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Abstract. We study the problem of maximizing a non-monotone
submodular function under multiple knapsack constraints. We propose
a simple discrete greedy algorithm to approach this problem, and
prove that it yields strong approximation guarantees for functions with
bounded curvature. In contrast to other heuristics, this requires no
problem relaxation to continuous domains and it maintains a constant-
factor approximation guarantee in the problem size. In the case of a
single knapsack, our analysis suggests that the standard greedy can
be used in non-monotone settings.

Additionally, we study this problem in a dynamic setting, in which
knapsacks change during the optimization process. We modify our
greedy algorithm to avoid a complete restart at each constraint update.
This modification retains the approximation guarantees of the static
case.

We evaluate our results experimentally on a video summarization
and sensor placement task. We show that our proposed algorithm
competes with the state-of-the-art in static settings. Furthermore, we
show that in dynamic settings with tight computational time budget,
our modified greedy yields significant improvements over starting the
greedy from scratch, in terms of the solution quality achieved.

1 INTRODUCTION

Many artificial intelligence and machine learning tasks can be natu-
rally approached by maximizing submodular objectives. Examples
include subset selection [10], document summarization [25], video
summarization [26] and action recognition [36]. Submodular func-
tions are set functions that yield a diminishing return property: adding
an element to a smaller set helps more than adding it to a larger set.
This property fully characterizes the notion of submodularity.

Practical applications often require additional side constraints on
the solution space, determined by possible feasibility conditions.
These constraints can be complex [25, 28, 34]. For instance, when per-
forming video summarization tasks, we might want to select frames
that fulfill costs constraints based on qualitative factors, such as reso-
lution and luminance.
In this paper, we study general multiple knpasack constraints. Given
a set of solutions, a k-knapsack constraint consists of k linear cost
functions ci on the solution space and corresponding weights Wi.

1 A version of this paper with appendix can be found in [11].
2 Hasso Plattner Institute, email: vanja.doskoc@hpi.de
3 Hasso Plattner Institute, email: friedrich@hpi.de
4 Hasso Plattner Institute, email: andreas.goebel@hpi.de
5 University of Adelaide, email: aneta.neumann@adelaide.edu.au
6 University of Adelaide, email: frank.neumann@adelaide.edu.au
7 Hasso Plattner Institute, email: francesco.quinzan@hpi.de

A solution is then feasible if the corresponding costs do not exceed
the weights. In this paper, we study the problem of maximizing a
submodular function under a k-knapsack constraint.

Sometimes, real-world optimization problems involve dynamic and
stochastic constraints [6]. For instance, resources and costs can exhibit
slight frequent changes, leading to changes of the underlying space of
feasible solutions. Various optimization problems have been studied
under dynamically changing constraints, i.e., facility location prob-
lems [17], target tracking [13], and other submodular maximization
problems for machine learning [4]. Motivated by these applications,
we also study the problem of maximizing a submodular function under
a k-knapsack constraint, when the set of feasible solutions changes
online.

Literature Overview. Khuller, Moss and Naor [18] show that a
simple greedy algorithm achieves a 1/2(1 − 1/e)-approximation
guarantee, when maximizing a modular function with a single knap-
sack constraint. They also propose a modified greedy algorithm that
achieves a (1− 1/e)-approximation. Sviridenko [31] shows that this
modified greedy algorithm yields a (1 − 1/e)-approximation guar-
antee for monotone submodular functions under a single knapsack
constraint. Its run time is O(n5) function evaluations.

Lee et al. [24] give a (1/5 − ε)-approximation local search al-
gorithm, for maximizing a non-monotone submodular function un-
der multiple knapsack constraints. Its run time is polynomial in the
problem size and exponential in the number of constraints. Fadaei,
Fazli and Safari [12] propose an algorithm that achieves a (1/4− ε)-
approximation algorithm for non-monotone functions. This algo-
rithm requires to compute fractional solutions of a continuous ex-
tension of the value oracle function f . Chekuri, Vondrák and Zen-
klusen [5] improve the approximation ratio to 0.325 − ε, in the
case of k = O (1) knapsacks. Kulik, Schachnai and Tamir [23]
give a (1− 1/e− ε)-approximation algorithm when f is monotone
and a (1/e− ε)-approximation algorithm when the function is non-
monotone. Again, their method uses continuous relaxations of the
discrete setting. FANTOM is a popular algorithm for non-monotone
submodular maximization [27]. It can handle intersections of a variety
of constraints. In the case of multiple knapsack constraints, it achieves
a 1/((1 + ε)(10 + 4k))-approximation inO

(
n2 log(n)/ε

)
run time.

Submodular optimization problems with dynamic cost constraints,
including knapsack constraints, are investigated in Rostapoor et al.
[30]. They show that a Pareto optimization approach can implicitly
deal with dynamically changing constraint bounds, whereas a simple
adaptive greedy algorithm fails.



Our Contribution. Many of the aforementioned algorithmic re-
sults, despite having polynomial run time, seem impractical for large
input applications. Following the analysis outlined in [8, 15, 18], we
propose a simple, practical discrete algorithm to maximize a submod-
ular function under multiple knapsack constraints. This algorithm,
which we call the λ-GREEDY, achieves a (1−e−1/λ)/(3 max(1, α))-
approximation guarantee on this problem, with α expressing the
curvature of f , and λ ∈ [1, k] a constant. It requires at most
O(nmax(k/λ,2)) function evaluations. To our knowledge this is the
first algorithm yielding a trade-off between run-time and approxima-
tion ratio.
We also propose a robust variation of our λ-GREEDY, which we
call λ-DGREEDY, to handle dynamic changes in the feasibility re-
gion of the solution space. We show that this algorithm maintains a
(1 − e−1/λ)/(3 max(1, α))-approximation without having to do a
complete restart of the greedy sequence.

We demonstrate experimentally that our algorithms yield good per-
formance in practise, with two real-world scenarios. First, we consider
a video summarization task, which consists of selecting representative
frames of a given video [28, 27]. We also consider a sensor placement
problem, that asks to select informative thermal stations over a large
territory [19].
Our experiments indicate that the λ-GREEDY yields superior perfor-
mance to commonly used algorithms for the static video summariza-
tion problem. We then perform experiments in dynamic settings with
both scenarios, to show that the robust variation yields significant
improvement in practise.

The paper is structured as follows. In Section 2 we introduce ba-
sic definitions and define the problem. In Section 3 we define the
algorithms. We present the theoretical analysis in Section 4, and the
experimental framework in Section 5. The experimental results are
discussed in Section 6 and Section 7. We conclude in Section 8.

2 PRELIMINARIES

Submodularity and Curvature In this paper, we consider prob-
lems with an oracle function that outputs the quality of given solution.
We measure performance in terms of calls to this function, since
in many practical applications they are difficult to evaluate. We as-
sume that value oracle functions are submodular, as in the following
definition.

Definition 1 (Submodularity) Given a finite set V , a set function
f : 2V → R is submodular if for all S,Ω ⊆ V we have that f(S) +
f(Ω) ≥ f(S ∪ Ω) + f(S ∩ Ω).

For the equivalent intuitive definition described informally in the
introduction see [29].

For any submodular function f : 2V → R and sets S,Ω ⊆ V ,
we define the marginal value of S with respect to Ω as fS(Ω) =
f(S ∪ Ω)− f(S). Note that, if f only attains non-negative values, it
holds that f(Ω) ≥ fS(Ω) for all S,Ω ⊆ V .

Our approximation guarantees use the notion of curvature, a pa-
rameter that bounds the maximum rate with which a submodular
function changes. We say that a submodular function f : 2V → R≥0

has curvature α if the value f(S ∪ e) − f(S) does not change by
a factor larger than 1 − α when varying S, for all e ∈ V \ S. This
parameter was first introduced by [8] and later revisited in [3]. We use
the following definition of curvature, which slightly generalizes that
proposed in Friedrich et al. [15].

Definition 2 (Curvature) Let f : 2V → R≥0 be a submodular set
function. The curvature is the smallest scalar α such that

fω((S ∪ Ω) \ {ω}) ≥ (1− α)fω(S \ {ω}),

for all S,Ω ⊆ V and ω ∈ S \ Ω.

Note that α ≤ 1 always holds and that all monotone submodular func-
tions have curvature always bounded as 0 ≤ α ≤ 1. It follows that all
submodular functions with negative curvature are non-monotone.

Problem Description The problem of maximizing a submodular
function under multiple knapsack constraints can be formalized as
follows.

Problem 3 Let f : 2V → R≥0 be a submodular function.8 Consider
linear cost functions ci : 2V → R≥0,9 and corresponding weights
Wi, for all i ∈ [k]. We search for a set OPT ⊆ V , such that OPT ∈
arg maxS⊆V {f(S) : ci(S) ≤Wi,∀i ∈ [k]}.

In this setting, one has k knapsacks and wishes to find an optimal set
of items such that its total cost, expressed by the functions ci, does not
violate the capacity of each knapsack. Note that the same set might
have different costs for different knapsacks.
We denote with (c,W ) the constraint requirements ci(S) ≤ Wi

for all S ⊆ V , for all i ∈ [k]. For a ground set V with a fixed
ordering on the points and a cost function ci, where i ∈ [k], let τi be
a permutation on V where ci(eτi(1)) ≥ · · · ≥ ci(eτi(n)). We define
the value χ(c,W ) as

χ(c,W ) = min
i∈[k]

arg min
j∈[|V |]

{
j∑
`=1

ci(eτi(`)) ≤Wi

}
.

Note that the value χ(c,W ) is such that each set U ⊆ V with cardi-
nality |U | ≤ χ(c,W ) is feasible for all constraints in (c,W ).10

We observe that in the case of a single knapsack, if c1(S) = |S|
for all S ⊆ V , then Problem 3 consists of maximizing a submodular
function under a cardinality constraint, which is known to be NP-hard.

In our analysis we always assume that the following reduction
holds.

Reduction 4 For Problem 3 we may assume that there exists a point
e∗ ∈ V such that f(S∪e∗) = f(S) for all S ⊆ V , and ci(e∗) = Wi

for all i ∈ [k]. Furthermore, we may assume that ci(e) ≤Wi for all
e ∈ V , for all i ∈ [m].

If the conditions of Reduction 4 do not hold, one can remove all points
e ∈ V that violate one of the constraints and add a point e∗ without
altering the function f . Intuitively, Reduction 4 requires that each
singleton, except for one, is feasible for all knapsack constraints. This
ensures that arg maxe∈V f(e) is always feasible in all constraints,
since f(e∗) = 0, and the optimum solution consists of at least one
point. Furthermore, the point e∗ ∈ V ensures that the solution quality
never decreases throughout a greedy optimization process, until a
non-feasible solution is reached.

Additionally, we study a dynamic setting of Problem 3, in which
weights Wi are repeatedly updated throughout the optimization pro-
cess, while the corresponding cost functions ci remain unchanged. In

8 We assume that f(∅) = 0, and that f is non-constant.
9 We assume that maxj cj(e) > 0 for all e ∈ V .
10 We remark that for our purposes, the value χ(c,W ) could be defined

directly as the value where each set U ⊆ V with cardinality |U | ≤ χ(cW )
is feasible under the constraints in (c,W ). However, this value is in general
NP-hard to compute [7, 33].



