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ABSTRACT

In this paper, we consider multi-objective evolutionary algo-
rithms for the Vertex Cover problem in the context of pa-
rameterized complexity. We relate the runtime of our algo-
rithms to the input size and the cost of a minimum solution
and point out that the search process of evolutionary algo-
rithms creates partial solutions that are similar to the effect
of a kernelization (i. e. a special type of preprocessing from
parameterized complexity). Based on this, we show that
evolutionary algorithms solve the vertex cover problem effi-
ciently if the size of a minimum vertex cover is not too large,
i.e. the expected runtime is bounded by O(f(OPT) · nc),
where c is a constant and f a function that only depends
on OPT. This shows that evolutionary algorithms are ran-
domized fixed-parameter tractable algorithms for the vertex
cover problem.

Categories and Subject Descriptors: F.2 [Theory of
Computation]: Analysis of Algorithms and Problem Com-
plexity

General Terms: Theory, Algorithms, Performance

Keywords: Combinatorial Optimization, Evolutionary Al-
gorithms, Multi-Objective Optimization, Runtime Analysis

1. INTRODUCTION

General purpose algorithms such as evolutionary algorithms
and ant colony optimization have been shown to be success-
ful problem solvers for a wide range of combinatorial opti-
mization problems. Such algorithms make use of random
decisions which allows to consider them as a special class
of randomized algorithms. Especially if the problem is new
and there are not enough resources such as time, money, or
knowledge about the problem to develop specific algorithms,
general purpose algorithms often produce good results with-
out a large development effort. Usually, it is just necessary
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to think about a representation of possible solutions, a func-
tion to measure the quality of solutions, and operators that
produce from a solution (or a set of solutions) a new solution
(or a set of solutions).

Taking such a general approach to solve a given problem,
it is clear that we cannot hope to beat algorithms that are
tailored to the problem. However, such general approaches
find many applications when no good problem specific algo-
rithm is available. In addition to many experimental stud-
ies that confirm the success of these algorithms on problems
from different domains, there has been increasing interest in
understanding such algorithms also in a rigorous way. This
line of research treats such algorithms as a class of random-
ized algorithms and analyzes them in a classical fashion, i.e.
with respect to their runtime behavior and approximation
ability in expected polynomial time. The results obtained in
this research area confirm that general purpose algorithms
often come up with optimal solutions quickly even if they
do not use problem specific knowledge. Problems that have
been studied among many others within this line of research
are the shortest path problem [5, 16], maximum match-
ings [10], minimum spanning trees [12, 13], covering and
scheduling problems [18]. Additionally, recent theoretical
studies have investigated the learning ability of evolution-
ary algorithms [7, 17].

For NP-hard problems we cannot hope to prove prac-
ticality in the sense of a polynomial upper-bound on the
worst-case runtime even though an algorithm might per-
form very well in practice. Nevertheless, the notion of fixed-
parameter tractability may be helpful to explore that sit-
uation as well as guiding further algorithm design. Fixed-
parameter tractability is a central concept of parameterized
complexity. In that field, the complexity of input instances
is measured in a two-dimensional way considering not only
the input size but also one or more parameters, e.g. solu-
tion size, structural restrictions, or quality of approximation.
One hopes to confine the inevitable combinatorial explosion
in the runtime to a function in the parameter, with only
polynomial dependence on the input size. The idea is that
even large instances may exhibit a very restricted structure
and can therefore be considered easy to solve, despite their
size.

A parameterized problem with parameter k is fixed-para-
meter tractable (FPT) if there exists an algorithm that de-
cides it in time O(f(k) · nc) (or equivalently O(g(k) + nd)),
implying polynomial running time of degree independent
of k for every fixed value of k. Such an algorithm is called
an FPT algorithm for the problem, respectively randomized



FPT algorithm in the case of expected runtime. Formally
FPT is the class of all parameterized languages, i.e. decision
problems, that can be decided by an FPT algorithm. How-
ever, for natural decision versions of optimization problems,
i.e. asking whether the cost of optimal solutions is at most
(respectively at least) k, FPT algorithms can be modified to
compute the optimum cost and mostly also to compute an
optimal solution.

In this paper we want to adopt a parameterized view on
evolutionary algorithms and consider their expected runtime
behavior related to the solution size OPT. We examine
when evolutionary algorithms compute a solution quickly
if OPT is small, i.e. in expected time O(f(OPT) · nc). In
relation to randomized FPT algorithms we call an evolu-
tionary algorithm with such a runtime bound evolutionary
FPT algorithm as it also solves the decision variant of the
parameterized problem in expected time O(f(k) · nc).

An important stepping stone in the analysis of our algo-
rithms will be the fact that they create partial solutions that
can be considered problem kernels of the original instance,
given a feasible secondary measure. A kernelization or re-
duction to a problem kernel is a special form of polynomial-
time data reduction for parameterized problems that pro-
duces an equivalent (and usually smaller) instance whose
size is bounded by a function in the original parameter. It
is known that a parameterized problem is fixed-parameter
tractable if and only if there exists a kernelization for the
problem.

A well known fixed-parameter tractable problem is the
(standard) parameterized Vertex Cover problem. Given
an undirected graph and an integer k it has to be decided
whether there exists a set of at most k vertices such that each
edge contains at least one of these vertices, parameterized
by k. This problem can be solved in time O(1.2738k + kn)
via kernelization followed by a bounded search tree algo-
rithm [3].

