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ABSTRACT
In recent years, computing diverse sets of high quality solutions for

an optimization problem has become an important topic. The goal

of computing diverse sets of high quality solutions is to provide a

variety of options to decision makers, allowing them to choose the

best solution for their particular problem. We consider the problem

of constructing a wireless communication network for a given set

of entities. Our goal is to minimize the area covered by the senders’

transmissions while also avoiding adversaries that may observe the

communication. We provide evolutionary diversity optimization

(EDO) algorithms for this problem. We provide a formulation based

on minimum spanning forests that are used as a representation and

show how this formulation can be turned into a wireless communi-

cation network that avoids a given set of adversaries. We evaluate

our EDO approach based on a number of benchmark instances and

compare the diversity of the obtained populations in respect to

the quality criterion of the given solutions as well as the chosen

algorithm parameters. Our results demonstrate the effectiveness of

our EDO approaches for the detection and concealment of commu-

nication networks both in terms of the quality and the diversity of

the obtained solutions.
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1 INTRODUCTION
Evolutionary algorithms (EAs) are state-of-the-art, efficient heuris-

tic search methods that solve complex optimization problems by

employing the Darwinian theory of natural selection. Due to their

flexibility to capture global solutions and ability to self adapt, evo-

lutionary algorithms have been applied to various real-world prob-

lems in areas such as engineering [2, 6], supply chain manage-

ment [7, 9] and communication networks [15, 18].

Computing diverse sets of solutions for a given problem has

recently gained significant attention in the evolutionary computa-

tion literature under the terms evolutionary diversity optimization

(EDO) [11, 13, 20–24, 28] and quality diversity (QD) [17, 19, 25]. QD

algorithms usually work with a variable population size and try

to capture the best possible solutions within different niches of a

given behaviour space. On the contrary, EDO algorithms work with

a fixed population size and try to make this population as diverse as

possible according to a given diversity measure under the condition

that all solutions in the population meet a given quality criterion.

1.1 Background: Low probability detection
problem

In recent years, the Low Probability of Detection (LPD) problem

has gained significant attention in the mobile networks and data

privacy/security community. The LPD problem [29] is thought of

as a binary detection problem, since the detector is interested in

detecting the transmission itself rather than obtaining what was

communicated between the parties. Multi-hop communication is

essential for communication required over long distances, [29]

explains that single-hop communication is often not a realistic so-

lution for long distances as it requires a higher transmission power

which can be easily detected by nearby adversaries. It was high-

lighted in [4] that reducing the transmission power will decrease

the likelihood of the detection, however, as transmission ranges

overlap, this results in a nonlinear relationship between transmis-

sion power and detection probability. Therefore, the detectability

footprint is a more suitable variable to optimize to achieve LPD, as

the detectability footprint is the area in which the radiated power is
above a detectable threshold [4].

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


GECCO ’23, July 15–19, 2023, Lisbon, Portugal Neumann et al.

LPD is concerned with the technological development that en-

ables the successful detection and concealment of certain activities

or objects in wireless systems and networks for all voice and data

communication. The basic LPD concept consists of a transmitter

that aims to communicate with a receiver, while a detector attempts

to identify if a transmission has occurred. Campbell et al. [4] mini-

mized the detectability footprint in order to solve the LPD problem

by generating a spanning tree that maintains a minimum detectabil-

ity footprint and ensures effective transmission.

The minimum area spanning tree (MAST) problem [5] is a tree-

based network topology problem used to reduce the probability of

detection by an adversary. The problem seeks to connect nodes in

a network in a way that minimizes the amount of physical area

occupied by the network. This makes it more difficult for an adver-

sary to detect the network due to the reduced physical footprint.

Solving the problem is useful in phone networks, wireless local area

networks, satellite communication networks, and other security-

sensitive industrial applications where maintaining a low profile is

important. Previous approaches developed in [4] use a brute force

technique and were only able to tackle graphs with up to 25 nodes.

1.2 Our contribution
In this paper, we develop evolutionary algorithms for a variant of

the MAST problem that takes into account a given set of adver-

saries. In order to tackle a given set of adversaries, we formulate the

problem as the adversarial minimum area spanning forest (AMASF)

problem which takes into account communication connections that

can not be used due to the Euclidean proximity of adversaries. We

tackle the AMASF problem both in terms of classical optimization

and in terms of diversity optimization. We first develop evolution-

ary algorithms for this problem in terms of its optimization variant.

Our goal here is to minimize the area covered by the senders under

the condition that maximal communication across the network is

possible without allowing the adversaries to observe the commu-

nication. Afterwards, we consider the construction of diverse sets

of solutions using the EDO approach. This allows decision makers

to select the solutions that should be implemented from a given di-

verse set of high quality solutions. It also shows the decision maker

the different options of establishing the communication network

and thereby helps to identify bottlenecks and critical areas of the

network.

We investigate our algorithms on different instances with up

to 200 nodes in the Euclidean plane. Our results show the amount

of diversity that can be obtained in the population depended on

the quality threshold that is used as part of the EDO approach.

Furthermore, we provide results for different parent population

sizes which amount to the different number of solutions provided to

the decision maker. We showcase final populations for some of our

example instances in order to provide insights into the differences

in the solutions provided by our EDO approaches.