Algorithm 1: The λ-GREEDY algorithm.
input: submodular function f , k-knapsacks (c,W ) and

parameter λ ;
output: an approximate feasible global maximum of f ;
V ← {e ∈ V : cj(e) ≤ λWj/k ∀j ∈ [k]};
S ← V;
σ ← ∅;
v∗ ← arg maxe∈V f(e);
while S 6= ∅ do

let e ∈ S maximizing fσ(e)/maxj cj(e);
S ← S \ e;
if cj(σ ∪ e) ≤Wj , ∀j ∈ [k] then σ ← σ ∪ v;

return arg max{U⊆V \V : ci(U)≤Wi ∀i}{f(σ), f(v∗), f(U)};

Algorithm 2: The λ-DGREEDY algorithm.
input: submodular function f , k-knapsacks (c,W ) with

dynamic weights and parameter λ;
output: an approximate feasible global maximum of f ;
evaluate f over all sets of cardinality at most k/λ;
V ← {e ∈ V : cj(e) ≤ λWj/k ∀j ∈ [k]};
S ← V;
σ ← ∅;
v∗ ← arg maxe∈V f(e);
while S 6= ∅ do

// greedy rule
let e ∈ S maximizing fσ(e)/maxj cj(e);
S ← S \ e;
if ci(σ ∪ e) ≤Wi, ∀i ∈ [k] then σ ← σ ∪ v;

// update rule
if new weights {W ′i} are given then
V ′ ← {e ∈ V : cj(e) ≤ λW ′j/k ∀j ∈ [k]};
while |σ| > min{χ(c,W ), χ(c,W ′)} ∨ σ 6⊆ V ∩ V ′

do
let e ∈ σ be the last point added to σ;
σ ← σ \ e;

V ← V ′;
S ← V \ σ;

return arg max{U⊆V \V : ci(U)≤W ∀i}{f(σ), f(v∗), f(U)};

this setting, we assume that an algorithm queries a function to retrieve
the weights Wi which are, sometimes, updated online. We assume
that weights changes occur independently of the optimization process
and algorithmic operations. Furthermore, we assume that Reduction
4 holds for each dynamic update.

3 ALGORITHMS
We approach Problem 3 with a discrete algorithm based on a greedy
technique, commonly used to maximize a submodular function under
a single knapsack constraint (see [18, 35]). Given the parameter value
λ ∈ [k], our algorithm defines the following partition of the objective
space:

• the set V containing all e ∈ V such that cj ≤ λWj/k for all
j ∈ [k];

• the complement V \V containing all e ∈ V such that cj > λWj/k
for all j ∈ [k].

The λ-GREEDY optimizes f over the set V , with a greedy update that
depends on all cost functions cj . After finding a greedy approximate
solution σ, the λ-GREEDY finds the optimum τ among feasible sub-
sets of V \ V . This step can be performed with a deterministic search
over all possible solutions, since the space V \ V always has bounded
size. The λ-GREEDY outputs the set with highest f -value among σ, τ
or the maximum among the singletons.

From the statement of Theorem 5 we observe that the parameter
λ sets a trade-off between solution quality and run time. For small
λ, Algorithm 1 yields better approximation guarantee and worse run
time, than for large λ. This is due to the fact that the size of V \ V
depends on this parameter. In practise, the parameter λ allows to find
the right trade-off between solution quality and run time, depending
on available resources. Note that in the case of a single knapsack
constraint, for λ = k the λ-GREEDY is equivalent to the greedy
algorithm studied in [18].

We modify the λ-GREEDY to handle dynamic constraints where
weights change overtime. This algorithm, which we refer to as the λ-
DGREEDY, is presented in Algorithm 2. It consists of two subroutines,
which we call the greedy rule and the update rule. The greedy rule of
the λ-DGREEDY uses the same greedy update as the λ-GREEDY does:
At each step, find a point v ∈ V that maximizes the marginal gain
over maximum cost, and add v to the current solution, if the resulting
set is feasible in all knapsacks. The update rule allows to handle
possible changes to the weights, even when the greedy procedure has
not terminated, without having to completely restart the algorithm.

Following the notation of Algorithm 2, if new weightsW ′1, . . . ,W ′k
are given, then the λ-DGREEDY iteratively removes points
from the current solution, until the resulting set yields σ ≤
min{χ(c,W ), χ(c,W ′)} and U ⊆ V ∩ V ′. This is motivated by
the following facts:

1. every set U ≤ min{χ(c,W ), χ(c,W ′)} is feasible in both the old
and the new constraints;

2. every set U ≤ min{χ(c,W ), χ(c,W ′)} such that U ⊆ V ∩ V ′
obtained with a greedy procedure yields the same approximation
guarantee in both constraints;

3. every set U ⊆ V ∩ V ′ is such that ci(e) ≤ λW ′i/k for all i ∈ k,
for all e ∈ U .

All three conditions are necessary to ensure that the approximation
guarantee is maintained.

Note that the update rule in Algorithm 2 does not backtrack the
execution of the algorithm until the resulting solution is feasible in the
new constraint, and then adds elements to it. For instance, consider
the following example, due to Roostapour et al. [30]. We are given a
set of n + 1 items {v1, . . . , vn+1} under a single knapsack (c,W ),
with the cost function c defined as

c(vi) =

{
1, if 1 ≤ i ≤ n/2 or i = n+ 1;
2, otherwise;

and f -values defined on the singleton as

f(vi) =


1/n, if 1 ≤ i ≤ n/2;
1, if n/2 < i ≤ n;
3, if i = n+ 1;

We define f(U) =
∑
e∈U f(e), for all U ⊆ {e1, . . . , en+1}. Con-

sider Algorithm 2 optimizing f from scratch with W = 2. Then both
algorithms choose a set of the form {en+1, ej} with 1 ≤ j ≤ n/2.
Suppose now that the weight dynamically changes to W = 3. Then
backtracking the execution and adding points to the current solu-
tion would result into a solution of the form {en+1, ei, ej} with



1 ≤ i, j ≤ n/2 with f({en+1, ei, ej}) = 3 + 2/n. However, in this
case it holds min{χ(c, 2), χ(c, 3)} = 1, since there exists a solution
of cardinality 2 that is not feasible in (c, 2). Hence, Algorithm 2 re-
moves the point ej from the solution {en+1, ej}, before adding new
elements to it. Afterwards, it adds a point ej with n/2 < j ≤ n to it,
obtaining a solution such that f({en+1, ej}) = 3 + 1 = 4.
We remark that on this instance, the λ-GREEDY with a simple back-
tracking operator yields arbitrarily bad approximation guarantee, as
discussed in [30, Theroem 3]. In contrast, Algorithm 2 maintains the
approximation guarantee on this instance (see Theorem 6).

4 APPROXIMATION GUARANTEES
We prove that Algorithm 1 yields a strong approximation guarantee,
when maximizing a submodular function under k knapsack constraints
in the static case. This part of the analysis does not consider dynamic
weight updates. We use the notion of curvature as in Definition 2.

Theorem 5 Let f be a submodular function with curvature α, sup-
pose that k knapsacks are given. For all λ ∈ [1, k], the λ-GREEDY

is a (1− e−1/λ)/(3 max(1, α))-approximation algorithm for Prob-

lem 3. Its run time is O
(
nmax(k/λ,2)

)
.

A proof of this result is given in the full version [11]. Note that if
the function f is monotone, then the approximation guarantee given
in Theorem 5 matches well-known results [18]. We remark that non-
monotone functions with bounded curvature are not uncommon in
practise. For instance, all cut functions of directed graphs are non-
monotone, submodular and have curvature α ≤ 2, as discussed in
[15].

We perform the run time analysis for the λ-GREEDY in dynamic
settings, in which weights {Wi}i change over time.

Theorem 6 Consider Algorithm 2 optimizing a submodular function
with curvature α > 0 and knapsack constraints (c,W ). Suppose
that at some point during the optimization process new weights W ′i
are given. Let σ be the current solution before the weights update,
and let σt ⊆ σ consist of the first t points added to σ. Further-
more, let t∗ be the largest index such that σt∗ ⊆ V ∩ V ′, with V,V ′
as in Algorithm 2, and define χ = min {χ(c,W ), χ(c,W ′), t∗} .
Then after additional O (n(n− χ)) run time the λ-GREEDY finds a
(1− e−1/λ)/(3 max(1, α))-approximate optimal solution in the new
constraints, for a fixed parameter λ ∈ [1, k].

A proof of this result is given in the full version [11]. Theorem 5 yields
the same theoretical approximation guarantee as Theorem 6. Hence, if
dynamic updates occur at a slow pace, it is possible to obtain identical
results by restarting λ-GREEDY every time a constraint update occurs.
However, as we show in Section 7, there is significant advantage in
using the λ-DGREEDY in settings when frequent noisy constraints
updates occur.

5 APPLICATIONS
Video Summarization. Determinantal Point Process (DPP) is a

probabilistic model, the probability distribution function of which
can be characterized as the determinant of a matrix. More formally,
consider a sample space V = [n], and let L be a positive semidefinite
matrix. We say that L defines a DPP on V , if the probability of an
event S ⊆ V is given by

PL(S) =
det(LS)

det(L+ I)
,

where LS = (Li,j)i,j∈S is the submatrix of L indexed by the ele-
ments in S, and I is the n× n identity matrix. For a survey on DPPs
and their applications see [22].

We model this framework with a matrixL that describes similarities
between pairs of frames. Intuitively, if L describes the similarity
between two frames, then the DPP prefers diversity.
In this setting, we search for a set of features S ⊆ V such that P(S)
is maximal, among sets of feasible solutions defined in terms of a
knapsack constraint. Since L is positive semidefinite, the function
log detLS is submodular [22].

Sensor Placement. The maximum entropy sampling problem con-
sists of choosing the most informative subset of random variables
subject to side constraints. In this work, we study the problem of
finding the most informative set among given Gaussian time series.

Let X be a unique time series X = {Xt}t. We consider the corre-
sponding variation series X = {Xt}t, defined as Xt = Xt −Xt−1.
We compute the covariance matrix Σ of the time series X and Y, the
coefficients of which we estimate as

cov(X,Y) =
1

m− 1

m∑
t=1

(Xt − E
[
X
]
)(Y t − E

[
Y
]
).

The entropy of a subset of time series is then given by the formula

f(S) =
1 + ln(2π)

2
|S|+ 1

2
ln det(ΣS)

for any indexing set S ⊆ {0, 1}n on the variation series, where
det(ΣS) returns the determinant of the sub-matrix of Σ indexed by S.
It is well-known that the function f is non-monotone and submodular.
Its curvature is bounded as α ≤ 1 − 1/µ, where µ is the largest
eigenvalue of Σ [32, 19, 15].
We consider the problem of maximizing the entropy f under a par-
tition matroid constraint. This additional side constraint requires
upper-bounds on the number of sensors that can be chosen in given
geographical areas. Specifically, we partition the total number of time
series into seven sets, based on the continent in which correspond-
ing stations are located. Under this partition set, we then have seven
independent cardinality constraints, one for each continent.

6 STATIC EXPERIMENTS
The aim of these experiments is to show that the λ-GREEDY yields
better performance in comparison with FANTOM [26], which is a
popular algorithm for non-monotone submodular objectives under
complex sets of constraints. We consider video summarization tasks
as in Section 5.