The Vertex Cover problem has also been studied in the
field of evolutionary computation from a theoretical point
of view. Rigorous runtime analysis has been given for the
well-known (1+1) EA and population based algorithms for
single-objective optimization [8, 14, 15]. Additionally, it
has been shown that a multi-objective model can help the
optimization process of an evolutionary algorithm to find
good solutions quicker than in a single-objective one [9]. Due
to the results obtained in [9] we consider two different multi-
objective models for the Vertex Cover problem. Both
models take as the first objective the goal to minimize the
number of chosen vertices. The second criteria should be
a penalty function which has to be minimized such that a
vertex cover is obtained.

Minimizing the number of uncovered edges as the second
objective has already been investigated in [9] and we study
this approach with respect to the approximation quality de-
pending on the value of OPT. Afterwards, we examine this
approach with respect to the expected runtime in depen-
dence of OPT and show that this approach leads to evolu-
tionary FPT algorithms.

Our second approach is to take the minimum cost of a
fractional vertex cover for the uncovered edges as one objec-
tive. We show that this approach leads to a 2-approximation
for Vertex Cover in expected polynomial time and to evo-
lutionary FPT algorithms whose expected runtime can be
bounded by O(n3 + n · 4OPT). For the case where one is

interested in computing a (1 + ǫ)-approximation, we reduce

the runtime bound of this approach to O(n3+n·4(1−ǫ) OPT).

The outline of the paper is as follows. In Section 2, we
introduce the Vertex Cover problem as well as the al-
gorithms and problem formulations that are subject to our
investigations. In Sections 3 and 4 we consider two different
multi-objective models for Vertex Cover. In Section 5
we summarize our results and give possible directions for
further research.

2. PRELIMINARIES

The Vertex Cover problem is one of the well-known NP-
hard combinatorial optimization problems. Given an undi-
rected graph G = (V, E) where |V | = n and |E| = m the
aim is to find a subset V ′ ⊆ V of minimum cardinality such
that for each e ∈ E, e ∩ V ′ 6= ∅ holds. Many simple ap-
proximation algorithms achieve a worst-case approximation
ratio of 2 (cf. [4]). For example such an approximation can
be achieved in polynomial time by computing a maximal
matching in the given graph and choosing for each edge of
the matching the corresponding two vertices.

The Vertex Cover problem can be formulated as an
integer linear program (ILP) in the following way:

min
∑n

i=1 xi

s.t. xi + xj ≥ 1 ∀{i, j} ∈ E
xi ∈ {0, 1}

Relaxing the integrality constraint xi ∈ {0, 1} to frac-
tional values between 0 and 1, i.e. xi ∈ [0, 1], yields a linear
program formulation of the Fractional Vertex Cover

problem. Clearly, for any graph, the cost of an optimal
fractional vertex cover is a lower bound on the cardinality
of a minimum (integral) vertex cover. The dual problem
of Fractional Vertex Cover is Fractional Maximum

Matching, i.e. Maximum Matching with relaxed integral-
ity.

It has been pointed out that simple evolutionary algo-
rithms cannot achieve a non-trivial approximation guaran-
tee, i.e. there are instances where the well-known (1+1) EA
cannot obtain a better approximation than a factor Θ(n) in
expected polynomial time [9]. In contrast to this a multi-
objective model in conjunction with a simple evolutionary
algorithm leads to a O(log n)-approximation on the much
broader class of setcover problems. We follow this approach
and examine the multi-objective model for Vertex Cover

in conjunction with the simple multi-objective evolutionary
algorithm called Global SEMO (Global Simple Evolution-
ary Multi-Objective Optimizer). This algorithm has already
been studied for a wide range of multi-objective optimiza-
tion problems and can be considered as the generalization
of the (1+1) EA to the multi-objective case.

Global SEMO (see Algorithm 1) keeps at each time step
for each non dominated objective vector found so far one
single solution. In this way it preserves an approximation of
the Pareto front. The algorithm starts with an initial solu-
tion that is chosen uniformly at random from the underlying
search space. In each iteration, a solution x from the current
population P is chosen uniformly at random. A mutation
operator flipping each bit of x with probability 1/n is applied
to obtain an offspring x′. This solution x′ is introduced into
the population iff it is not dominated by any other solution



in the population. If this is the case, all solutions that are
weakly dominated by x′ are deleted from P .

Algorithm 1. Global SEMO

1. Choose x ∈ {0, 1}n uniformly at random.

2. Determine f(x).

3. P ← {x}.

4. Repeat

• Choose x ∈ P uniformly at random.

• Create x′ by flipping each bit xi of x with proba-
bility 1/n.

• Determine f(x′).

• If x′ is not dominated by any other search point in
P , include x′ into P and delete all other solutions
z ∈ P with f(x′) ≤ f(z) from P .

Denote by E(x) ⊆ E the set of edges for which at least one
vertex is chosen by x. As each edge e ∈ E has to be covered
by at least one vertex to obtain a vertex cover, it may be
helpful to flip vertices which are incident with uncovered
edges with a larger probability. This leads to the following
alternative mutation operator.

Algorithm 2. Alternative mutation operator

• Choose b ∈ {0, 1} uniformly a random.