In Section 2 and 3, we define the problem statement and intro-

duce spanning trees as representations of possible solutions for the

Minimum Area Spanning Tree problem. We describe a scenario

of the aforementioned problem where the adversaries are present

in Section 4. We provide the definition of evolutionary diversity

optimization and introduce our approach for the detection and con-

cealment of spatially defined communication networks, as well as

new mutation operators, in Section 5. We present and discuss our

experimental results of our new approach in Section 6. Finally, we

finish with some concluding remarks.

2 PROBLEM STATEMENT
Let𝐺 = (𝑉 , 𝐸) be a directed connected graph with node set𝑉 , edge

set 𝐸 and distance function 𝑑 : 𝐸 → 𝑅+ which assigns positive

distance between each edge. We denote by 𝑛 = |𝑉 |,𝑚 = |𝐸 | the size
of the node and edge set respectively.

We consider the complete graph 𝐺 = (𝑉 , 𝐸) in the Euclidean

plane where the node 𝑣𝑖 ∈ 𝑉 has position 𝑝𝑖 = (𝑥𝑖 , 𝑦𝑖 ), 1 ≤ 𝑖 ≤ 𝑛.

So that the distances 𝑑 are given as the Euclidean distances

𝑑 (𝑝𝑖 , 𝑝 𝑗 ) =
√︃
(𝑥𝑖 − 𝑥 𝑗 )2 + (𝑥𝑖 − 𝑥 𝑗 )2

between a pair of nodes. Note that the resulting graph is symmetric.

Given 𝑛 vertices 𝑣𝑖 with locations 𝑣𝑖 = (𝑥𝑖 , 𝑦𝑖 ), 1 ≤ 𝑖 ≤ 𝑛,

in the Euclidean plane, the goal is to determine a set of circles

𝐶 = {𝐶1, . . . ,𝐶𝑛} where circles 𝐶𝑖 has centre 𝑣𝑖 and radius 𝑟𝑖 such

that the resulting graph is connected and the area covered by the

circles is minimal.

Formally, a solution is given as a set𝐶 = {𝐶1, . . . ,𝐶𝑛}. The circle
𝐶𝑖 is defined as 𝐶𝑖 = (𝑣𝑖 , 𝑟𝑖 ), where 𝑣𝑖 = (𝑥𝑖 , 𝑦𝑖 ) is the centre of the
circle and 𝑟𝑖 is the radius. For a given set of circles𝐶 = 𝐶1, ...𝐶𝑛 there

is an edge from (𝑣𝑖 , 𝑣 𝑗 ) in the connectivity graph𝐺 (𝐶) = (𝑉 , 𝐸 (𝐶))
if 𝑑 (𝑣𝑖 , 𝑣 𝑗 ) ≤ 𝑟𝑖 . Here an edge (𝑣𝑖 , 𝑣 𝑗 ) indicates a direct communi-

cation from 𝑣𝑖 to 𝑣 𝑗 . We call a solution 𝐶 strongly connected if for

every pair (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝑉 ×𝑉 there is a path from 𝑣𝑖 to 𝑣 𝑗 and a path

from 𝑣 𝑗 to 𝑣𝑖 in𝐺 (𝐶). In this paper, we explore symmetric solutions

to the problem, i.e., there is a direct communication from 𝑣𝑖 to 𝑣 𝑗
iff there is a direct communication from 𝑣 𝑗 to 𝑣𝑖 .

Given a set of circles 𝐶 , we denote by

𝐴(𝐶) =
𝑛⋃
𝑖=1

𝐴(𝐶𝑖 )

the area covered by the circles in C. The goal is to minimize the

size of the area

|𝐴(𝐶) | = 𝑉𝑜𝑙 (𝐴(𝐶))
under the condition that the graph 𝐺 (𝐶) is strongly connected.

We are considering the problemwith a given set 𝑃𝐴 of adversarial

nodes which should not be able to listen to the communication, i.e.,

they should not be included in any of the circles. So, the goal is to

compute a set of circles 𝐶 such that 𝐺 (𝐶) is strongly connected,

hence no circles intersects with any adversary in 𝑃𝐴 .

3 REPRESENTATION OF SOLUTIONS
We will use spanning trees as representations of possible solutions

for the problem that we aim to solve. We first discuss the approach

for the case where no adversary is presented and adapt it to the

adversarial model in Section 4.

We encode a solution as a spanning tree 𝑇 for the complete

undirected graph𝐺 = (𝑉 , 𝐸) given by the set of points and their Eu-

clidean distances. Note, that we work with𝐺 as being an undirected

spanning tree 𝑇 therefore consists of a set of undirected edges.
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Figure 1: Spanning tree for graph with 4 nodes and resulting
4 circles.

Definition 1. A connected acyclic subgraph 𝑇 = (𝑉 , 𝐸 (𝑇 )) of 𝐺
with 𝐸 (𝑇 ) ⊆ 𝐸 is called a spanning tree.

We denote by T (G) the set of all spanning trees of a given

graph 𝐺 . When the graph 𝐺 is clear from the context, we also use

T instead of T (G).
As we consider complete graphs in the plane the total number of

spanning trees of 𝐺 is 𝑛𝑛−2. The minimum spanning tree problem

is a well-known combinatorial optimization problem on graphs

and is used in various applications [10, 14]. Computing a minimum

spanning tree for a given graph can be done efficiently by using

Kruskal’s algorithm [16] in time 𝑂 (𝑛2 log𝑛).

Definition 2. A spanning tree 𝑇 ∗ is called a minimum spanning
tree (MST) if its sum of distances is minimal across the set of all
possible spanning trees T , i.e.