Let L be the matrix describing similarities between pairs of frames,
as in Section 5. Following [16], we parametrize L as follows. Given
a set of frames, let fi be the feature vector of the i-th frame. This
vector encodes the contextual information about frame i and its repre-
sentativeness of other items. Then the matrix L can be paramterized
as Li,j = zTi W

TWzj , with zi = tanh(Ufi) being a hidden repre-
sentation of fi, and U,W parameters. We use a single-layer neural
network to train the parameters U,W . We consider 20 movies from
the Frames Labeled In Cinema dataset [14]. Each movie has 200
frames and 7 generated ground summaries consisting of 15 frames
each.

We select a representative set of frames, by maximizing the func-
tion log detL under additional quality feature constraints, viewed as
multiple knapsacks. Hence, this task consists of maximizing a non-
monotone submodular function under multiple knapsack constraints.



Table 1. We consider 20 movies from the Frames Labeled In Cinema dataset [14]. For each movie, we select a representative set of frames, by maximizing a
submodular function under additional knapsack constraints, as described in Section 6. We run the λ-GREEDY and the FANTOM algorithm [26] with various
parameter choices, until no remaining point in the search space yields improvement on the fitness value, without violating side constraints. We observe that in all
cases the λ-GREEDY yields better run time and solution quality than the FANTOM.

run time for each video clip
algorithm parameter video (1) video (2) video (3) video (4) video (5) video (6) video (7)
FANTOM ε = 0.001 4085317 3529230 3813637 2986719 3368901 3442329 3082814
FANTOM ε = 0.01 406960 351321 382342 299444 336670 344619 307726
FANTOM ε = 0.1 41008 34309 37232 29249 33343 33146 30235
λ-GREEDY λ = k 2895 2895 2895 2709 2895 2709 2522

algorithm parameter video (8) video (9) video (10) video (11) video (12) video (13) video (14)
FANTOM ε = 0.001 3171467 3781141 3121379 3673776 3603787 3055122 4119203
FANTOM ε = 0.01 320738 379420 313975 368617 360265 307399 412247
FANTOM ε = 0.1 30605 36608 30809 36242 35682 30223 40543
λ-GREEDY λ = k 2709 3080 2895 2895 3080 2709 3080

algorithm parameter video (15) video (16) video (17) video (18) video (19) video (20)
FANTOM ε = 0.001 3727241 3321987 3429387 3555884 3375296 3431653
FANTOM ε = 0.01 374322 330994 345333 354694 336718 343419
FANTOM ε = 0.1 36073 32377 33357 34741 32370 32187
λ-GREEDY λ = k 2895 2895 2895 2895 2709 2709

solution quality for each video clip
algorithm parameter video (1) video (2) video (3) video (4) video (5) video (6) video (7)
FANTOM ε = 0.001 19.3818 15.6143 15.4285 10.6228 13.2393 14.0438 9.4999
FANTOM ε = 0.01 19.3818 15.6143 15.4285 10.6228 13.2393 12.9851 9.4999
FANTOM ε = 0.1 16.9083 13.9868 13.9942 9.1811 13.2393 12.9851 9.4999
λ-GREEDY λ = k 23.9323 21.8122 22.5406 15.0203 19.4932 18.6267 15.5678

algorithm parameter video (8) video (9) video (10) video (11) video (12) video (13) video (14)
FANTOM ε = 0.001 11.0898 16.2864 10.7798 15.9894 15.5939 12.5897 18.7495
FANTOM ε = 0.01 11.0898 16.2864 10.7798 15.9894 15.5939 12.5897 18.7495
FANTOM ε = 0.1 9.5612 16.2864 10.7798 14.4139 14.1122 9.5909 17.3095
λ-GREEDY λ = k 18.5727 23.9619 17.6612 23.2229 20.8876 18.1164 25.1342

algorithm parameter video (15) video (16) video (17) video (18) video (19) video (20)
FANTOM ε = 0.001 16.3391 11.8452 13.6084 16.9964 13.0314 13.0558
FANTOM ε = 0.01 16.3391 11.8452 13.6084 16.9964 13.0314 13.0558
FANTOM ε = 0.1 14.7544 11.8452 12.0878 14.0999 11.5619 11.5385
λ-GREEDY λ = k 23.8740 19.4916 19.9461 22.2884 18.6588 19.0673

We run the λ-GREEDY and FANTOM algorithms on each instance,
until no remaining point in the search space yields improvement on
the fitness value, without violating side constraints. We then compare
the resulting run time and approximation guarantee. Since FANTOM

depends on a parameter ε [26], then we perform three sets of exper-
iments for ε = 0.1, ε = 0.01, and ε = 0.001. The parameter λ for
the λ-GREEDY is always set to λ = k. We have no indications that a
lower λ yields improved solution quality on this set of instances.

Results for the run time and approximation guarantee are displayed
in Table 1. We clearly see that the λ-GREEDY outperforms FANTOM

in terms of solution quality. Furthermore, the run time of FANTOM

is orders of magnitude worse than that of our λ-GREEDY. This is
probably due to the fact that the FANTOM requires a very low density
threshold to get to a good solution on these instances. The code for
this set of experiments is available upon request.

7 DYNAMIC EXPERIMENTS

The aim of these experiments is to show that, when constraints quickly
change dynamically, the robust λ-DGREEDY significantly outper-
forms the λ-GREEDY with a restart policy, that re-sets the optimiza-
tion process each time new weights are given. To this end, we simulate
a setting where updates change dynamically, by introducing controlled
posterior noise on the weights. At each update, we run the λ-GREEDY

from scratch, and let the λ-DGREEDY continue without a restart policy.
We consider two set of dynamic experiments.

The Maximum Entropy Sampling Problem We consider the
problem of maximizing the entropy f under a partition matroid con-
straint. This additional side constraint requires an upper bound on the
number of sensors that can be chosen in given geographical areas.
Specifically, we partition the total number of time series in seven sets,
based on the continent in which the corresponding stations are located.
Under this partition set, we then have seven independent cardinality



Table 2. For the respective set of experiments, Maximum Entropy Sampling (left) and Video Summarization (right), the mean and standard deviation of the
solution quality over time within one run of the respective algorithms for different update frequencies [τ ] and different dynamic update standard deviations [σ].
With X(+) we denote that the algorithm labelled X significantly outperformed the other one.

λ-GREEDY (1) λ-DGREEDY (2)
τ σ mean sd mean sd stat

10K 0.075 107.4085 1.35 130.5897 12.28 2(+)

20K 0.075 195.0352 2.99 213.3886 11.15 2(+)

30K 0.075 263.8143 4.80 279.7259 11.38 2(+)

40K 0.075 319.6090 6.78 329.8283 10.80 2(+)

50K 0.075 351.6649 8.47 353.6060 9.19 2(+)

10K 0.05 107.6904 0.73 132.7425 8.79 2(+)

20K 0.05 195.5784 1.82 216.0143 8.00 2(+)

30K 0.05 264.6016 3.13 282.2722 7.91 2(+)

40K 0.05 320.6179 4.66 332.0804 7.57 2(+)

50K 0.05 352.8980 6.10 355.0595 6.64 2(+)

10K 0.10 107.2164 1.56 124.4393 14.81 2(+)

20K 0.10 194.4608 3.43 208.3658 13.35 2(+)

30K 0.10 262.7148 5.57 274.8722 13.64 2(+)

40K 0.10 317.9336 7.96 325.7493 12.93 2(+)

50K 0.10 349.5698 10.04 351.1627 10.91 2(+)

λ-GREEDY (1) λ-DGREEDY (2)
τ σ mean sd mean sd stat

10K 0.075 36.550 2.1E-14 264.256 69.21 2(+)

20K 0.075 69.760 7.2E-14 269.639 57.77 2(+)

30K 0.075 102.969 4.3E-14 271.531 53.20 2(+)

40K 0.075 136.956 8.6E-14 272.210 51.18 2(+)

50K 0.075 174.657 1.30 272.968 49.38 2(+)

10K 0.05 36.55 2.1E-14 197.251 63.49 2(+)

20K 0.05 69.760 7.9E-14 257.641 52.15 2(+)

30K 0.05 102.969 4.3E-14 259.517 47.55 2(+)

40K 0.05 136.956 8.6E-14 260.197 45.46 2(+)

50K 0.05 174.840 5.7E-14 260.955 43.64 2(+)

10K 0.10 36.550 2.1E-14 269.784 76.62 2(+)

20K 0.10 69.760 7.2E-14 275.981 65.69 2(+)

30K 0.10 102.969 4.3E-14 277.891 61.48 2(+)

40K 0.10 136.956 8.6E-14 278.571 59.67 2(+)

50K 0.10 174.448 2.77 279.329 58.05 2(+)
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restarts
<latexit sha1_base64="00Xz56vY8QiKq3drn3unJLYKhoE=">AAACAHicbVBNS8NAEN3Ur1q/ol4EL8EieCqJFNRbwYvHCsYWmlA220m7dPPB7kRaQr34V7x4UPHqz/Dmv3Hb5qCtDwYe783szrwgFVyhbX8bpZXVtfWN8mZla3tnd8/cP7hXSSYZuCwRiWwHVIHgMbjIUUA7lUCjQEArGF5P/dYDSMWT+A7HKfgR7cc85IyilrrmkRcFySj3EEaoWC5BIZWoJpOuWbVr9gzWMnEKUiUFml3zy+slLIsgRiaoUh3HTtHP9WucCZhUvExBStmQ9qGjaUwjUH4+u2BinWqlZ4WJ1BWjNVN/T+Q0UmocBbozojhQi95U/M/rZBhe+jmP0wwhZvOPwkxYmFjTOKwel8BQjDWhTHK9q8UGVFKGOrSKDsFZPHmZuOe1q5pzW6826kUaZXJMTsgZccgFaZAb0iQuYeSRPJNX8mY8GS/Gu/Exby0Zxcwh+QPj8welhJfS</latexit><latexit sha1_base64="00Xz56vY8QiKq3drn3unJLYKhoE=">AAACAHicbVBNS8NAEN3Ur1q/ol4EL8EieCqJFNRbwYvHCsYWmlA220m7dPPB7kRaQr34V7x4UPHqz/Dmv3Hb5qCtDwYe783szrwgFVyhbX8bpZXVtfWN8mZla3tnd8/cP7hXSSYZuCwRiWwHVIHgMbjIUUA7lUCjQEArGF5P/dYDSMWT+A7HKfgR7cc85IyilrrmkRcFySj3EEaoWC5BIZWoJpOuWbVr9gzWMnEKUiUFml3zy+slLIsgRiaoUh3HTtHP9WucCZhUvExBStmQ9qGjaUwjUH4+u2BinWqlZ4WJ1BWjNVN/T+Q0UmocBbozojhQi95U/M/rZBhe+jmP0wwhZvOPwkxYmFjTOKwel8BQjDWhTHK9q8UGVFKGOrSKDsFZPHmZuOe1q5pzW6826kUaZXJMTsgZccgFaZAb0iQuYeSRPJNX8mY8GS/Gu/Exby0Zxcwh+QPj8welhJfS</latexit><latexit sha1_base64="00Xz56vY8QiKq3drn3unJLYKhoE=">AAACAHicbVBNS8NAEN3Ur1q/ol4EL8EieCqJFNRbwYvHCsYWmlA220m7dPPB7kRaQr34V7x4UPHqz/Dmv3Hb5qCtDwYe783szrwgFVyhbX8bpZXVtfWN8mZla3tnd8/cP7hXSSYZuCwRiWwHVIHgMbjIUUA7lUCjQEArGF5P/dYDSMWT+A7HKfgR7cc85IyilrrmkRcFySj3EEaoWC5BIZWoJpOuWbVr9gzWMnEKUiUFml3zy+slLIsgRiaoUh3HTtHP9WucCZhUvExBStmQ9qGjaUwjUH4+u2BinWqlZ4WJ1BWjNVN/T+Q0UmocBbozojhQi95U/M/rZBhe+jmP0wwhZvOPwkxYmFjTOKwel8BQjDWhTHK9q8UGVFKGOrSKDsFZPHmZuOe1q5pzW6826kUaZXJMTsgZccgFaZAb0iQuYeSRPJNX8mY8GS/Gu/Exby0Zxcwh+QPj8welhJfS</latexit><latexit sha1_base64="00Xz56vY8QiKq3drn3unJLYKhoE=">AAACAHicbVBNS8NAEN3Ur1q/ol4EL8EieCqJFNRbwYvHCsYWmlA220m7dPPB7kRaQr34V7x4UPHqz/Dmv3Hb5qCtDwYe783szrwgFVyhbX8bpZXVtfWN8mZla3tnd8/cP7hXSSYZuCwRiWwHVIHgMbjIUUA7lUCjQEArGF5P/dYDSMWT+A7HKfgR7cc85IyilrrmkRcFySj3EEaoWC5BIZWoJpOuWbVr9gzWMnEKUiUFml3zy+slLIsgRiaoUh3HTtHP9WucCZhUvExBStmQ9qGjaUwjUH4+u2BinWqlZ4WJ1BWjNVN/T+Q0UmocBbozojhQi95U/M/rZBhe+jmP0wwhZvOPwkxYmFjTOKwel8BQjDWhTHK9q8UGVFKGOrSKDsFZPHmZuOe1q5pzW6826kUaZXJMTsgZccgFaZAb0iQuYeSRPJNX8mY8GS/Gu/Exby0Zxcwh+QPj8welhJfS</latexit>