• If b = 1 and there exists an edge {vi, vj} ∈ E \ E(x),
flip xi with probability 1/2. Otherwise flip xi with
probability 1/n.

In the alternative mutation operator vertices that are in-
cident with an uncovered edge may be flipped with a larger
probability of 1/2. These are exactly the non-isolated ver-
tices of G(x) = (V, E \E(x)). Replacing the mutation oper-
ator of Global SEMO by Algorithm 2 we call this algorithm
Global SEMOalt.

The fitness function

f1(x) = (|x|1, u(x))

where |x|1 denotes the number of chosen vertices and u(x)
denotes the number of edges that are not covered by any
vertex chosen by x has already been considered in [9].

Additionally, we also examine the fitness function

f2(x) = (|x|1, LP (x))

where LP (x) denotes the optimum value of the relaxed
Vertex Cover ILP for G(x), i.e. the cost of an optimal
fractional vertex cover of G(x).

Our goal is to analyze our algorithms until they have
found an optimal solution or a good approximation of an
optimal one. Our algorithms using the function f1 (or f2)
have produced an r-approximation for the Vertex Cover

problem iff they have produced a solution x with objective

vector f1 = (|x|1, 0) (or f2 = (|x|1, 0)) where |x|1
OPT

≤ r.

To measure the runtime of our algorithms, we consider
the number of fitness evaluations until a minimum vertex
cover or a good approximation of such a solution has been

obtained. The expected optimization time refers to the ex-
pected number of fitness evaluations until a minimum ver-
tex cover has been obtained. Similar we often consider the
expected time to achieve intermediate goals, e. g. partial
solutions of a vertex cover that fulfill certain properties.

For both introduced fitness functions, the search point 0n

is Pareto optimal as the first objective for all functions is to
minimize the number of ones in the bitstring. A key idea
in the remaining part of the paper is to proceed from this
solution towards a minimum vertex cover or a vertex cover
of a certain approximation quality.

Lemma 1. The expected number of iterations of Global
SEMO or Global SEMOalt until the population contains the
search point 0n is O(n2 log n) for the fitness functions f1

and f2.

Proof. The size of the population is upper bounded by n+1
as the population keeps for each i, 0 ≤ i ≤ n, at most one
solution x for each fixed number of ones in the bitstring.
We consider in each step the individual y = argminz∈P |z|1.
The probability to choose this individual in the next step
is at least 1

n+1
. Let i = |y|1 be the number of ones in this

bitstring. The probability of producing a solution with a
smaller number of ones is lower bounded by

1

n + 1
·
1

2
·

i

en
= Ω

(

i

n2

)

and the expected waiting time until a solution with a
most i − 1 ones has been produced is therefore O(n2/i).
Using the method of fitness based partitions and summing
up over the different values of i, the time until the search
point 0n has been included into the population is O(n2 log n).

After an expected number of O(n2 log n) iterations both
algorithms working on the fitness function f1 or f2 introduce
the search point 0n into the population. Afterwards, this
search point stays in the population. The population size
of both algorithms is upper bounded by n + 1. This may
be used to give a bound on the expected time to reach a
minimum vertex cover depending on OPT

Let x be an arbitrary solution that remains in the popula-
tion during the optimization process. The probability of pro-
ducing a specific solution x′ that has Hamming-distance c
to x in the next step is lower bounded by

1

2(n + 1)
·

(

1

n

)c

· (1− 1/n)n−c = Ω(n−(c+1))

which implies that the expected time to produce such a
solution is O(nc+1)

Hence, both algorithms obtain an optimal solution in ex-
pected time O(nOPT +1) after they have obtained the search
point 0n. Note, that this time bound is not sufficient for our
definition of evolutionary FPT algorithms.

3. MINIMIZING THE NUMBER OF

UNCOVERED EDGES

In this section, we consider the effect of minimizing the num-
ber of uncovered edges as the second criteria by investigating
the fitness function f1. Note, that this approach has already



been investigated in [9]. In that paper, it has been showed
that there are bipartite graphs where the (1+1) EA cannot
achieve a good approximation in expected polynomial time.
Running Global SEMO on these instances solves the prob-
lem quickly. For general graphs, it has been showed that
Global SEMO achieves a log n-approximation in expected
polynomial time.

In the following, we show a bound on the approximation
quality depending on the value of OPT that Global SEMO
or Global SEMOalt can achieve in polynomial time. Fur-
thermore we prove that under this secondary measure the
expected number of iterations until Global SEMOalt finds a
minimum vertex cover is bounded by

O(OPT ·n4 + n · 2OPT2 + OPT).

A central idea in our proofs is to consider a solution x ∈ P
where the set of vertices is a subset of a minimum vertex
cover and such that G(x) does not contain vertices of de-
gree greater than OPT. The following lemma shows that
Global SEMO and Global SEMOalt spend an expected num-
ber of O(OPT ·n4) steps on producing such solutions during
the run of the algorithm.

Lemma 2. The expected number of iterations of Global
SEMO and Global SEMOalt where the population does not
contain a solution x that fullfills the properties that

1. the vertices chosen by x constitute a subset of a mini-
mum vertex cover of G and that

2. G(x) contains no vertex of degree greater than OPT,

is upper bounded by O(OPT ·n4).