𝑇 ∗ = arg min

𝑇 ∈T

∑︁
𝑒∈𝐸 (𝑇 )

𝑑 (𝑒) .

We set the radius of 𝑖 for the solution 𝑇 to

𝑟𝑖 (𝑇 ) = max

𝑗∈𝑁𝑇 (𝑣𝑖 )
𝑑 (𝑣𝑖 , 𝑣 𝑗 )

where 𝑁𝑇 (𝑣𝑖 ) denotes the set of direct neighbours of 𝑣𝑖 in 𝑇 . For
an illustration see Figure 1.

Given a solution 𝑇 represented as a spanning tree with the de-

fined values of 𝑟𝑖 , the solution is obviously strongly connected,

i.e., communication is possible between any pair of nodes in both

directions.

Let𝐴(𝑣𝑖 , 𝑟𝑖 (𝑇 )) is the area covered by point 𝑣𝑖 with radius 𝑟𝑖 (𝑇 )).
We denote by

𝐴(𝑇 ) =
𝑛⋃
𝑖=1

𝐴(𝑣𝑖 , 𝑟𝑖 (𝑇 ))

the area covered by spanning tree 𝑇 .

The goal is to minimize the size of the area

|𝐴(𝑇 ) | = 𝑉𝑜𝑙 (𝐴(𝑇 )),
where 𝑉𝑜𝑙 (𝐴) denotes the volume of a given area 𝐴, under the

condition that 𝑇 is strongly connected.

Definition 3 (Minimum Area Spanning Tree (MAST) Prob-

lem). An area minimum spanning tree 𝑇 ∗ is a spanning tree whose
covered area across the set of all possible spanning trees denoted as T
is minimal, i.e. 𝑇 ∗ = argmin𝑇 ∈T |𝐴(𝑇 ) |.

4 HANDLING ADVERSARIES
We now show how to adapt the minimum area spanning tree prob-

lem to the case where adversaries are present. Assume the position

of the given receiver from the adversary to detect the footprint is

exposed in the map. Hereby, while we construct the communication

area by MAST, we need to avoid the exposed receiver (i.e., Figure 2).

With the constraints of additional points 𝑃𝐴 , the advanced sce-

nario is defined as an adversary model for the detection and con-

cealment of spatially defined communication networks. We mathe-

matically generalised such scenario. Let 𝐺 = (𝑉 , 𝐸) be a directed
connected graph with node 𝑉 , edge set 𝐸 and Euclidean distance

𝑑 : 𝐸 → 𝑅+ which assigns positive distance between each edge.

Given a set of points 𝑃𝐴 , the goal of the problem is to find a min-

imum area spanning forest that covers all the nodes from 𝑉 and

avoids covering the points from 𝑃𝐴 .

Note that we are referring to a spanning forest as 𝐺 , which may

not have a connected subgraph that avoids all adversaries in 𝑃𝐴 .

Formally, the problem is given in the following definition.

Definition 4 (Adversarial Minimum Area Spanning Forest

(AMASF) Problem). An area minimum spanning forest 𝐹 ∗ of the
graph 𝐺 = (𝑉 , 𝐸) in the Euclidean plane for a set of adversarial
points 𝑃𝐴 is the spanning forest with a minimal number of connected
components𝑘 whose covered area across the set of all possible spanning
forest with 𝑘 components denoted as F is minimal and whose area
does not intersect any points in 𝑃𝐴 , i.e.

𝐹 ∗ = arg min

𝐹 ∈F
{𝐴(𝐹 ) | 𝐴(𝐹 ) ∩ 𝑃𝐴 = ∅}.

Given a set 𝑃𝐴 of adversarial nodes, we obtain the undirected

graph 𝐺𝐴 = (𝑉 , 𝐸𝐴) from G by deleting all edges impacted by an

adversary. Formally we have

𝐸𝐴 = {𝑒 = {𝑣𝑖 , 𝑣 𝑗 } ∈ 𝐸 | �𝑝𝑘 ∈ 𝑃𝐴 : 𝑑 (𝑣𝑖 , 𝑝𝑘 ) < 𝑑 (𝑣𝑖 , 𝑣 𝑗 )
∨𝑑 (𝑣 𝑗 , 𝑝𝑘 ) < 𝑑 (𝑣 𝑗 , 𝑣𝑖 )}.

We use the graph 𝐺𝐴 for diversity optimization. Let 𝑘 be the

number of connected components of𝐺𝐴 . Then Kruskal’s algorithm

returns a minimal spanning forest𝑀𝑆𝐹 of 𝐺𝐴 . We use 𝜇 copies of

𝑀𝑆𝐹 for the initial population.

5 EDO FOR AMASF
We consider the (𝜇+𝜆)-EA shown in Algorithm 1 which has already

been used in the context of evolutionary diversity optimization [1,

23]. We adapt this algorithm to the AMASF problem by using our

own representation, mutation, and fitness functions to tackle the

problem.