update
<latexit sha1_base64="bzprGOSPwxoiNSJEqsdlOAfe4hw=">AAAB/nicbVBNS8NAEN3Ur1q/ooIXL8EieCqJFNRbwYvHCtYWmlA2m0m7dPPB7kRaYg/+FS8eVLz6O7z5b9y2OWjrg4HHezPMzPNTwRXa9rdRWlldW98ob1a2tnd298z9g3uVZJJBiyUikR2fKhA8hhZyFNBJJdDIF9D2h9dTv/0AUvEkvsNxCl5E+zEPOaOopZ555EZ+MspdhBEqlmdpQBEmk55ZtWv2DNYycQpSJQWaPfPLDRKWRRAjE1SprmOn6OVUImcCJhU3U5BSNqR96Goa0wiUl8/un1inWgmsMJG6YrRm6u+JnEZKjSNfd0YUB2rRm4r/ed0Mw0sv53GaIcRsvijMhIWJNQ3DCrgEhmKsCWWS61stNqCSMtSRVXQIzuLLy6R1XruqObf1aqNepFEmx+SEnBGHXJAGuSFN0iKMPJJn8krejCfjxXg3PuatJaOYOSR/YHz+ANUqlsk=</latexit><latexit sha1_base64="bzprGOSPwxoiNSJEqsdlOAfe4hw=">AAAB/nicbVBNS8NAEN3Ur1q/ooIXL8EieCqJFNRbwYvHCtYWmlA2m0m7dPPB7kRaYg/+FS8eVLz6O7z5b9y2OWjrg4HHezPMzPNTwRXa9rdRWlldW98ob1a2tnd298z9g3uVZJJBiyUikR2fKhA8hhZyFNBJJdDIF9D2h9dTv/0AUvEkvsNxCl5E+zEPOaOopZ555EZ+MspdhBEqlmdpQBEmk55ZtWv2DNYycQpSJQWaPfPLDRKWRRAjE1SprmOn6OVUImcCJhU3U5BSNqR96Goa0wiUl8/un1inWgmsMJG6YrRm6u+JnEZKjSNfd0YUB2rRm4r/ed0Mw0sv53GaIcRsvijMhIWJNQ3DCrgEhmKsCWWS61stNqCSMtSRVXQIzuLLy6R1XruqObf1aqNepFEmx+SEnBGHXJAGuSFN0iKMPJJn8krejCfjxXg3PuatJaOYOSR/YHz+ANUqlsk=</latexit><latexit sha1_base64="bzprGOSPwxoiNSJEqsdlOAfe4hw=">AAAB/nicbVBNS8NAEN3Ur1q/ooIXL8EieCqJFNRbwYvHCtYWmlA2m0m7dPPB7kRaYg/+FS8eVLz6O7z5b9y2OWjrg4HHezPMzPNTwRXa9rdRWlldW98ob1a2tnd298z9g3uVZJJBiyUikR2fKhA8hhZyFNBJJdDIF9D2h9dTv/0AUvEkvsNxCl5E+zEPOaOopZ555EZ+MspdhBEqlmdpQBEmk55ZtWv2DNYycQpSJQWaPfPLDRKWRRAjE1SprmOn6OVUImcCJhU3U5BSNqR96Goa0wiUl8/un1inWgmsMJG6YrRm6u+JnEZKjSNfd0YUB2rRm4r/ed0Mw0sv53GaIcRsvijMhIWJNQ3DCrgEhmKsCWWS61stNqCSMtSRVXQIzuLLy6R1XruqObf1aqNepFEmx+SEnBGHXJAGuSFN0iKMPJJn8krejCfjxXg3PuatJaOYOSR/YHz+ANUqlsk=</latexit><latexit sha1_base64="bzprGOSPwxoiNSJEqsdlOAfe4hw=">AAAB/nicbVBNS8NAEN3Ur1q/ooIXL8EieCqJFNRbwYvHCtYWmlA2m0m7dPPB7kRaYg/+FS8eVLz6O7z5b9y2OWjrg4HHezPMzPNTwRXa9rdRWlldW98ob1a2tnd298z9g3uVZJJBiyUikR2fKhA8hhZyFNBJJdDIF9D2h9dTv/0AUvEkvsNxCl5E+zEPOaOopZ555EZ+MspdhBEqlmdpQBEmk55ZtWv2DNYycQpSJQWaPfPLDRKWRRAjE1SprmOn6OVUImcCJhU3U5BSNqR96Goa0wiUl8/un1inWgmsMJG6YrRm6u+JnEZKjSNfd0YUB2rRm4r/ed0Mw0sv53GaIcRsvijMhIWJNQ3DCrgEhmKsCWWS61stNqCSMtSRVXQIzuLLy6R1XruqObf1aqNepFEmx+SEnBGHXJAGuSFN0iKMPJJn8krejCfjxXg3PuatJaOYOSR/YHz+ANUqlsk=</latexit>

�-dGreedy
<latexit sha1_base64="fXWT/V09Z1J46fxE3hCQriFOa5k=">AAACAnicbVDLSsNAFJ3UV62vqjvdBFvBjSURQd0VXeiygrWFJpTJ5LYdOpmEmRuxhIIbf8WNCxW3foU7/8bpY6HVAwOHc+7hzj1BIrhGx/mycnPzC4tL+eXCyura+kZxc+tWx6liUGexiFUzoBoEl1BHjgKaiQIaBQIaQf9i5DfuQGkeyxscJOBHtCt5hzOKRmoXdzyEe9QsK3vCpEJaPgwvFUA4GLaLJafijGH/Je6UlMgUtXbx0wtjlkYgkQmqdct1EvQzqpAzAcOCl2pIKOvTLrQMlTQC7WfjG4b2vlFCuxMr8yTaY/VnIqOR1oMoMJMRxZ6e9Ubif14rxc6pn3GZpAiSTRZ1UmFjbI8KsUOugKEYGEKZ4uavNutRRRma2gqmBHf25L+kflQ5q7jXx6Xq+bSNPNkle+SAuOSEVMkVqZE6YeSBPJEX8mo9Ws/Wm/U+Gc1Z08w2+QXr4xsn/Jdo</latexit><latexit sha1_base64="fXWT/V09Z1J46fxE3hCQriFOa5k=">AAACAnicbVDLSsNAFJ3UV62vqjvdBFvBjSURQd0VXeiygrWFJpTJ5LYdOpmEmRuxhIIbf8WNCxW3foU7/8bpY6HVAwOHc+7hzj1BIrhGx/mycnPzC4tL+eXCyura+kZxc+tWx6liUGexiFUzoBoEl1BHjgKaiQIaBQIaQf9i5DfuQGkeyxscJOBHtCt5hzOKRmoXdzyEe9QsK3vCpEJaPgwvFUA4GLaLJafijGH/Je6UlMgUtXbx0wtjlkYgkQmqdct1EvQzqpAzAcOCl2pIKOvTLrQMlTQC7WfjG4b2vlFCuxMr8yTaY/VnIqOR1oMoMJMRxZ6e9Ubif14rxc6pn3GZpAiSTRZ1UmFjbI8KsUOugKEYGEKZ4uavNutRRRma2gqmBHf25L+kflQ5q7jXx6Xq+bSNPNkle+SAuOSEVMkVqZE6YeSBPJEX8mo9Ws/Wm/U+Gc1Z08w2+QXr4xsn/Jdo</latexit><latexit sha1_base64="fXWT/V09Z1J46fxE3hCQriFOa5k=">AAACAnicbVDLSsNAFJ3UV62vqjvdBFvBjSURQd0VXeiygrWFJpTJ5LYdOpmEmRuxhIIbf8WNCxW3foU7/8bpY6HVAwOHc+7hzj1BIrhGx/mycnPzC4tL+eXCyura+kZxc+tWx6liUGexiFUzoBoEl1BHjgKaiQIaBQIaQf9i5DfuQGkeyxscJOBHtCt5hzOKRmoXdzyEe9QsK3vCpEJaPgwvFUA4GLaLJafijGH/Je6UlMgUtXbx0wtjlkYgkQmqdct1EvQzqpAzAcOCl2pIKOvTLrQMlTQC7WfjG4b2vlFCuxMr8yTaY/VnIqOR1oMoMJMRxZ6e9Ubif14rxc6pn3GZpAiSTRZ1UmFjbI8KsUOugKEYGEKZ4uavNutRRRma2gqmBHf25L+kflQ5q7jXx6Xq+bSNPNkle+SAuOSEVMkVqZE6YeSBPJEX8mo9Ws/Wm/U+Gc1Z08w2+QXr4xsn/Jdo</latexit><latexit sha1_base64="fXWT/V09Z1J46fxE3hCQriFOa5k=">AAACAnicbVDLSsNAFJ3UV62vqjvdBFvBjSURQd0VXeiygrWFJpTJ5LYdOpmEmRuxhIIbf8WNCxW3foU7/8bpY6HVAwOHc+7hzj1BIrhGx/mycnPzC4tL+eXCyura+kZxc+tWx6liUGexiFUzoBoEl1BHjgKaiQIaBQIaQf9i5DfuQGkeyxscJOBHtCt5hzOKRmoXdzyEe9QsK3vCpEJaPgwvFUA4GLaLJafijGH/Je6UlMgUtXbx0wtjlkYgkQmqdct1EvQzqpAzAcOCl2pIKOvTLrQMlTQC7WfjG4b2vlFCuxMr8yTaY/VnIqOR1oMoMJMRxZ6e9Ubif14rxc6pn3GZpAiSTRZ1UmFjbI8KsUOugKEYGEKZ4uavNutRRRma2gqmBHf25L+kflQ5q7jXx6Xq+bSNPNkle+SAuOSEVMkVqZE6YeSBPJEX8mo9Ws/Wm/U+Gc1Z08w2+QXr4xsn/Jdo</latexit>

