems 4.2 and 5.1)
also hold for this scenario. Since this is rather straightforward to
realise for RLS, we only discuss the result for (1+1) EA now. The po-
tential function g from Definition 5.3 would have to be adapted to
assign weight 0 to the B most significant positions and increasing
weights from bits 1 to n — B in the same way as before, with the
exception that 0-bits instead of 1-bits would contribute: roughly
speaking we would define g(x) := Z:’ 1 9i(1=x;). The log B-factor
that the bound from Theorem 5.1 includes stems from the fact that
once having reached a tight search point, B one-bits have to be
brought to the correct positions, more precisely the B least signif-
icant ones in the case of minimisation and the B most significant
ones in the case of maximisation. Hence, the log B factor will be
maintained also in the scenario of maximisation and does not turn
into log(n — B) as one might think at first glance.

Interestingly, the time to reach the feasible region analysed in
Lemma 4.1 will be O(nlog(n/B)) instead of O(nlog(n/(n — B)) in
the scenario of maximisation, as proved in earlier work [10]. This
is due to the fact that a large B corresponds to a large infeasible re-
gion in the maximisation case but a small one in the minimisation
case. However, in both cases the time to reach the feasible region is
always bounded by an asymptotically smaller expression than our
bound for the time to find an optimal search point after having
reached the feasible region.

6 CONCLUSION

We have carried out a rigorous theoretical analysis on the expected
optimisation time of RLS and (1+1) EA on the problem of minimis-
ing a linear function under uniform constraint. Our results include
a tight expected bound of O(n?) for RLS, as well as an improved
expected bound of O(n®log B) for (1+1) EA, where B is the con-
straint value, i. e., the minimum number of 1-bits that a solution
should have to be considered feasible. We have also proved an up-
per bound of O(n? log n) for (1+1) EA with high probability. In or-
der to prove our results for (1+1) EA, we have conducted an adap-
tive drift analysis with a potential function that depends on the
weights of the linear function and the constraint value B. We are
optimistic that the developed techniques can be helpful in finding
upper bounds on the expected optimisation time of (1+1) EA on
more complicated problems for which currently best upper bounds
depend on the weights of the given input. This includes the mini-
mum spanning tree problem where the best proven upper bound
for general graphs is O(n?(log n + log Wiax))) and conjectured to
be O(n? log n).
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