We use the graph 𝐺𝐴 for diversity optimization. Let 𝑘 be the

number of connected components of𝐺𝐴 . Then Kruskal’s algorithm

returns a minimal spanning forest 𝑀𝑆𝐹 of 𝐺𝐴 . Let 𝐴(𝑀𝑆𝐹 ) be
the size of the area of the minimum spanning forest. As quality

criteria for diversity optimization, we consider solutions with the

same number of connected components as 𝐹 having area at most

(1 + 𝛼) · |𝐴(𝑀𝑆𝐹 ) |.
The (𝜇 + 𝜆)-EA maintains at each generation a population P of

𝜇 spanning forests which all meet a given quality criterion, i.e.,

𝐴(𝐹 ) ≤ (1 + 𝛼) · |𝐴(𝑀𝑆𝐹 ) | holds for all individuals 𝐹 ∈ 𝑃 . The

algorithm starts with a population of 𝜇 spanning forest that meet

the quality criterion. For our experiments, we obtain this population
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Figure 2: 𝑃𝐴 presented the detection receiver. To avoid it, the edge between 𝑣1 and 𝑣2 should be removed.

Figure 3: Illustration of instances ulysses16, bays29, berlin52, st70 and eil101 and adversary points 𝑃𝐴 = 2 shown in red,
respectively.

by computing 𝜇 copies of a minimum spanning forest. An offspring

population 𝐶 of size 𝜆 is created by mutating 𝜆 individuals of 𝑃 .

A newly created individual 𝐹 ′ is added to the population 𝑃 if it

meets the area quality criterion. In the survival selection step, the

algorithm always keeps a feasible individual 𝐹 ∗ which has the

smallest covered area and removes individuals with the smallest

contribution to diversity greedily until 𝑃 is again of size 𝜇. As a

baseline, we investigate the case 𝜆 = 1 which results in the (𝜇 + 1)-
EA for diversity optimization. As our population is focused on

optimizing diversity, this often already leads to good results. For

comparison, we also present results for larger offspring population

size.

5.1 Mutation operators
We are working with spanning forest as the representation of so-

lutions and consider different mutation operators applied to the

spanning trees of the given forest. Different mutation operators

for spanning trees have been considered in the literature. They all

make use of the fact that a new spanning tree can be obtained from

a given spanning tree by introducing an edge currently not part

of the solution and removing an edge from the resulting cycle. For

the removal of an edge from a given cycle we are using the biased

diversity edge removal operator given in Algorithm 2 which gives

preference to the removal of edges appearing more frequent in the

population.

Our mutation operators differ in the way that they choose edges

to be inserted. We consider the standard uniform edge mutation

operator shown in Algorithm 3 as well as a biased edge mutation

operator giving preferences to edges of smaller costs (see Algo-

rithm 4) as done in [27]. Furthermore, we consider a biased edge

mutation operator that gives preferences to edges currently less

present in the population (see Algorithm 5) and therefore trying

to focus on increasing diversity. As the measure for diversity for

an edge 𝑒 , we use 𝑑 (𝑒) = 1/(𝑐 (𝑒) + 1), where 𝑐 (𝑒) is the number

Algorithm 1 (𝜇 + 𝜆) EA for Diversity Optimization

1: Initialize the population 𝑃 with 𝜇 spanning forests such that

|𝐴(𝐹 ) | ≤ (1 + 𝛼) · |𝐴(𝑀𝑆𝐹 ) | for all 𝐹 ∈ 𝑃 .

2: while termination criterion is not reached do
3: let 𝐶 ⊆ 𝑃 where |𝐶 | = 𝜆.

4: for 𝐹 ∈ 𝐶 do
5: produce an offspring 𝐹 ′ of 𝐹 by applying mutation.

6: if |𝐴(𝐹 ′) | ≤ (1 + 𝛼) · |𝐴(𝑀𝑆𝐹 ) | then
7: add 𝐹 ′ to 𝑃 .
8: end if
9: end for
10: 𝐹 ∗ = argmin𝐹 ∈𝑃 |𝐴(𝐹 ) |
11: while |𝑃 | > 𝜇 do
12: let 𝐹 = argmax𝐹 ∈𝑃\{𝐹 ∗ } 𝐷 (𝑃 \ {𝐹 }).
13: remove 𝐹 from 𝑃 .

14: end while
15: end while
16: return 𝑃 .

of occurrences of edge 𝑒 in the population 𝑃 . Note that the value

of 𝑑 (𝑒) increases with decreasing value of 𝑐 (𝑒). Each operator is

carrying out sequentially 𝑘 times to produce an offspring 𝐹 ′ from
𝐹 where 𝑘 is chosen according to 1 + 𝑃𝑜𝑖𝑠 (1) where 𝑃𝑜𝑖𝑠 (1) de-
notes the Poisson distribution with expected value 1. This gives

the mutation the possibility of carrying out more than one basic

operation.

5.2 Area Calculation
Given a forest 𝐹 representing a possible solution to the AMASF prob-

lem, we need to calculate the area |𝐴(𝐹 ) | of the circles determined

by 𝐹 . Previous approaches used Monte Carlo sampling [4, 8] which

is only approximate and computational expensive. In the following,

we show how to compute the area exactly and more efficiently. To
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Algorithm 2 Biased Diversity Edge Removal

1: Let 𝐶 be a given cycle in a solution 𝐹 and 𝑐 (𝑒) be the number

of occurrences of edge 𝑒 in 𝑃 ,

2: Select an edge 𝑒 ∈ 𝐶 with probability
𝑐 (𝑒 )+1∑

𝑒∈�̂� 𝑐 (𝑒 )+1 and remove

𝑒 from F.