�-Greedy
<latexit sha1_base64="VO897OP7yut866D6PdYIJcxRyxg=">AAACAXicbVDLSsNAFJ3UV62vqitxE2wFN5ZEBHVXdKHLCtYWmlAmk9t26GQSZm7EEoobf8WNCxW3/oU7/8bpY6HVAwOHc+7hzj1BIrhGx/mycnPzC4tL+eXCyura+kZxc+tWx6liUGexiFUzoBoEl1BHjgKaiQIaBQIaQf9i5DfuQGkeyxscJOBHtCt5hzOKRmoXdzyEe9QsK3vCpEJaPrxUAOFg2C6WnIozhv2XuFNSIlPU2sVPL4xZGoFEJqjWLddJ0M+oQs4EDAteqiGhrE+70DJU0gi0n41PGNr7RgntTqzMk2iP1Z+JjEZaD6LATEYUe3rWG4n/ea0UO6d+xmWSIkg2WdRJhY2xPerDDrkChmJgCGWKm7/arEcVZWhaK5gS3NmT/5L6UeWs4l4fl6rn0zbyZJfskQPikhNSJVekRuqEkQfyRF7Iq/VoPVtv1vtkNGdNM9vkF6yPb2Ivlvo=</latexit><latexit sha1_base64="VO897OP7yut866D6PdYIJcxRyxg=">AAACAXicbVDLSsNAFJ3UV62vqitxE2wFN5ZEBHVXdKHLCtYWmlAmk9t26GQSZm7EEoobf8WNCxW3/oU7/8bpY6HVAwOHc+7hzj1BIrhGx/mycnPzC4tL+eXCyura+kZxc+tWx6liUGexiFUzoBoEl1BHjgKaiQIaBQIaQf9i5DfuQGkeyxscJOBHtCt5hzOKRmoXdzyEe9QsK3vCpEJaPrxUAOFg2C6WnIozhv2XuFNSIlPU2sVPL4xZGoFEJqjWLddJ0M+oQs4EDAteqiGhrE+70DJU0gi0n41PGNr7RgntTqzMk2iP1Z+JjEZaD6LATEYUe3rWG4n/ea0UO6d+xmWSIkg2WdRJhY2xPerDDrkChmJgCGWKm7/arEcVZWhaK5gS3NmT/5L6UeWs4l4fl6rn0zbyZJfskQPikhNSJVekRuqEkQfyRF7Iq/VoPVtv1vtkNGdNM9vkF6yPb2Ivlvo=</latexit><latexit sha1_base64="VO897OP7yut866D6PdYIJcxRyxg=">AAACAXicbVDLSsNAFJ3UV62vqitxE2wFN5ZEBHVXdKHLCtYWmlAmk9t26GQSZm7EEoobf8WNCxW3/oU7/8bpY6HVAwOHc+7hzj1BIrhGx/mycnPzC4tL+eXCyura+kZxc+tWx6liUGexiFUzoBoEl1BHjgKaiQIaBQIaQf9i5DfuQGkeyxscJOBHtCt5hzOKRmoXdzyEe9QsK3vCpEJaPrxUAOFg2C6WnIozhv2XuFNSIlPU2sVPL4xZGoFEJqjWLddJ0M+oQs4EDAteqiGhrE+70DJU0gi0n41PGNr7RgntTqzMk2iP1Z+JjEZaD6LATEYUe3rWG4n/ea0UO6d+xmWSIkg2WdRJhY2xPerDDrkChmJgCGWKm7/arEcVZWhaK5gS3NmT/5L6UeWs4l4fl6rn0zbyZJfskQPikhNSJVekRuqEkQfyRF7Iq/VoPVtv1vtkNGdNM9vkF6yPb2Ivlvo=</latexit><latexit sha1_base64="VO897OP7yut866D6PdYIJcxRyxg=">AAACAXicbVDLSsNAFJ3UV62vqitxE2wFN5ZEBHVXdKHLCtYWmlAmk9t26GQSZm7EEoobf8WNCxW3/oU7/8bpY6HVAwOHc+7hzj1BIrhGx/mycnPzC4tL+eXCyura+kZxc+tWx6liUGexiFUzoBoEl1BHjgKaiQIaBQIaQf9i5DfuQGkeyxscJOBHtCt5hzOKRmoXdzyEe9QsK3vCpEJaPrxUAOFg2C6WnIozhv2XuFNSIlPU2sVPL4xZGoFEJqjWLddJ0M+oQs4EDAteqiGhrE+70DJU0gi0n41PGNr7RgntTqzMk2iP1Z+JjEZaD6LATEYUe3rWG4n/ea0UO6d+xmWSIkg2WdRJhY2xPerDDrkChmJgCGWKm7/arEcVZWhaK5gS3NmT/5L6UeWs4l4fl6rn0zbyZJfskQPikhNSJVekRuqEkQfyRF7Iq/VoPVtv1vtkNGdNM9vkF6yPb2Ivlvo=</latexit>
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restarts
<latexit sha1_base64="00Xz56vY8QiKq3drn3unJLYKhoE=">AAACAHicbVBNS8NAEN3Ur1q/ol4EL8EieCqJFNRbwYvHCsYWmlA220m7dPPB7kRaQr34V7x4UPHqz/Dmv3Hb5qCtDwYe783szrwgFVyhbX8bpZXVtfWN8mZla3tnd8/cP7hXSSYZuCwRiWwHVIHgMbjIUUA7lUCjQEArGF5P/dYDSMWT+A7HKfgR7cc85IyilrrmkRcFySj3EEaoWC5BIZWoJpOuWbVr9gzWMnEKUiUFml3zy+slLIsgRiaoUh3HTtHP9WucCZhUvExBStmQ9qGjaUwjUH4+u2BinWqlZ4WJ1BWjNVN/T+Q0UmocBbozojhQi95U/M/rZBhe+jmP0wwhZvOPwkxYmFjTOKwel8BQjDWhTHK9q8UGVFKGOrSKDsFZPHmZuOe1q5pzW6826kUaZXJMTsgZccgFaZAb0iQuYeSRPJNX8mY8GS/Gu/Exby0Zxcwh+QPj8welhJfS</latexit><latexit sha1_base64="00Xz56vY8QiKq3drn3unJLYKhoE=">AAACAHicbVBNS8NAEN3Ur1q/ol4EL8EieCqJFNRbwYvHCsYWmlA220m7dPPB7kRaQr34V7x4UPHqz/Dmv3Hb5qCtDwYe783szrwgFVyhbX8bpZXVtfWN8mZla3tnd8/cP7hXSSYZuCwRiWwHVIHgMbjIUUA7lUCjQEArGF5P/dYDSMWT+A7HKfgR7cc85IyilrrmkRcFySj3EEaoWC5BIZWoJpOuWbVr9gzWMnEKUiUFml3zy+slLIsgRiaoUh3HTtHP9WucCZhUvExBStmQ9qGjaUwjUH4+u2BinWqlZ4WJ1BWjNVN/T+Q0UmocBbozojhQi95U/M/rZBhe+jmP0wwhZvOPwkxYmFjTOKwel8BQjDWhTHK9q8UGVFKGOrSKDsFZPHmZuOe1q5pzW6826kUaZXJMTsgZccgFaZAb0iQuYeSRPJNX8mY8GS/Gu/Exby0Zxcwh+QPj8welhJfS</latexit><latexit sha1_base64="00Xz56vY8QiKq3drn3unJLYKhoE=">AAACAHicbVBNS8NAEN3Ur1q/ol4EL8EieCqJFNRbwYvHCsYWmlA220m7dPPB7kRaQr34V7x4UPHqz/Dmv3Hb5qCtDwYe783szrwgFVyhbX8bpZXVtfWN8mZla3tnd8/cP7hXSSYZuCwRiWwHVIHgMbjIUUA7lUCjQEArGF5P/dYDSMWT+A7HKfgR7cc85IyilrrmkRcFySj3EEaoWC5BIZWoJpOuWbVr9gzWMnEKUiUFml3zy+slLIsgRiaoUh3HTtHP9WucCZhUvExBStmQ9qGjaUwjUH4+u2BinWqlZ4WJ1BWjNVN/T+Q0UmocBbozojhQi95U/M/rZBhe+jmP0wwhZvOPwkxYmFjTOKwel8BQjDWhTHK9q8UGVFKGOrSKDsFZPHmZuOe1q5pzW6826kUaZXJMTsgZccgFaZAb0iQuYeSRPJNX8mY8GS/Gu/Exby0Zxcwh+QPj8welhJfS</latexit><latexit sha1_base64="00Xz56vY8QiKq3drn3unJLYKhoE=">AAACAHicbVBNS8NAEN3Ur1q/ol4EL8EieCqJFNRbwYvHCsYWmlA220m7dPPB7kRaQr34V7x4UPHqz/Dmv3Hb5qCtDwYe783szrwgFVyhbX8bpZXVtfWN8mZla3tnd8/cP7hXSSYZuCwRiWwHVIHgMbjIUUA7lUCjQEArGF5P/dYDSMWT+A7HKfgR7cc85IyilrrmkRcFySj3EEaoWC5BIZWoJpOuWbVr9gzWMnEKUiUFml3zy+slLIsgRiaoUh3HTtHP9WucCZhUvExBStmQ9qGjaUwjUH4+u2BinWqlZ4WJ1BWjNVN/T+Q0UmocBbozojhQi95U/M/rZBhe+jmP0wwhZvOPwkxYmFjTOKwel8BQjDWhTHK9q8UGVFKGOrSKDsFZPHmZuOe1q5pzW6826kUaZXJMTsgZccgFaZAb0iQuYeSRPJNX8mY8GS/Gu/Exby0Zxcwh+QPj8welhJfS</latexit>