Proof. We know that the search point 0n is introduced into
the population after an expected number of O(n2 log n) iter-
ations. Assuming that the search point 0n has already been
introduced into the population, we show that an expected
number of O(OPT ·n4) iterations occur where the popula-
tion does not contain a solution with the desired properties.

We denote by V ′ ⊆ V the set of vertices that have de-
gree larger than OPT in G. Clearly every vertex cover of
cardinality OPT must contain V ′, since otherwise all the
neighbors of a vertex v ∈ V ′ would have to be chosen. We
assume that V ′ 6= ∅ as otherwise 0n has the desired proper-
ties.

The idea to prove the lemma is to investigate a potential
taking on O(|E| · OPT) different values. If the population
does not contain a solution with properties 1 and 2 this
potential is decreased with probability Ω(1/n2) which leads
to the stated upper bound on the number of steps that have
a population where each solution does not fullfill the desired
properties.

Let s0, s1, . . . , sOPT be integer values such that sj is the
smallest value of u(x) for any search point x in P choosing
at most j vertices, i.e. |x|1 ≤ j. Note, that each sj can-
not increase during the run of the algorithm as only non-
dominated solutions are accepted.

We investigate the potential of a population P given by

pot(P ) =
OPT
∑

j=1

sj ≤ |E| ·OPT .

Let i be the largest integer such that P contains solu-
tions x0, . . . , xi with fitness (0, s0), . . . , (i, si) that select only
vertices of V ′. We will now consider different cases to show
that either xi has the desired properties or that , with proba-
bility Ω(1/n2), a solution is generated that improves at least
one of the sj .

1. If the graph G(xi) contains no vertex of degree larger
than OPT then xi fulfills properties 1 and 2 by selec-
tion of i. For the other cases we assume that G(xi)
contains a vertex of degree greater than OPT, say v.

2. If si−si+1 ≤ OPT (note: this includes the case that P
does not contain any solution x with |x|1 = i + 1, im-
plying that si+1 = si) then with probability Ω(1/n2)
Global SEMO or Global SEMOalt chooses the search
point xi and mutates it into a point x′

i+1 that addi-
tionally selects v. Clearly

u(x′
i+1) = u(xi)− degG(xi)(v) < si −OPT .

Thus u(x′
i+1) < si+1, implying that si+1 is decreased

by at least one.

3. If si − si+1 > OPT then P contains a solution xi+1

of fitness (i + 1, si+1) and xi+1 selects at least one
vertex u ∈ V \ V ′ by choice of i. With probability
at least Ω(1/n2) the search point xi+1 is chosen and
is mutated into a solution x′

i by flipping only the bit
corresponding to u. Thus

u(x′
i) = u(xi+1) + degG(x′

i
)(u) ≤ si+1 + OPT .

Therefore u(x′
i) < si, i.e. si is improved by at least

one.

In each case we get that either P contains a solution as
claimed in the lemma or with probability Ω(1/n2) the po-
tential decreases by at least one. The potential can take
on only O(OPT ·|E|) different values which completes the
proof.

We have seen that in all but expected O(OPT ·n4) iter-
ations of Global SEMO or Global SEMOalt the population
contains a solution x that is a subset of some minimum ver-
tex cover and such that G(x) has maximum degree OPT.
Such partial solutions will be useful in the proving an up-
per bound on the expected number of iterations of Global
SEMOalt to generate a minimum vertex cover, while also im-
plying that an OPT-approximate vertex cover is produced in
expected polynomial number of iterations of Global SEMO
or Global SEMOalt. One can easily see that G(x) has at
most (OPT−|x|1)·OPT uncovered edges, since (OPT−|x|1)
vertices of degree at most OPT suffice to cover all of them.

Though these partial solutions are obtained in a random-
ized fashion aiming to cover as many edges as possible with
few vertices, they are strongly related to deterministic pre-
processing for the parameterized Vertex Cover problem.
To decide whether a given graph has a vertex cover of size
at most k one may select all vertices of degree larger than k.
In fact, if v is a vertex of degree larger than k then G has a
vertex cover of cardinality k if and only if G− v has a ver-
tex cover of cardinality k − 1. In conjunction with deleting
isolated vertices this leads to an equivalent reduced instance



with at most O(k2) vertices, this technique being known as
Buss’ kernelization (cf. [6]).

These structural insights can be used to show that our al-
gorithms achieve an OPT-approximation in expected poly-
nomial time when using the fitness function f1

Theorem 1. The expected number of iterations of Global
SEMO or Global SEMOalt until an OPT-approximation is
computed is O(OPT ·n4).

Proof. According to Lemma 1 and Lemma 2, we already
know that the expected number of steps where the popula-
tion does not contain a solution with the properties stated
in Lemma 2 is O(OPT ·n4). In the following, we consider
only steps where such a solution exists.

Thus it is ensured that there is a solution x in the popula-
tion for which |x|1 ≤ OPT and the maximum degree of G(x)
is at most OPT. This implies u(x) ≤ (OPT−|x|1) · OPT
and |x|1 + u(x) ≤ OPT2. If x is dominated by any solu-
tion x′ then clearly |x′|1 + u(x′) ≤ OPT2. Therefore, in all
later steps the population contains at least one solution y
with |y|1 + u(y) ≤ OPT 2.