Algorithm 3 Uniform Edge Mutation Operator

1: Obtain 𝐹 ′ from 𝐹 by introducing an edge 𝑒 ∈ 𝐸𝐴 \ 𝐹 chosen

uniformly at random into 𝐹 and removing an edge 𝑒′ using
Algorithm 2 from the resulting cycle.

Algorithm 4 Biased Quality Mutation Operator

1: Let 𝐸 = 𝐸𝐴 \ 𝐹 . Assign ranks to the edges 𝑒 = (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸 in

increasing order of their distances 𝑑 (𝑣𝑖 , 𝑣 𝑗 ) and let 𝑎 =
|𝐸 |

|𝐸 |+1 .

2: Select an edge 𝑒𝑟 ∈ 𝐸 of rank 𝑟 with probability 𝑎𝑟 /
(∑ |𝐸 |

𝑟=1
𝑎𝑟
)
.

3: Obtain 𝐹 ′ from 𝐹 by introducing 𝑒𝑟 into 𝐹 and removing an

edge 𝑒′ using Algorithm 2 from the resulting cycle.

Algorithm 5 Biased Diversity Mutation Operator

1: Let 𝐸 = 𝐸𝐴 \ 𝐹 , 𝑐 (𝑒) be the number of occurrences of edge 𝑒 in

𝑃 , and 𝑑 (𝑒) = 1/(1 + 𝑐 (𝑒)) for all 𝑒 ∈ 𝐸.

2: Select an edge 𝑒 ∈ 𝐸 with probability
𝑑 (𝑒 )∑|�̂� |
𝑟=1

𝑑 (𝑒 )
.

3: Obtain 𝐹 ′ from 𝐹 by introducing 𝑒 into 𝐹 and removing an edge

𝑒′ using Algorithm 2 from the resulting cycle.

calculate the area of union circles, we use Green’s Theorem [12]

which gives an exact area calculation in time 𝑂 (𝑛2 log(𝑛)).
Given a 2D vector field 𝐹 , a region 𝑅 in the 𝑥 − 𝑦 plane and the

anticlockwise boundary 𝐶 of the region 𝑅. Green’s theorem [12]

states that the double line integral of the curl of 𝐹 within 𝑅 equals the
line integral of 𝐹 around the boundary of 𝑅 as defined in Equation 1:∫ ∫

𝑅

2𝑑 − 𝑐𝑢𝑟𝑙 F𝑑𝐴 =

∮
𝐶

F · 𝑑r (1)

Alternatively, F can be written (component-wise) as F(𝑥,𝑦) =
𝑃 (𝑥,𝑦)𝑖 +𝑄 (𝑥,𝑦) 𝑗 , thus the theorem can be written as∫ ∫

𝑅

( 𝜕𝑄
𝜕𝑥

− 𝜕𝑃

𝜕𝑦
) 𝑑𝐴 =

∮
𝐶

𝑃 𝑑𝑥 +𝑄 𝑑𝑦 (2)

If
𝜕𝑄
𝜕𝑥 − 𝜕𝑃

𝜕𝑦 is set to 1 then the area of the region 𝑅 equals the right

hand side of Equation 2 [26]. To find the union area of a set of union

circles, we first remove all circles that are fully inside another circle

to avoid duplicate areas. We integrate along the outer border of the

union circles in an anticlockwise direction, forming the area of the

region to the left of the path, which is the entire area contained

inside the path. To remove the area that should not be included in

the final area, we integrate along the closed path in a clockwise

direction, resulting in the desired area of the union of the given

circles.

5.3 Diversity Measure
We utilise a diversity measure that is based on the edge overlap

of spanning trees which has been used in a study on evolutionary

diversity optimization for the minimum spanning tree problem [3]

and adapt it to spanning forests with 𝑘 connected components. The

diversity measure works as follows. For two spanning forests 𝐹𝑖
and 𝐹 𝑗 , we define the edge overlap as the number of edges that are

shared, i.e.,

𝑜 (𝐹𝑖 , 𝐹 𝑗 ) := |𝐹𝑖 ∩ 𝐹 𝑗 |.
For a population 𝑃 = {𝐹1, . . . , 𝐹𝜇 } of 𝜇 spanning forests, we mini-

mize the sum of the pairwise edge overlaps in the different solutions

of 𝑃 by maximizing the diversity score of 𝑃 given as

𝐷 (𝑃) := 𝜇 (𝜇 − 1) (𝑛 − 𝑘) −
𝜇∑︁
𝑖=1

𝜇∑︁
𝑗=1
𝑗≠𝑖

𝑜 (𝐹𝑖 , 𝐹 𝑗 ) (3)

where 𝑘 is the number of connected components of the graph.

6 EXPERIMENTAL INVESTIGATIONS
In this section, we investigate the (𝜇 + 1)-EA with different muta-

tions on several benchmarks and compare them to the (𝜇 + 𝜆)-EA

algorithm with uniform edge mutation, and the new bias quality

and bias diversity mutation operators. Additionally, we investigate

the impact of different 𝛼 values and different parent population

sizes.

6.1 Experimental Settings
To the best of our knowledge, there are no benchmark instances

that include adversary points available in the literature. To carry out

our investigations, we consider popular instances of the traveling

salesperson problem (TSP) in the Euclidean plane from TSPLIB
1
.