update
<latexit sha1_base64="bzprGOSPwxoiNSJEqsdlOAfe4hw=">AAAB/nicbVBNS8NAEN3Ur1q/ooIXL8EieCqJFNRbwYvHCtYWmlA2m0m7dPPB7kRaYg/+FS8eVLz6O7z5b9y2OWjrg4HHezPMzPNTwRXa9rdRWlldW98ob1a2tnd298z9g3uVZJJBiyUikR2fKhA8hhZyFNBJJdDIF9D2h9dTv/0AUvEkvsNxCl5E+zEPOaOopZ555EZ+MspdhBEqlmdpQBEmk55ZtWv2DNYycQpSJQWaPfPLDRKWRRAjE1SprmOn6OVUImcCJhU3U5BSNqR96Goa0wiUl8/un1inWgmsMJG6YrRm6u+JnEZKjSNfd0YUB2rRm4r/ed0Mw0sv53GaIcRsvijMhIWJNQ3DCrgEhmKsCWWS61stNqCSMtSRVXQIzuLLy6R1XruqObf1aqNepFEmx+SEnBGHXJAGuSFN0iKMPJJn8krejCfjxXg3PuatJaOYOSR/YHz+ANUqlsk=</latexit><latexit sha1_base64="bzprGOSPwxoiNSJEqsdlOAfe4hw=">AAAB/nicbVBNS8NAEN3Ur1q/ooIXL8EieCqJFNRbwYvHCtYWmlA2m0m7dPPB7kRaYg/+FS8eVLz6O7z5b9y2OWjrg4HHezPMzPNTwRXa9rdRWlldW98ob1a2tnd298z9g3uVZJJBiyUikR2fKhA8hhZyFNBJJdDIF9D2h9dTv/0AUvEkvsNxCl5E+zEPOaOopZ555EZ+MspdhBEqlmdpQBEmk55ZtWv2DNYycQpSJQWaPfPLDRKWRRAjE1SprmOn6OVUImcCJhU3U5BSNqR96Goa0wiUl8/un1inWgmsMJG6YrRm6u+JnEZKjSNfd0YUB2rRm4r/ed0Mw0sv53GaIcRsvijMhIWJNQ3DCrgEhmKsCWWS61stNqCSMtSRVXQIzuLLy6R1XruqObf1aqNepFEmx+SEnBGHXJAGuSFN0iKMPJJn8krejCfjxXg3PuatJaOYOSR/YHz+ANUqlsk=</latexit><latexit sha1_base64="bzprGOSPwxoiNSJEqsdlOAfe4hw=">AAAB/nicbVBNS8NAEN3Ur1q/ooIXL8EieCqJFNRbwYvHCtYWmlA2m0m7dPPB7kRaYg/+FS8eVLz6O7z5b9y2OWjrg4HHezPMzPNTwRXa9rdRWlldW98ob1a2tnd298z9g3uVZJJBiyUikR2fKhA8hhZyFNBJJdDIF9D2h9dTv/0AUvEkvsNxCl5E+zEPOaOopZ555EZ+MspdhBEqlmdpQBEmk55ZtWv2DNYycQpSJQWaPfPLDRKWRRAjE1SprmOn6OVUImcCJhU3U5BSNqR96Goa0wiUl8/un1inWgmsMJG6YrRm6u+JnEZKjSNfd0YUB2rRm4r/ed0Mw0sv53GaIcRsvijMhIWJNQ3DCrgEhmKsCWWS61stNqCSMtSRVXQIzuLLy6R1XruqObf1aqNepFEmx+SEnBGHXJAGuSFN0iKMPJJn8krejCfjxXg3PuatJaOYOSR/YHz+ANUqlsk=</latexit><latexit sha1_base64="bzprGOSPwxoiNSJEqsdlOAfe4hw=">AAAB/nicbVBNS8NAEN3Ur1q/ooIXL8EieCqJFNRbwYvHCtYWmlA2m0m7dPPB7kRaYg/+FS8eVLz6O7z5b9y2OWjrg4HHezPMzPNTwRXa9rdRWlldW98ob1a2tnd298z9g3uVZJJBiyUikR2fKhA8hhZyFNBJJdDIF9D2h9dTv/0AUvEkvsNxCl5E+zEPOaOopZ555EZ+MspdhBEqlmdpQBEmk55ZtWv2DNYycQpSJQWaPfPLDRKWRRAjE1SprmOn6OVUImcCJhU3U5BSNqR96Goa0wiUl8/un1inWgmsMJG6YrRm6u+JnEZKjSNfd0YUB2rRm4r/ed0Mw0sv53GaIcRsvijMhIWJNQ3DCrgEhmKsCWWS61stNqCSMtSRVXQIzuLLy6R1XruqObf1aqNepFEmx+SEnBGHXJAGuSFN0iKMPJJn8krejCfjxXg3PuatJaOYOSR/YHz+ANUqlsk=</latexit>

�-dGreedy
<latexit sha1_base64="fXWT/V09Z1J46fxE3hCQriFOa5k=">AAACAnicbVDLSsNAFJ3UV62vqjvdBFvBjSURQd0VXeiygrWFJpTJ5LYdOpmEmRuxhIIbf8WNCxW3foU7/8bpY6HVAwOHc+7hzj1BIrhGx/mycnPzC4tL+eXCyura+kZxc+tWx6liUGexiFUzoBoEl1BHjgKaiQIaBQIaQf9i5DfuQGkeyxscJOBHtCt5hzOKRmoXdzyEe9QsK3vCpEJaPgwvFUA4GLaLJafijGH/Je6UlMgUtXbx0wtjlkYgkQmqdct1EvQzqpAzAcOCl2pIKOvTLrQMlTQC7WfjG4b2vlFCuxMr8yTaY/VnIqOR1oMoMJMRxZ6e9Ubif14rxc6pn3GZpAiSTRZ1UmFjbI8KsUOugKEYGEKZ4uavNutRRRma2gqmBHf25L+kflQ5q7jXx6Xq+bSNPNkle+SAuOSEVMkVqZE6YeSBPJEX8mo9Ws/Wm/U+Gc1Z08w2+QXr4xsn/Jdo</latexit><latexit sha1_base64="fXWT/V09Z1J46fxE3hCQriFOa5k=">AAACAnicbVDLSsNAFJ3UV62vqjvdBFvBjSURQd0VXeiygrWFJpTJ5LYdOpmEmRuxhIIbf8WNCxW3foU7/8bpY6HVAwOHc+7hzj1BIrhGx/mycnPzC4tL+eXCyura+kZxc+tWx6liUGexiFUzoBoEl1BHjgKaiQIaBQIaQf9i5DfuQGkeyxscJOBHtCt5hzOKRmoXdzyEe9QsK3vCpEJaPgwvFUA4GLaLJafijGH/Je6UlMgUtXbx0wtjlkYgkQmqdct1EvQzqpAzAcOCl2pIKOvTLrQMlTQC7WfjG4b2vlFCuxMr8yTaY/VnIqOR1oMoMJMRxZ6e9Ubif14rxc6pn3GZpAiSTRZ1UmFjbI8KsUOugKEYGEKZ4uavNutRRRma2gqmBHf25L+kflQ5q7jXx6Xq+bSNPNkle+SAuOSEVMkVqZE6YeSBPJEX8mo9Ws/Wm/U+Gc1Z08w2+QXr4xsn/Jdo</latexit><latexit sha1_base64="fXWT/V09Z1J46fxE3hCQriFOa5k=">AAACAnicbVDLSsNAFJ3UV62vqjvdBFvBjSURQd0VXeiygrWFJpTJ5LYdOpmEmRuxhIIbf8WNCxW3foU7/8bpY6HVAwOHc+7hzj1BIrhGx/mycnPzC4tL+eXCyura+kZxc+tWx6liUGexiFUzoBoEl1BHjgKaiQIaBQIaQf9i5DfuQGkeyxscJOBHtCt5hzOKRmoXdzyEe9QsK3vCpEJaPgwvFUA4GLaLJafijGH/Je6UlMgUtXbx0wtjlkYgkQmqdct1EvQzqpAzAcOCl2pIKOvTLrQMlTQC7WfjG4b2vlFCuxMr8yTaY/VnIqOR1oMoMJMRxZ6e9Ubif14rxc6pn3GZpAiSTRZ1UmFjbI8KsUOugKEYGEKZ4uavNutRRRma2gqmBHf25L+kflQ5q7jXx6Xq+bSNPNkle+SAuOSEVMkVqZE6YeSBPJEX8mo9Ws/Wm/U+Gc1Z08w2+QXr4xsn/Jdo</latexit><latexit sha1_base64="fXWT/V09Z1J46fxE3hCQriFOa5k=">AAACAnicbVDLSsNAFJ3UV62vqjvdBFvBjSURQd0VXeiygrWFJpTJ5LYdOpmEmRuxhIIbf8WNCxW3foU7/8bpY6HVAwOHc+7hzj1BIrhGx/mycnPzC4tL+eXCyura+kZxc+tWx6liUGexiFUzoBoEl1BHjgKaiQIaBQIaQf9i5DfuQGkeyxscJOBHtCt5hzOKRmoXdzyEe9QsK3vCpEJaPgwvFUA4GLaLJafijGH/Je6UlMgUtXbx0wtjlkYgkQmqdct1EvQzqpAzAcOCl2pIKOvTLrQMlTQC7WfjG4b2vlFCuxMr8yTaY/VnIqOR1oMoMJMRxZ6e9Ubif14rxc6pn3GZpAiSTRZ1UmFjbI8KsUOugKEYGEKZ4uavNutRRRma2gqmBHf25L+kflQ5q7jXx6Xq+bSNPNkle+SAuOSEVMkVqZE6YeSBPJEX8mo9Ws/Wm/U+Gc1Z08w2+QXr4xsn/Jdo</latexit>