Let u denote the minimum value of u(x) among solu-
tions x ∈ P with |x|1 + u(x) ≤ OPT2. Let y ∈ P be a
solution with |y|1 + u(y) ≤ OPT2 and u(y) = u. If u(y) = 0
it follows that y selects at most OPT2 vertices which are
a vertex cover. Otherwise at least one vertex v of G(y) is
incident with an (uncovered) edge.

The probability that y is selected and that it is mutated
into a solution y′ that additionally selects v is Ω(1/n2) for
Global SEMO and Global SEMOalt. Clearly the solution y′

fullfills |y′|1 + u(y′) ≤ |y|1 + u(y) and u(y′) < u(y). Ob-
serve that y′ cannot be dominated by any solution in P due
to |y′|1 + u(y′) ≤ |y|1 + u(y) and by choice of y, implying
that it is added to P , decreasing u by at least 1.

If the solution y with u(y) = u and |y|1 + u(y) ≤ OPT2 is
removed from the population then there must be a solution,
say z, that dominates it. By u(z) ≤ u(y) and |z|1 ≤ |y|1
this cannot increase the value of u. Clearly 0 ≤ u ≤ OPT2,
i.e. it can be decreased at most OPT2 times.

Thus after expected O(OPT2 ·n2 + OPT ·n4) iterations
of Global SEMO or Global SEMOalt a solution with fit-
ness (S, 0) with S ≤ OPT2 is obtained.

After having shown that both algorithms achieve an OPT-
approximation in expected polynomial time, we will bound
the time until Global SEMOalt achieves an optimal solution.

Theorem 2. The expected number of iterations of Global
SEMOalt until it has computed a minimum vertex cover

is O(OPT ·n4 + n · 2OPT + OPT2

).

Proof. As in the proof of Theorem 1, we assume that P
contains a solution x such that G(x) has maximum degree
at most OPT and there exists a minimum vertex cover S
that contains the vertices selected by x. Due to Lemma 2
the expected number of iterations where Global SEMOalt

does not fulfill the properties is O(OPT ·n4), i.e. adding this
term to the obtained bound covers the assumption.

The probability of choosing x in the next mutation step
is Ω(1/n). Choosing all the remaining vertices of S and
not flipping any other bit in x leads to a minimum vertex
cover. The graph G(x) has maximum degree OPT and it

has a vertex cover of size (OPT−|x|1). Each vertex in such
a vertex cover can be adjacent to at most OPT non-isolated
vertices (and all edges are incident with the cover), implying
that G(x) has at most (OPT−|x|1) + (OPT−|x|1) ·OPT ≤
OPT + OPT2 non-isolated vertices.

We consider the mutation of x which flips vertices adjacent
to non-covered edges with probability 1/2. Note that with

probability (1 − 1/n)n′

∈ Ω(1) no bit corresponding to any
of the n′ ≤ n isolated vertices of G(x) is flipped. The prob-
ability of flipping only the bits corresponding to the miss-

ing vertices of S is therefore Ω(2−(OPT + OPT2)), since there
are at most OPT + OPT2 non-isolated vertices. Hence, the
expected time until a minimum vertex cover has been com-

puted is upper bounded by O(OPT ·n4+n·2OPT + OPT2

).

4. FRACTIONAL VERTEX COVERS

In this section, we use the minimum cost of a fractional
vertex cover for the uncovered edges as the second crite-
ria. For every search point x this gives an estimate on how
many vertices are needed to cover G(x). We denote this
cost by LP (x), as it is the optimal cost of solutions to the
Vertex Cover ILP with relaxed integrality constraints,
i.e. 0 ≤ xi ≤ 1 in place of xi ∈ {0, 1}. Balinski [1] showed
that all basic feasible solutions (or extremal points) of the
Fractional Vertex Cover LP are half-integral.

Lemma 3. Every basic feasible solution x of the relaxed
Vertex Cover ILP is half-integral, i.e. x ∈ {0, 1/2, 1}n.

Due to this lemma, optimal fractional vertex covers can
be computed very efficiently via a maximum matching of an
auxiliary bipartite graph (cf. [2]). Throughout the section
we will implicitly assume that chosen fractional vertex covers
are half-integral.

Nemhauser and Trotter [11] proved a very strong relation
between optimal fractional vertex covers and minimum ver-
tex covers.

Theorem 3. Let x∗ be an optimal fractional vertex cover
and let P0, P1 ⊆ V be the vertices whose corresponding com-
ponents of x∗ are 0 or 1 respectively, then there exists a
minimum vertex cover that contains P1 and no vertex of P0.

We start with a simple lemma that gives insights into the
structure of the objective space.

Lemma 4. For every x ∈ {0, 1}n it holds that

1. |x|1 + LP (x) ≥ LP (0n).

2. |x|1 + 2 · LP (x) ≥ OPT.

Proof. Let y be an optimal fractional vertex cover of G(x)
of cost LP (x).
1.) One can obtain a fractional vertex cover of G from y by
adding the vertices that are selected by x. The cost of this
cover, i.e. |x|1+LP (x), cannot be smaller than the minimum
cost of a fractional vertex cover, i.e. LP (0n).
2.) Similarly a vertex cover of G can be obtained by adding
all vertices that have value 1/2 or 1 in y to the vertices
selected by x, since each edge of G(x) must be incident with
vertices of total value of at least one. The cardinality of
this vertex cover is bounded by 2 ·LP (x) (i.e. the maximum
number of vertices with value 1/2 or 1) plus |x|1. Clearly
this vertex cover cannot be smaller than a minimum vertex
cover (with cardinality OPT).