We obtain from them complete graphs 𝐺 = (𝑉 , 𝐸) of small size

with 𝑛 ∈ {16, 29, 52, 70} and graphs of medium size with 𝑛 ∈
{101, 124, 150, 200}. Therefore, our approaches were tested with

TSPLIB instances and real-world networks DIMACS10
2
, Gnutella

(09)
3
, constracted subgraph 𝑛 ∈ {105, 115}, respectively. We chose

a random subset 𝑃𝐴 of the points from the given TSP instances

and used them as adversaries instead of standard input points. Fig-

ure 3 visualises examples of the used instances in Euclidean space

obtained from the TSP instances ulysses16, bay29, st70, eil101 by

choosing two adversarial points.

For our experiments, we carry out 30 runs for each approach on

each instance. Each run consists of 10 000 fitness evaluations. We

compute the final population diversity and the best area obtained

by each considered algorithms, and report the average, maximum,

minimum results, and standard deviation for these 30 runs.

We study the performance of (𝜇 + 𝜆)-EA with values of 𝜇 = 5, 20,

𝜆 = 1, 2, 5, 10, and uniform edge, bias quality and bias diversity mu-

tation. We consider 𝛼 = 0.05, 0.1, 0.2, 0.3, 0.4 for our experimental

investigations. An important characteristic of the final solutions

is that the solutions have to fulfill a minimum-quality criterion

determined by the parameter 𝛼 .

1
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

2
https://www.cc.gatech.edu/dimacs10/archive/clustering.shtml

3
http://snap.stanford.edu/data/p2p-Gnutella09.html

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
https://www.cc.gatech.edu/dimacs10/archive/clustering.shtml
http://snap.stanford.edu/data/p2p-Gnutella09.html
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Table 1: Maximum (max), minimum (min), mean (mean), and standard deviation (std) in terms of area calculation size for
(5 + 1)-EA and (5 + 2)-EA with uniform edge mutation operator and 𝛼 = 0.2.

(5 + 1)-EA (1) (5 + 2)-EA (2)

max min mean 𝐴𝑅𝐸𝐴 std max min mean 𝐴𝑅𝐸𝐴 std
ulysses16 32.71426114 32.71426114 32.71426114 1.44624E-14 32.71426114 32.71426114 32.71426114 1.44624E-14

bays29 3155645.527 3084725.959 3104257.276 17267.31246 3187884.8766 3090029.3624 3170603.518 32953.40117

berlin52 2059638.890 2059638.89 2059638.8900 1.42171E-09 2059652.4551 2059652.4551 2059652.455 1.42171E-09

st70 9783.037891 9653.864724 9746.245919 37.60046579 9783.037891 9599.700145 9774.389587 35.79726272

eil101 6431.819816 6383.858888 6413.699712 13.97422923 6432.348379 6432.348380 6432.348379 1.85119E-12

DIMACS10 1064089.550 1060994.700 1062594.110 1246.303900 1064089.550 1064089.550 1064089.550 2.3681E-10

Gnutella115 132799.2080 126737.3830 129097.2180 1430.684620 133165.8860 128259.3340 132832.9970 1196.938180

kr124 84337128.88 82481464.68 83835776.60 547406.4062 84337128.88 84190842.44 84329447.12 30200.72499

ch150 473311.7123 472171.0425 473249.0724 230.1580423 2473311.7123 473311.7123 473311.7123 2.9619E-10

kroA200 7743569.727 7706700.591 7740564.446 8888.726571 7743569.727 7743569.727 7743569.727 1.72942E-09

Table 2: Maximum (max), minimum (min), mean standard deviation (std) in terms of diversity value for (5 + 1)-EA (1) and
(5 + 2)-EA (2) with uniform edge mutation and 𝛼 = 0.2.

(5 + 1)-EA (1) (5 + 2)-EA (2)

max min mean 𝐷𝐼𝑉 std max min mean 𝐷𝐼𝑉 std
ulysses16 16 16 16 0 16 12 15.6 1.220514306

bays29 360 348 353.0666667 2.958719823 364 342 357.1724138 3.274020743

berlin52 828 794 813.7333333 6.862860233 836 802 816.2000000 7.378440168

st70 932 890 911.2000000 11.18619839 968 930 944.0666667 9.475679698

eil101 1674 1642 1656.400000 8.143539856 1656 1632 1645.266667 6.549194914

DIMACS10 1660 1506 1582.000000 36.68484400 1642 1470 1579.266670 37.67184380

Gnutella115 2004 1956 1988.133300 11.96469900 1996 1966 1983.931030 7.699401810

kr124 1896 1794 1848.689655 24.30329703 1912 1812 1859.517241 23.64411840

ch150 2190 1916 2073.862069 65.75915153 2178 2100 2114.965517 46.47463422

kroA200 2584 2208 2406.413793 93.70070790 2660 2222 2465.724138 121.0769816

Table 3: Maximum (max), minimum (min), mean standard deviation (std) in terms of area calculation value for (20 + 5)-EA (1)
and (20 + 10)-EA (2) with uniform edge mutation and 𝛼 = 0.2.

(20 + 5)-EA (1) (20 + 10)-EA (2)

max min mean𝐴𝑅𝐸𝐴 std max min mean𝐴𝑅𝐸𝐴 std
ulysses16 32.71426114 32.71426114 32.71426114 1.44624E-14 32.71426114 32.71426114 32.71426114 1.44624E-14

bays29 3187884.877 3086165.663 3123922.316 27193.79872 3187884.877 3110893.694 3173803.203 21925.31717

berlin52 2059652.455 2059638.89 2059650.584 4.760381771 2059652.455 2059638.89 2059650.584 4.760381771

st70 9783.037891 9771.741638 9782.590533 2.109623675 9783.037891 9783.037891 9783.037891 7.40475E-12

eil101 6432.34838 6432.298621 6432.346664 0.009240014 6432.34838 6431.972343 6432.335413 0.069828318

Table 4: Maximum (max), minimum (min), mean standard deviation (std) in terms of diversity value for (20 + 5)-EA (1) and
(20 + 10)-EA (2) with uniform edge mutation and 𝛼 = 0.2.