�-Greedy
<latexit sha1_base64="VO897OP7yut866D6PdYIJcxRyxg=">AAACAXicbVDLSsNAFJ3UV62vqitxE2wFN5ZEBHVXdKHLCtYWmlAmk9t26GQSZm7EEoobf8WNCxW3/oU7/8bpY6HVAwOHc+7hzj1BIrhGx/mycnPzC4tL+eXCyura+kZxc+tWx6liUGexiFUzoBoEl1BHjgKaiQIaBQIaQf9i5DfuQGkeyxscJOBHtCt5hzOKRmoXdzyEe9QsK3vCpEJaPrxUAOFg2C6WnIozhv2XuFNSIlPU2sVPL4xZGoFEJqjWLddJ0M+oQs4EDAteqiGhrE+70DJU0gi0n41PGNr7RgntTqzMk2iP1Z+JjEZaD6LATEYUe3rWG4n/ea0UO6d+xmWSIkg2WdRJhY2xPerDDrkChmJgCGWKm7/arEcVZWhaK5gS3NmT/5L6UeWs4l4fl6rn0zbyZJfskQPikhNSJVekRuqEkQfyRF7Iq/VoPVtv1vtkNGdNM9vkF6yPb2Ivlvo=</latexit><latexit sha1_base64="VO897OP7yut866D6PdYIJcxRyxg=">AAACAXicbVDLSsNAFJ3UV62vqitxE2wFN5ZEBHVXdKHLCtYWmlAmk9t26GQSZm7EEoobf8WNCxW3/oU7/8bpY6HVAwOHc+7hzj1BIrhGx/mycnPzC4tL+eXCyura+kZxc+tWx6liUGexiFUzoBoEl1BHjgKaiQIaBQIaQf9i5DfuQGkeyxscJOBHtCt5hzOKRmoXdzyEe9QsK3vCpEJaPrxUAOFg2C6WnIozhv2XuFNSIlPU2sVPL4xZGoFEJqjWLddJ0M+oQs4EDAteqiGhrE+70DJU0gi0n41PGNr7RgntTqzMk2iP1Z+JjEZaD6LATEYUe3rWG4n/ea0UO6d+xmWSIkg2WdRJhY2xPerDDrkChmJgCGWKm7/arEcVZWhaK5gS3NmT/5L6UeWs4l4fl6rn0zbyZJfskQPikhNSJVekRuqEkQfyRF7Iq/VoPVtv1vtkNGdNM9vkF6yPb2Ivlvo=</latexit><latexit sha1_base64="VO897OP7yut866D6PdYIJcxRyxg=">AAACAXicbVDLSsNAFJ3UV62vqitxE2wFN5ZEBHVXdKHLCtYWmlAmk9t26GQSZm7EEoobf8WNCxW3/oU7/8bpY6HVAwOHc+7hzj1BIrhGx/mycnPzC4tL+eXCyura+kZxc+tWx6liUGexiFUzoBoEl1BHjgKaiQIaBQIaQf9i5DfuQGkeyxscJOBHtCt5hzOKRmoXdzyEe9QsK3vCpEJaPrxUAOFg2C6WnIozhv2XuFNSIlPU2sVPL4xZGoFEJqjWLddJ0M+oQs4EDAteqiGhrE+70DJU0gi0n41PGNr7RgntTqzMk2iP1Z+JjEZaD6LATEYUe3rWG4n/ea0UO6d+xmWSIkg2WdRJhY2xPerDDrkChmJgCGWKm7/arEcVZWhaK5gS3NmT/5L6UeWs4l4fl6rn0zbyZJfskQPikhNSJVekRuqEkQfyRF7Iq/VoPVtv1vtkNGdNM9vkF6yPb2Ivlvo=</latexit><latexit sha1_base64="VO897OP7yut866D6PdYIJcxRyxg=">AAACAXicbVDLSsNAFJ3UV62vqitxE2wFN5ZEBHVXdKHLCtYWmlAmk9t26GQSZm7EEoobf8WNCxW3/oU7/8bpY6HVAwOHc+7hzj1BIrhGx/mycnPzC4tL+eXCyura+kZxc+tWx6liUGexiFUzoBoEl1BHjgKaiQIaBQIaQf9i5DfuQGkeyxscJOBHtCt5hzOKRmoXdzyEe9QsK3vCpEJaPrxUAOFg2C6WnIozhv2XuFNSIlPU2sVPL4xZGoFEJqjWLddJ0M+oQs4EDAteqiGhrE+70DJU0gi0n41PGNr7RgntTqzMk2iP1Z+JjEZaD6LATEYUe3rWG4n/ea0UO6d+xmWSIkg2WdRJhY2xPerDDrkChmJgCGWKm7/arEcVZWhaK5gS3NmT/5L6UeWs4l4fl6rn0zbyZJfskQPikhNSJVekRuqEkQfyRF7Iq/VoPVtv1vtkNGdNM9vkF6yPb2Ivlvo=</latexit>

Figure 1. The solution quality achieved by the λ-GREEDY after each constraints’ update, using a restart strategy, and the λ-DGREEDY operator. Each plot
shows results for a fixed standard deviation choice [σ] and fixed update frequency τ = 30K (for the Maximum Entropy Sampling) and τ = 50K (for Video
Summarization).

constraints, one for each continent.
We use the Berkeley Earth Surface Temperature Study, which com-
bines 1.6 billion temperature reports from 16 preexisting data archives.
This archive contains over 39000 unique stations from around the
world. More information on the Berkeley Earth project can be found
in [2]. Here, we consider unique time series defined as the average
monthly temperature for each station. Taking into account all data
between years 2015-2017, we obtain 2736 time series from the cor-
responding stations. Our experimental framework follows along the
lines of [15].

In our dynamic setting, for each continent, a given parameter di is
defined as a percentage value of the overall number of stations avail-
able on that continent, for all i ∈ [7]. We let parameters d1, . . . , d7
vary over time, as to simulate a setting where they are updated dynam-
ically. This situation could occur when operational costs slightly vary
overtime. We initially set all parameters to use 50% of the available
resources, and we introduce a variation of these parameters at regular

intervals, according toN (0, σ2), a Gaussian distribution of mean 0
and variance σ2, for all i ∈ [7].
We consider various choices for the standard deviation σ, but also
various choices for the time span between one dynamic update and the
next one (the parameter τ ). For each choice of σ and τ , we consider
a total of 50 sequences of changes. We perform statistical validation
using the Kruskal-Wallis test with 95% confidence. In order to com-
pare the results, we use the Bonferroni post-hoc statistical procedure.
This method is used for multiple comparisons of a control algorithm
against two or more other algorithms. We refer the reader to [9] for
more detailed descriptions of these statistical tests.

We compare the results in terms of the solution quality achieved
at each dynamic update by the λ-GREEDY and the λ-DGREEDY. We
summarize our results in the Table 2 (left) as follows. The columns
correspond to the results for λ-GREEDY and the λ-DGREEDY respec-
tively, along with the mean value, standard deviation, and statistical
comparison. The symbol X(+) is equivalent to the statement that the



algorithm labelled as X significantly outperformed the other one.
Table 2 (left) shows that the λ-DGREEDY has a better performance
than the λ-GREEDY algorithm with restarts, when dynamic changes
occur, especially for the highest frequencies τ = 10K, 20K. This
shows that the λ-DGREEDY is suitable in settings when frequent dy-
namic changes occur. The λ-GREEDY yields improved performance
with lower frequencies, but it under-perform the λ-DGREEDY on our
dataset.
Figure 1 (left) shows the solution quality values achieved by the
λ-GREEDY and the λ-DGREEDY, for different choices of the stan-
dard deviation σ = 0.075, 0.05, 0.1. Again, we observe that the λ-
DGREEDY finds solutions that have better quality than the λ-GREEDY

with restarts. Even though the λ-DGREEDY in some cases aligns with
the λ-GREEDY with restarts, the performance of the λ-DGREEDY is
clearly better than that of the simple λ-GREEDY with restarts. The
code for this set of experiments is available upon request.

Determinantal Point Processes We conclude with a dynamic set
of experiments on a video summarization task as in Section 5. We
define the corresponding matrix L using the quality-diversity decom-
position, as proposed in [20]. Specifically, we define the coefficients
Li,j of this matrix as Li,j = q(i)k(i, j)q(j), with q(i) representing
the quality of the i-th frame and k(i, j) being the diversity between
the i-th and j-th frame. For the quality measure, we use the byte
size bi of the i-th frame and a fixed parameter θ > 0 as follows
q(i) = exp (θbi/2). We choose θ such that the resulting eigen-
values of L are positive. This ensures that the resulting function
log(det(LS)) is non-negative.
For the diversity measure k, we compare commonly used de-
scriptors for pictures. We use COLOR2, COLOR3, SIFT256,
SIFT512 and GIST feature vectors, as described in [21]. Let
F = {COLOR2,COLOR3, SIFT256, SIFT512,GIST}. For each
f ∈ F , let vfi be the f -feature vector of the i-th frame. Then the
diversity measure is defined as

k(i, j) = exp

−∑
f∈F

||vfi − v
f
j ||

2
2

σf

 ,

with σf a parameter for this feature11. To learn these parameters we
use the Markov Chain Monte Carlo (MCMC) method (see [1]).

We use movie clips from the Frames Labeled In Cinema dataset
[14]. We use 16 movies with 150-550 frames each to learn the pa-
rameters and one test movie with approximately 400 frames for our
experiments. For each movie, we generate 5-10 samples (depending
on the total amount of frames) of sets with 10-20 frames as training
data. We then use MCMC on the training data to learn the parameters
for each movie. When testing the λ-GREEDY and the λ-DGREEDY,
we use the sample median of the trained parameters.

In this set of experiments, we consider a constraint by which the set
of selected frames must not exceed a memory threshold. We define
a cost function c(S) as the sum of the size of each frame in S. As
each frame comes with its own size in memory, choosing the best
frames under certain memory budget is equivalent to maximizing a
submodular function under a linear knapsack constraint.
The weight W is given range [0%, 100%], with respect to the total
weight c(V ), and it is updated dynamically throughout the optimiza-
tion process, according to a Gaussian distribution N (0, σ2), for a
given variance σ2. This settings simulates a situation by which the
overall available memory exhibits small frequent variation.
11 In our setting we combine the parameters σCOLOR2 = σCOLOR3 and
σSIFT256 = σSIFT512.

We select various parameter choices for the standard deviation
σ, and the frequency τ with which a dynamic update occurs. We
investigate the settings σ = 0.075, 0.05, 0.1, and τ = 10K, 20K, 30K,
40K, 50K. Each combination of σ and τ carries out 50 dynamic
changes. Again, we validate our results using the Kruskal-Wallis test
with 95% confidence. To compare the obtained results, we apply the
Bonferroni post-hoc statistical test [9].

The results are presented in the Table 2 (right). We observe that
the λ-DGREEDY yields better performance than the λ-GREEDY with
restarts when dynamic changes occur. Similar findings are obtained
when comparing a different standard deviation choice σ = 0.075,
0.05, 0.1. Specifically, for the highest frequency τ = 10K, the λ-
DGREEDY achieves better results by approximately one order of
magnitude.
Figure 1 (right) shows the solution quality values obtained by the
λ-DGREEDY and the λ-GREEDY, as the frequency is set to τ = 50K.
It can be observed that, for σ = 0.075, 0.05, 0.1, the λ-DGREEDY

significantly outperforms the λ-GREEDY with restarts, for almost all
50 updates. The code for this set of experiments is available upon
request.

8 CONCLUSION

Many real-world optimization problems can be approached as sub-
modular maximization with multiple knapsack constraints (see Prob-
lem 3). Previous studies for this problem show that it is possible to
approach this problem with a variety of heuristics. These heuristics
often involve a local search, and require continuous relaxations of
the discrete problem, and they are impractical. We propose a simple
discrete greedy algorithm (see Algorithm 1) to approach this prob-
lem, that has polynomial run time and yields strong approximation
guarantees for functions with bounded curvature (see Definition 2 and
Theorem 5).

Furthermore, we study the problem of maximizing a submodular
function, when knapsack constraints involve dynamic components.
We study a setting by which the weightsWi of a given set of knapsack
constraints change overtime. To this end, we introduce a robust vari-
ation of our λ-GREEDY algorithm that allows for handling dynamic
constraints online (see Algorithm 2). We prove that this operator
allows to maintain strong approximation guarantees for functions
with bounded curvature, when constraints change dynamically (see
Theorem 6).

We show that, in static settings, Algorithm 1 competes with FAN-
TOM, which is a popular algorithm for handling these constraints (see
Table 1). Furthermore, we show that the λ-DGREEDY is useful in
dynamic settings. To this end, we compare the λ-DGREEDY with the
λ-GREEDY combined with a restart policy, by which the optimization
process starts from scratch at each dynamic update. We observe that
the λ-DGREEDY yields significant improvement over a restart in dy-
namic settings with limited computational time budget (see Figure 1
and Table 2).
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Appendix: Missing Proofs
Proof of Theorem 5
We first observe that, for a given λ, λ-GREEDY has two phases. During the first phase, λ-GREEDY adds points to the current solution iteratively.
During the second phase, λ-GREEDY finds the optimum among single-element sets and sets containing only elements whose cost is lower-
bounded with ci(e) > λWi/λ for all i ∈ [n]. The greedy procedure requires at most O

(
n2
)

steps, while the second procedure requires at

most O
(
nk/λ

)
steps, since all feasible solutions such that ci(e) > λWi/k consist of at most k/λ points. Hence, the resulting run time is

O
(
nmax(k/λ,2)

)
run time.