Hence, each solution for which equality holds in one of
the inequalities stated in Lemma 4 is Pareto optimal. The
following lemma relates a search point x ∈ {0, 1}n to an
optimal fractional solution x∗ ∈ [0, 1]n. For x, y ∈ [0, 1]n,
we denote by x ≤ y the fact that xi ≤ yi, 1 ≤ i ≤ n.

Lemma 5. Let y be an optimal fractional vertex cover
of G. Every x ∈ {0, 1}n with x ≤ y, is a Pareto optimal
solution.

Proof. Let y′ be obtained from y by setting the value of
all vertices that are selected by x to 0. The graph G(x)
contains all edges that are not incident to any vertex that is
selected by x. Thus y′ is a fractional vertex cover of G(x).
Therefore we have |y|1 − |x|1 = |y′|1 ≥ LP (x), implying
that LP (0n) = |y|1 ≥ LP (x) + |x|1. Thus, by Lemma 4, we
can conclude that |x|1 + LP (x) = LP (0n) and that x is a
Pareto optimal solution.

We state a simple property that describes search points
that are subsets of a minimum vertex cover. Such solutions
are of particular interest as they can be turned into a mini-
mum vertex cover by adding vertices.

Lemma 6. Let x be a solution with LP (x) = LP (0n) −
|x|1, then there exists a minimum vertex cover y ∈ {0, 1}n

with x ≤ y (i.e. every vertex selected by x is also selected
by y).

Proof. Consider an optimal fractional vertex cover y of G(x)
of cost LP (0n) − |x|1. We can obtain a fractional vertex
cover y′ of G by also selecting the |x|1 vertices that are
selected by x (i.e. setting the corresponding components
of y to 1). Hence y′ is a fractional vertex cover of G of
cost LP (0n), implying that it is optimal. By Theorem 3 it
follows that there exists a minimum vertex cover of G that
contains all vertices with value 1 in y′ which includes all
vertices that are selected by x.

After having pointed out some basic properties about frac-
tional vertex covers and Pareto optimal solutions, we can
now analyze our algorithms with respect to the approxi-
mation that they can achieve in expected polynomial time.
It is easy to see that, for every optimal fractional vertex
cover, the vertices of value 1/2 and 1 form a 2-approximate
vertex cover, since the fractional vertex cover has cost at
most OPT.

Theorem 4. The expected number of iterations of Global
SEMO or Global SEMOalt until the population P contains
a 2-approximate vertex cover is O(n2 log n + OPT ·n2).

Proof. The expected number of iterations until the search
point 0n is added to the population is O(n2 log n) due to
Lemma 1.

Let x ∈ P be a solution that minimizes LP (x) under the
constraint that |x|1 + 2 · LP (x) ≤ 2 · LP (0n) ≤ 2 · OPT.
Note, that 0n fulfills the constraint. If LP (x) = 0 then x
is a vertex cover of G and |x|1 ≤ 2 · LP (0n) ≤ 2 · OPT
as claimed. Otherwise every optimal fractional vertex cover
of G(x) assigns at least 1/2 to some vertex, say v. There-
fore, LP (x′) ≤ LP (x)− 1/2 where x′ is obtained from x by
additionally selecting v. With probability at least Ω(1/n2)
the solution x is picked in the mutation step and exactly

the bit corresponding to v is flipped, leading to the solu-
tion x′. Clearly, |x′|1 = |x|1 +1 and LP (x′) ≤ LP (x)− 1/2.
Thus |x′|1 + 2 · LP (x′) ≤ |x|1 + 2 · LP (x) ≤ 2 · LP (0n), im-
plying that x′ fulfills the constraint while having a smaller
value LP (x′). Thus, x′ is added to the population since no
solution in P dominates it, by selection of x.

As LP (x) ≤ OPT this can happen at most 2 ·OPT times
since each time the smallest value of LP (x) among solu-
tions x that fulfill |x|1 + 2 · LP (x) ≤ 2 ·OPT is reduced by
at least 1/2. Therefore, the expected number of steps until
the population contains a 2-approximate vertex cover is at
most O(n2 log n + OPT ·n2).

After having shown that using the minimum cost of a
fractional vertex cover as the second criteria leads to a 2-
approximation, we will now examine the number of itera-
tions until Global SEMOalt has obtained an optimal solu-
tion.

To prove an upper bound on that number we consider so-
lutions choosing r vertices such that the subgraph consisting
of the non-covered edges has at most 2 · (LP (0n)− r) non-
isolated vertices. Therefore we are interested in solutions x
of fitness (|x|1, LP (0n) − |x|1) such that optimal fractional
vertex covers of G(x) assign 1/2 to each non-isolated ver-
tex, implying that there are exactly 2 · (LP (0n)− |x|1) non-
isolated vertices in G(x).

Lemma 7. The expected number of iterations during the
run of Global SEMO and Global SEMOalt where the popula-
tion does not contain a solution x that fullfills the properties

1. that LP (x) = LP (0n)− |x|1 and

2. that each optimal fractional vertex cover assigns 1/2
to each non-isolated vertex of G(x)

is upper bounded by O(n2 · log n + OPT ·n2).

Proof. After expected O(n2 log n) iterations the population
contains the solution 0n of fitness (0, LP (0n)).