(20 + 5)-EA (1) (20 + 10)-EA (2)

max min mean 𝐷𝐼𝑉 std max min mean 𝐷𝐼𝑉 std
ulysses16 266 262 266 0.73029674 266 234 266.6 8.173126697

bays29 6038 5874 6000.866667 34.75900611 6080 5900 6018.275862 36.90808714

berlin52 14820 14324 14571.51724 122.8770061 14750 14276 14542.96552 119.5737915

st70 15486 14896 15288.68966 129.7616231 15744 14966 15373.51724 177.1816301

eil101 28660 28330 28518.48276 89.04357709 28682 28306 28497.10345 106.0923940

6.2 Main Results
We first consider results for the (5+1)-EA and the (5 + 2)-EA for

area optimization and diversity optimization using uniform edge

mutation for 𝛼 = 0.2. Note that the (5 + 2)-EA is only allowed

to carry out 5, 000 generations as it produces 2 offspring in each

generation. Our goal is to see how this slight increase in offspring

population size affects the results of our EDP approach. The experi-

mental results are shown in Table 1 and 2. The results show that

the (5 + 1)-EA is able to achieve lower average mean values for

the all instances in terms of the obtained area in all cases. It can

be observed that the (𝜇 + 2)-EA obtains the lowest mean values

for the instance with 16 nodes. In contrast, the (5 + 2)-EA obtains
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Figure 4: Visualised final populations for instances bays29, berlin52, eil101 and real-word network DIMACS10 for 𝜇 = 5, 𝜆 = 1,
𝛼 = 0.2, and two adversaries shown in red.

the highest mean value in terms of diversity in most of the cases

for the instance with 16, 29, 70, 124, 150, 200 nodes (see Table 2).

This shows that the amount of diversity can be increased by even

slightly increasing the offspring population size from 1 to 2. We now

consider the optimization results for diversity and area obtained

by (5 + 1)-EA using uniform edge mutation for different values of

𝛼 . Our goal is to see how 𝛼 affects the diversity score that can be

obtained by the algorithm. Table 5 shows a comparison in terms of

diversity 𝐷𝐼𝑉 and area calculation 𝐴𝑅𝐸𝐴 for 𝛼 = 0.05, 0.1, 0.3, 0.4

for all benchmark instances. Our results show that the amount of

diversity that can be obtained in the population is dependent on

the quality threshold 𝛼 that is incorporated in the EDO approach. It

can be observed that the diversity score increases accordingly with

an increase of the 𝛼 values. A similar picture can be seen when we

compare different 𝛼 values in terms of the obtained area values in

most of the cases. With increasing 𝛼 values, the algorithm is able

to achieve smaller area calculation values in some cases, which

might be due to a higher diversity in the population, although the

differences are relatively small.

6.3 Visualization
We now show some final results obtained by the (5+1)-EA using us-

ing uniform edge mutation and 𝛼 = 0.2. Figure 4 shows an example

construction of our final populations that occurred by investigating

our EDO approach for the instances bays29, berlin52, eil101 and

DIMACS10. The red points represent the randomly located two

adversarial points. A minimum spanning tree is shown by the red

lines. We can observe five different spanning trees constellations

for each instance that visualise the covered area by the senders

under the condition that communication across the network is guar-

anteed despite the presence of two adversaries. We observe that

all different scenarios are able to maintain a covered area while

capturing the most possible diverse solutions.

6.4 Impact of Mutation Operators
In addition, we compare the effect of using the new bias quality

mutation (BQ) approach outlined in Algorithm 4 and bias diversity

mutation (BD) approach outlined in Algorithm 5 within the (5 +
1)-EA. The results for the improved EDO approaches are shown

in Table 6. It can be observed that the bias quality mutation can

improve the diversity result and area calculation for (5 + 1)-EA
for all of the investigated settings compared to the bias diversity

mutation. This allows us to draw the conclusion that there is an

advantage to giving preferences to edges of smaller costs during

the mutation step.

In contrast, diversity score results are lower when using the bias

diversity mutation for smaller graphs than with the uniform edge

mutation. Comparing the results, it can be observed that the bias

quality mutation shows better results for some cases in terms of

diversity and area compared to the uniform edge mutation. Overall,

this shows that the mutation operators that are specifically tailored

to our specific problem can help to achieve better results although

they are not beneficial in all cases.
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Table 5: Maximum (max), minimum (min), mean (mean), and standard deviation (std) in terms of diversity value for (5 + 1)-EA
with different 𝛼 values, i.e., 𝛼 = 0.05, 0.1, 0.3, 0.4 with uniform edge mutation operator.