We now prove the λ-GREEDY yields the desired approximation guarantee. To this end, we define

V = V1 = {e ∈ V : cj(e) ≤ λWj/k ∀j ∈ [k]} and V2 = V \ V1.

Without loss of generality we assume that W1 = · · · = Wk. We denote with W the weight of each knapsack. Let σt be a solution of the greedy
phase at time step t. Let r ≥ 0 be the smallest index, such that

1. cj(σt) ≤W for all j ∈ [k], for all t ∈ [r − 1];
2. there exists j ∈ [k] such that cj(σr) > W .

In other words, r is the first point it time such that the new greedy solution does not fulfill all knapsacks at the same time. We first prove that
either the solution σr−1 or the point v∗ = arg maxe∈V f(e) yields a good approximation guarantee of OPT ∩ V1.

To simplify the notation, we define ft = f(σt)− f(σt−1) and vt = σt \ σt−1, for all t ∈ [r]. We have that it holds

fσt−1(OPT ∩ V1) ≤
∑

e∈OPT\σt−1

fσt−1(e) (1)

=
∑

e∈(OPT∩V1)\σt−1

max
j
cj(e)

fσt−1(e)

maxj cj(e)
(2)

≤ ft
maxj c(vt)

∑
e∈OPT\σt−1

max
j
cj(e) (3)

≤ λW

maxj c(vi)
ft (4)

where (1) follows from the assumption that f is submodular; (3) follows from (2) due to the greedy choice of Algorithm 1; (4) uses the fact that
c(OPT) ≤W , together with the fact that c(e) ≤Wλ/k for all c ∈ V1, for all j ∈ [k]. Rearranging yields

ft ≥
maxj cj(vi)

λW
(f(σt−1 ∪ (OPT ∩ V1))− f(σt−1)). (5)

To continue with the proof, we consider the following lemma, which follows along the lines of Lemma 1 in [15].

Lemma 7 Following the notation introduced above, define the set J = {t ∈ [n] : vt ∈ OPT}. Then for any subset T ⊆ V it holds

f(σt ∪ T ) ≥ f(T ) + (1− α)f(σt)− (1− α)
∑

j∈[t]∩J

fj .

for all t ∈ [r].

Proof: From the definition of curvature we have that

f(σi ∪ OPT)− f(σi−1 ∪ OPT) ≥ (1− α) (f(σi)− f(σi−1)) .

for all i = 1, . . . , t. It follows that

f(σt ∪ OPT) ≥ f(σt−1 ∪ OPT) + (1− α) (f(σt)− f(σt−1)) (6)

≥ f(∅ ∪ OPT) +

t∑
j=1

(1− α) (f(σj)− f(σj−1)) (7)

= f(OPT) + (1− α) (f(σt)− f(∅)) , (8)

where (7) follows by iteratively applying (6) to the f(Uj−1 ∪ OPT), and (8) follows by taking the telescopic sum. �
Note that Lemma 7 yields f(σt ∪ (OPT ∩ V1)) ≥ f(OPT ∩ V1) + (1 − max(1, α))f(σt), since α ∈ [0, 1] if and only if the function f is
monotone. Combining this observation with (5) yields

ft ≥
maxj cj(vi)

max(1, α)λW
f(OPT ∩ V1)− maxj cj(vi)

λW

∑
i∈[t−1]

fi,



where we have simply used the telescopic sum over the f(σt). Defining xt = ft/f(OPT ∩ V1) for all t ∈ [r] we can write the inequality above
as

max(1, α)λW

maxj cj(vt)
xt + max(1, α)

∑
i∈[t−1]

xi ≥ 1. (9)

We conclude the proof by showing that any array of solutions (x1, . . . , xn) with coefficients xi ∈ [0, 1] that fulfils the LP as in (9) yields∑
t∈[r]

xt ≥
∑
t∈[r]

maxj cj(vt)

max(1, α)λW

∏
i∈[t−1]

(
1− maxj cj(vi)

λW

)
. (10)

In order to prove (10), since it holds xt ∈ [0, 1] for all t ∈ [r], we can simplify our setting, by studying the system

max(1, α)λW

maxj cj(vt)
xt + max(1, α)

∑
i∈[t−1]

xi = 1. (11)

This is due to the fact that the sum of the coefficients of any solution of (11) are upper-bounded by the sum of the coefficients of a solution of
(10). We continue with the following simple lemma.

Lemma 8 Let (x1, . . . , xr) be a solution of the LP as in (11). Than it holds

xt ≥
maxj cj(vt)

max(1, α)λW

∏
i∈[t−1]

(
1− maxj cj(vi)

λW

)
,

for all t ∈ [r].

Proof: Define ct = maxj cj(vt)/(max(1, α)λW ) for all t ∈ [r]. Then the LP as in (11) can be written as

xt
ct

= 1−max(1, α)

t−1∑
i=1

xt.

By defining yt = xt/ct for all t ∈ [r], we have that yt − yt−1 = −max(1, α)xt−1 = −max(1, α)ct−1yt−1, and we obtain the following
recurrent relation yt + (max(1, α)ct − 1)yt−1 = 0, for all t > 1. This is a recurrent linear equation with solutions

yt =

t−1∏
j=1

(1−max(1, α)cj).

The claim follows, by substituting xt in the equation above. �
Hence, we have that it holds

f(σr) = f(OPT ∩ V1)
∑
t

xt (12)

≥ f(OPT ∩ V1)
∑
t

maxj cj(vt)

max(1, α)kW

∏
i∈[t−1]

(
1− maxj cj(vi)

λW

)
(13)

≥ f(OPT ∩ V1)

max(1, α)

1−
∏
i∈[r]

(
1− maxj cj(vi)

λW

) (14)

≥ f(OPT ∩ V1)

max(1, α)

1− exp

−∑
i∈[r]

maxj cj(vi)

λW


 , (15)

where (12) holds by taking the telescopic sum; (13) follows from Lemma 8; (14) follows via standard calculations; (15) follows because
1− x ≤ e−x. Consider an index ` such that c`(σr) > W . We have that it holds

f(σr) ≥
1

max(1, α)

1− exp

−max(1, α)
∑
i∈[r]

maxj cj(vi)

λW


 f(OPT ∩ V1)

≥ 1

max(1, α)

1− exp

−max(1, α)
∑
i∈[r]

c`(vi)

λW


 f(OPT ∩ V1)

≥ 1

max(1, α)

(
1− e−1/λ

)
f(OPT ∩ V1).



We conclude by proving that Algorithm 1 yields the the desired approximation guarantee. To this end, let

U = arg max
{W⊆V2 : cj(U)≤Wj ∀j∈[k]}

{f(W ) ≥ f(OPT ∩ V2)} .

Hence, following the notation of Algorithm 1, and denoting with v∗ the point with maximum f -value among the singletons, it follows that

arg max
{

f(σr−1), f(U), f(v∗)} ≥ 1

3
(f(σr−1) + f(U) + f(v∗))

≥ 1

3
(f(σr−1) + f(vr) + f(U))

≥ 1

3
f(σr + f(U))

≥ 1

3 max(1, α)

(
1− e−1/λ

)
f(OPT ∩ V1) + f(OPT ∩ V2)

≥ 1

3 max(1, α)

(
1− e−1/λ

)
f(OPT),

where the last inequality follows from submodularity. The claim follows.

Proof of Theorem 6
We prove that the claim holds after ` > 1 weights updates were given since the beginning of the optimization process. We denote with
W ∗i = {Wi,1, . . . ,Wi,k} the i-th new sequence of dynamic weights. Furthermore, define χ` = min{|χ(c,W`)| , |χ(c,W`−1)|} and V` =
{e ∈ V : ci(e) ≤ λW`,i/k ∀i ∈ [k]}., let σ`,t be as the current solution at time step t, after new dynamic weights W ∗` were given. Let r` ≥ 0
be the smallest index, such that

1. ci(σ`,t) ≤W`,i, for all e ∈ V , t ∈ [r` − 1] and for all i ∈ [k];
2. ci(σ`,r`) > W`,i, for some i ∈ [k].

In other words, r` is the first point it time, after the `-th weight update, such that the set maximizing the greedy step is not feasible. We prove
that the λ-DGREEDY maintains the desired approximation guarantee. Note that at each step, the λ-DGREEDY requires at most n calls to the
value oracle function. Then the λ-GREEDY with restarts requires O (n(n− χ`))) additional run time to construct the solution σ`,r` .

In order to prove the desired lower-bound on the approximation guarantee, we prove that the solution σ`,r` is identical to a solution of the
same size constructed by the λ-GREEDY starting from the empty set, under side constraints specified by W ∗` . The claim then follows, by readily
applying Theorem 5.

Define di = σ`,r` and denote with {v`,1, . . . , v`,t, . . . , v`,d`} the points of σ`,r` sorted in the order that they were added to the solution.
Define the sets

σ̂`,t = ∅ for t = 0;
σ̂`,t = {v`,1, . . . , v`,t} for t ∈ [d`];

Note that, according to this definition, it holds σ̂`,t = σ`,r` for all ` ∈ [m]. We prove that the solution σ`,r` is equal to a solution if the same
size constructed by the λ-GREEDY from scratch, by showing that it holds

v`,t = arg max
e∈V \σ̂`,t−1

fσ̂`,t−1(e)

maxj cj(e)
(16)

for all t ∈ [d`], for all ` ∈ [m], with an induction argument on `. The base case for ` = 1 holds due to the greedy rule, since in this case the
optimization process consists of greedily adding points to the current solution, starting from the empty set.

For the inductive case, suppose that the claim holds for all runs up to `− 1. Note that, since the functions cj are linear, it holds

cj(T ) ≤
∑
e∈T

max
j
cj(e) ≤

∑
e∈χ`

max
j
cj(e) ≤W`,j ,

for all T ∈ V such that |T | ≤ |χ`|. Hence, all subsets of V of size at most T are feasible solutions in the k-knapsack intersection. Similarly,
one can prove that cj(T ) ≤ W`−1,j , for all T ∈ V such that |T | ≤ |χ`|. Hence, all solutions with size at most |χ| are feasible in both
constraints defined by W ∗`−1 and W ∗` . In particular, solutions obtained by Algorithm 1 up to size at most |χ`|, are identical in both constraints,
i.e. σ̂`,t = σ̂`−1,t. Combining these observations with the inductive hypothesis on v`−1,t, we get

v`,t = v`−1,t = arg max
e∈V \σ̂`−1,t−1

fσ̂`−1,t−1(e)

maxj cj(e)
= arg max
e∈V \σ̂i,t−1

fσ̂`,t−1(e)

maxj cj(e)
,

for all t ≤ |χ`|. We conclude that (16) holds for all vi,t with t ≤ |χ`|. Note that for |χ`| < t ≤ r` the claim holds due to the greedy rule, hence
(16) holds. Furthermore, note that the new solution is in the set V`. Combining Theorem 5 with (16), we conclude that σ`,r` yields the desired
approximation guarantee.
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