Let r be the largest integer such that P contains solutions
of fitness values (0, LP (0n)), . . . (r, LP (0n)−r) and let x ∈ P
be the solution of fitness (r, LP (0n)). There are two possible
cases:

1. Every optimal fractional vertex cover of assigns 1/2 to
each non-isolated vertex of G(x).

2. There is an optimal fractional vertex cover z of G(x)
which assigns 1 to at least one non-isolated vertex
of G(x), say v. With probability at least Ω(1/n2)
Global SEMO or Global SEMOalt chooses the solu-
tion x for mutation and flips exactly the bit corre-
sponding to v, obtaining a solution x′.

Observe that LP (x′) ≤ LP (x)−1 since z′, i.e. the same
as z but assigning 0 to v, is a fractional vertex cover
of G(x′). Clearly, x′ is added to the population since
solutions of fitness (i, LP (0n)− i) are Pareto optimal,
according to Lemma 4. This increases the value of r
by 1.

Since 0 ≤ r ≤ LP (0n) ≤ OPT its value can be increased
at most OPT times. Therefore the expected number of steps
in which case 2 happens is at most O(n2 · log n + OPT ·n2).



Both algorithms generate a search point x that selects a
subset of a minimum vertex cover and such that G(x) has
at most 2 · (OPT−|x|1) non-isolated vertices in expected
polynomial time and, similar to Lemma 2, the population
contains such a solution in all but expected O(n2 · log n +
OPT ·n2) iterations.

In the following, we show that Global SEMOalt is able to
produce from such a solution an optimal one in expected
time O(n2 · log n + OPT ·n2 + n · 4OPT) which implies that
it is an evolutionary FPT algorithm for the Vertex Cover

problem.

Theorem 5. The expected number of iterations of Global
SEMOalt until it has computed a minimum vertex cover
is O(n2 · log n + OPT ·n2 + n · 4OPT)

Proof. We consider iterations of Global SEMOalt where the
population contains a solution x with LP (x) = LP (0n)−|x|1
such that each optimal fractional vertex cover assigns 1/2
to each non-isolated vertex of G(x). By Lemma 7 the ex-
pected number of iterations where this is not the case is at
most O(n2 · log n + OPT ·n2).

According to Lemma 6 there exists a minimum vertex
cover y with x ≤ y, i.e. y contains the vertices that are se-
lected by x. Let V ′ be the set of vertices that are selected
by y but not by x. Observe that every vertex of V ′ is non-
isolated in G(x), i.e. incident with an uncovered edge, since y
is a minimum vertex cover. With probability at least 1/n+1
the solution x is picked in the mutation step. The proba-
bility that y is obtained in that case can be easily lower
bounded:

• With probability 1/2 Global SEMOalt chooses the mu-
tation proves that flips every bit that corresponds to
a non-isolated vertex of G(x) with probability 1/2.

• In that case, the probability that exactly the bits cor-
responding to V ′ are flipped (to 1) is Ω(22·(OPT−|x|1))
since there are at most 2 · (OPT−|x|1) vertices that
are incident with uncovered edges in G(x). This in-
cludes a factor of Ω(1) for the probability that Global
SEMOalt does not flip bits corresponding to isolated

vertices of G(x), which is (1−1/n)n′

for n′ ≤ n isolated
vertices.

Thus with probability at least 1/n · 1/2 · (1/4)OPT the so-
lution y of fitness (OPT, 0) is obtained. Therefore, the ex-
pected number of iterations of Global SEMOalt until the
population contains a minimum vertex cover is bounded
by O(n2 · log n + OPT ·n2 + n · 4OPT).

In the final theorem of this section we prove that the
expected number of iterations until Global SEMOalt has
generated a (1 + ǫ)-approximate vertex cover is bounded

by O(n2 · log n+OPT ·n2 +n ·4(1−ǫ)·OPT). This implies that
the expected approximation ratio of the vertex cover gener-
ated by Global SEMOalt improves over time (that is to say,
the upper bound on that ratio decreases) to the point where
it reaches 1 at time O(n2 · log n + OPT ·n2 + n · 4OPT).

Theorem 6. The expected number of iterations of Global
SEMOalt until it has generated a (1+ ǫ)-approximate vertex
cover, i.e. a solution of fitness (r, 0) with r ≤ (1 + ǫ) ·OPT,

is O(n2 · log n + OPT ·n2 + n · 4(1−ǫ)·OPT).

Proof. Again we consider iterations where the population
of Global SEMOalt contains a solution x with LP (x) =
LP (0n)−|x|1 such that each optimal fractional vertex cover
assigns 1/2 to each non-isolated vertex of G(x).

Let X denote the set of non-isolated vertices in G(x),
let S ⊆ X be any minimum vertex cover of G(x), and
let T = X \ S. Observe that T is an independent set and
that |T | < |S|, otherwise assigning 1 to each vertex of S
and 0 to each vertex of T would yield a fractional vertex
cover of cost less than 1/2 · |X|. Let OPT′ = OPT−|x|1, i.e.
the size of minimum vertex covers of G(x). Let s1, . . . , sOPT′

and t1, . . . , t|T | be any two numberings of the vertices in S
and T , respectively.

With probability Ω(1/n) Global SEMOalt selects the so-
lution x and applies the mutation that flips bits correspond-
ing to non-isolated vertices of G(x) with probability 1/2.