𝛼 max min mean DIV std max min mean AREA std
ulysses16 0.05 16 16 16 0 32.71426114 32.71426114 32.71426114 1.44538E-14

bays29 0.05 274 260 268.4 3.944441746 3129995.064 3084725.959 3103702.06 14212.4975

berlin52 0.05 746 714 732.2 8.24370188 2059638.890 2059638.890 2059638.890 4.73622E-10

st70 0.05 674 546 612.4666667 28.99076349 9783.037891 9633.665855 9749.658692 38.5757768

eil101 0.05 1478 1406 1450.933333 16.27973848 6430.331415 6381.401944 6413.097868 15.56829924

ulysses16 0.1 16 16 16 0 32.71426114 32.71426114 32.71426114 1.44538E-14

bays29 0.1 318 304 309.8666667 3.598211561 3144558.341 3084725.959 3106188.02 15487.71252

berlin52 0.1 788 760 771.8 6.310363671 2059638.89 2059638.89 2059638.89 4.73622E-10

st70 0.1 794 718 761.8 18.34797743 9783.037891 9611.442579 9749.825501 46.14789184

eil101 0.1 1582 1540 1561.133333 12.08799157 6428.989212 6374.377222 6414.156749 13.10189365

ulysses16 0.3 16 16 16 0 32.71426114 32.71426114 32.71426114 1.44538E-14

bays29 0.3 380 374 376.3448276 1.609699663 3123360.178 3084725.959 3104282.627 12218.57865

berlin52 0.3 846 814 832.4827586 7.55277002 2059638.890 2059638.890 2059638.890 4.73904E-10

st70 0.3 996 956 982.4 8.794982896 9783.037891 9633.665855 9747.346167 46.19794731

eil101 0.3 1692 1676 1683.241379 4.014751126 6430.328751 6383.123056 6409.412473 14.63409373

ulysses16 0.4 16 16 16 0 32.71426114 32.71426114 32.71426114 1.44624E-14

bays29 0.4 390 386 387.7333333 1.25762045 3141022.805 3084725.959 3100377.519 14703.09581

berlin52 0.4 858 830 846.9655172 4.586336529 2059638.890 2059638.890 2059638.890 4.73904E-10

st70 0.4 1030 1008 1020.344828 5.633293011 9783.037891 9547.218612 9734.657696 56.88975241

eil101 0.4 1702 1680 1694.137931 4.98371733 6430.200925 6381.339747 6412.21713 13.47417665

Table 6: Maximum (max), minimum (min), mean (mean), and standard deviation (std) in terms of diversity value and area
calculation size for (5 + 1)-EA with 𝛼 = 0.2.

mutation max min mean DIV std max min mean AREA std
ulysses16 BQ 16 16 16 0 32.71426114 32.71426114 32.71426114 1.44624E-14

bays29 BQ 360 346 354.8965517 3.569161842 3110893.694 3084725.959 3088472.429 8200.898583

berlin52 BQ 800 774 783.862069 9.530867664 2059638.890 2059638.890 2059638.890 4.73904E-10

st70 BQ 954 912 937.2413793 10.24574885 9727.764339 9488.765958 9636.056363 70.95203904

eil101 BQ 1794 1744 1775.724138 10.81961364 6428.238216 6371.336745 6412.874553 13.37907717

ulysses16 BD 16 8 11.6 2.943139305 32.71426114 32.71426114 32.71426114 1.44624E-14

bays29 BD 358 346 353.8571429 2.490192402 3164049.389 3084725.959 3124600.814 20957.97462

berlin52 BD 834 796 817.2413793 8.592584728 2059639.641 2059638.890 2059638.928 0.152408731

st70 BD 892 802 859.2413793 20.39197176 9783.037891 9686.119679 9766.99635 26.69093431

eil101 BD 1786 1725 1759.448276 15.39848371 6432.34838 6416.992013 6430.301149 3.998170465

6.5 Larger Population Sizes
Furthermore, we provide results for larger parent and offspring

population sizes using in the (𝜇+𝜆)-EAwith uniform edgemutation,

i.e, 𝜇 = 20, 𝜆 = 5, 10. Again we provide results for 𝛼 = 0.2. Table 3

shows the results in terms of the size of the area that is obtained. The

results show that the (20 + 10)-EA obtains the lowest mean values

compared to the results obtained by the (20 + 5)-EA in terms of

area in most of the cases. This indicates that the parent population

sizes play an important role in terms of diversity optimization for

minimizing the size of the area under the condition that the graphs

are strongly connected. Table 4 shows a comparison for the (20+𝜆)-
EA in terms of population diversity 𝐷𝐼𝑉 for 𝜆 = 5 and 𝜆 = 10. The

(20 + 10)-EA obtains the highest mean value in terms of diversity

for the instances bays29 and st70.

7 CONCLUSIONS
Computing high quality and a diverse set of solutions provides

decision makers with different scenarios with high quality solu-

tions that all meet a given quality criterion. In recent years, this

area has gained increasing interest in the evolutionary computa-

tion literature. We considered the concealment of spatially defined

communication networks with a given set of adversaries. Previous

brute force methods where only able to tackle small instances by

solving the MAST problem and did not take into account the pres-

ence of adversaries. We formulated the problem in the presence

of adversaries as the adversarial minimum area spanning forest

(AMASF) problem and designed EDO approaches for the problem

that compute diverse sets of solution for a given quality threshold

parameter. Our results show that evolutionary diversity optimiza-

tion can be used to effectively provide diverse sets of high quality

solutions for the concealment of communication networks in large

settings. This work also sets the basis for generating pre-prepared

robust options in a dynamic adversary case which we consider as

an important topic for future work.
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