With probability Ω((1/4)(1−ǫ)·OPT′

) all bits corresponding
to s1, . . . , s⌈(1−ǫ)·OPT⌉ are flipped and those corresponding
to t1, . . . , tα, with α = min{|T |, ⌈(1 − ǫ) · OPT⌉}, are not
flipped. With probability greater than 1/2 the mutation
flips bits of at least as many of the remaining vertices of S
as of the remaining vertices of T , since |T | < |S|. Thus with

probability Ω(1/n·(1/4)(1−ǫ)·OPT′

) the solution x is mutated
into a solution x′ that additionally selects subsets S′ ⊆ S
and T ′ ⊆ T with |S′| ≥ (1 − ǫ) · OPT′ +|T ′|. Again this
includes a factor of Ω(1) accounting for the probability that
Global SEMOalt does not flip bits corresponding to isolated
vertices of G(x).

We will now prove an upper bound of (1+ ǫ) ·OPT on the
value of |x′|+2 ·LP (x′). Observe that LP (x′) ≤ OPT′−|S′|
since S \ S′ is a vertex cover of G(x′). We also use the fact
that |T ′| ≤ |S′| − (1− ǫ) ·OPT′.

|x′|1 + 2 · LP (x′)
= |x|1 + |S′|+ |T ′|+ 2 · LP (x′)
≤ |x|1 + |S′|+ |T ′|+ 2 · (OPT′−|S′|)
≤ |x|1 + |S′|+ |S′| − (1− ǫ) ·OPT′ +2 ·OPT′−2 · |S′|
= |x|1 + (1 + ǫ) ·OPT′

= |x|1 + (1 + ǫ) · (OPT−|x|1)
≤ (1 + ǫ) ·OPT

Should a solution y ∈ P dominate x′ then this would
imply |y|1 + 2 · LP (y) ≤ |x′|1 + 2 · LP (x′). Thus after ex-

pected O(n3 + n · 4(1−ǫ)·OPT) steps the population contains
a solution x′ with |x′|1 + 2 · LP (x′) ≤ (1 + ǫ) ·OPT.

Ending the proof we show that such a solution leads to
a (1 + ǫ)-approximate vertex cover in expected polynomial
time. Let y ∈ P be a solution with minimum value of LP (y)
under the constraint that |y|1 + 2 · LP (y) ≤ (1 + ǫ) · OPT.
If LP (y) = 0 then y is a (1 + ǫ)-approximate vertex cover.
Otherwise there exists at least one vertex v that has value
at least 1/2 in some optimal fractional vertex cover of G(y).
With probability Ω(1/n2) the solution y is selected for mu-
tation and exactly the bit corresponding to v is flipped, pro-
ducing the solution y′.

Clearly |y′|1 = |y|1 + 1 and LP (y′) ≤ LP (y)− 1/2. Thus

|y′|1 + 2 · LP (y′) ≤ |y|1 + 2 · LP (y) ≤ (1 + ǫ) ·OPT .

Since y′ fulfills the constraint and LP (y′) < LP (y) no so-
lution in P can dominate y′ since that solution would have
been chosen in place of y. Thus with probability Ω(1/n2)
the minimum value of LP (y) among solutions y that ful-
fill |y|1 + 2 · LP (y) ≤ (1 + ǫ) · OPT is decreased by at



least 1/2. Since 0 ≤ LP (y) ≤ OPT the expected num-
ber of steps (from the point that x′ was introduced) un-
til the population contains a (1 + ǫ)-approximate vertex
cover is bounded by O(OPT ·n2). Hence the total expected
number of iterations of Global SEMOalt until the popula-
tion contains a (1 + ǫ)-approximate vertex cover is bounded

by O(n2 · log n + OPT ·n2 + n · 4(1−ǫ)·OPT).

5. CONCLUSION

We have introduced the notion of evolutionary FPT algo-
rithms to examine how the runtime of search heuristics de-
pend on structural properties of a given problem. Using
this approach we have examined the runtime and approxi-
mation behavior of evolutionary algorithms with respect to
the value of an optimal solution. Our analyses on different
multi-objective models show that additional criteria such as
minimizing the number of uncovered edges or the value of a
fractional solution for the uncovered part of the graph lead
to a kernelization of the problem. Adding a random search
component to the evolutionary algorithm by using the al-
ternative mutation operator, we have shown that this gives
evolutionary FPT algorithms.

There are several topics for future research. On the one
hand, it seems to be interesting to analyze search heuristics
in dependence of a given parameter on some other prob-
lems as well. The parameter can be the value of an optimal
solutions as considered in this paper but also a parameter
which restricts the given input to certain classes of the prob-
lem. Examples include Cluster Editing and 3-Hitting

Set, both are FPT when parameterized by solution size, as
well as Maximum Knapsack parameterized by the capacity
of the knapsack. Additionally, many graph problems, such
as Independent Set or Dominating Set, are FPT when
parameterized by the treewidth of the input graph. Show-
ing that an evolutionary algorithm profits from small values
of treewidth might be a rather challenging problem, as the
FPT algorithms for the two mentioned problems employ dy-
namic programming.

On the other hand, the use of the ILP relaxation as the
second criteria to guide the search process may be of inde-
pendent interest and we expect this criteria to be applicable
for other problems as well.
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