

Deep Learning for Ultrasound Image Analysis

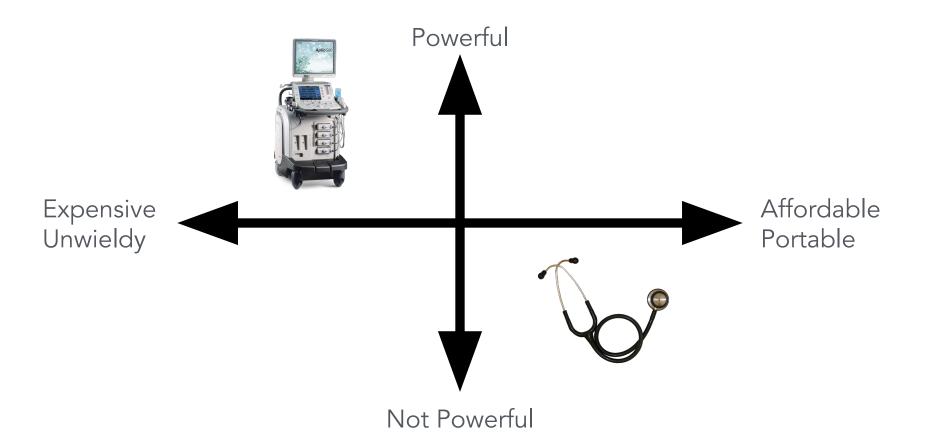
Michal Sofka, PhD

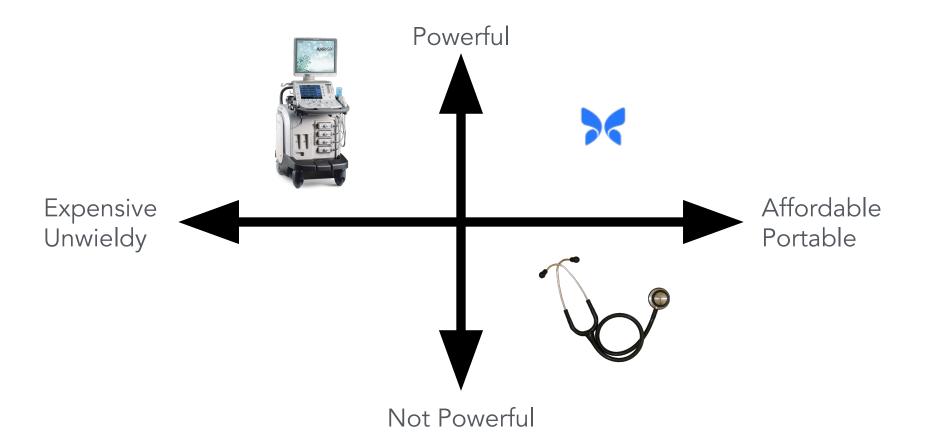
Stethoscope

- ✓ Affordable
- ✓ Portable
- Pervasive
- X Can't see inside the body
- × Limited diagnostic value

Traditional Ultrasound

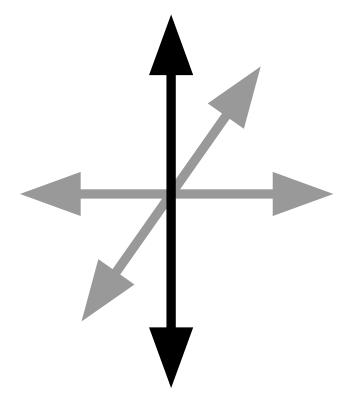
- See inside the body in real time
- ✓ Powerful diagnostic
- **x** Expensive
- X Unwieldy
- × Scarce





Minimal experience required

- Ultrasound requires specialized training
 - Radiologists, Sonographers
- Delay between requests and reads can be hours
- Point-of-care US



Requires years of training

From Idea to Product

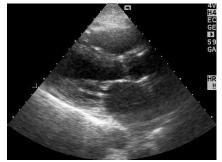
What does it take to actually get a medical ML system to production?

Bigger Datasets

MNIST Handwritten digits	60k training + 10k testing	
Google House Numbers	600k training + 30k testing	
CIFAR-10	50k training + 10k testing	
PASCAL VOC	11k training in 20 classes	
ImageNet	1mm Training in 1000 classes	

Most medical image/voxel datasets have fewer than 300 samples in both training and test

Does your dataset distribution match the real world?



Normal 43%

Sigmoid Septum 8%

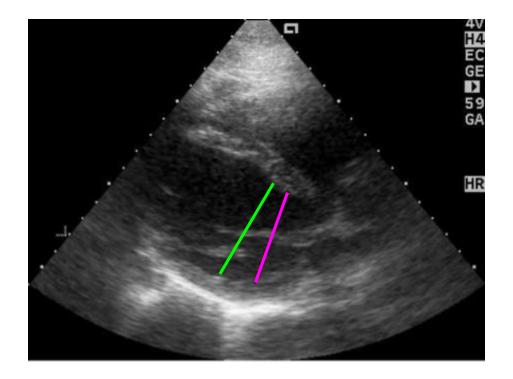
Dilated 13%

Banana Shaped 6%

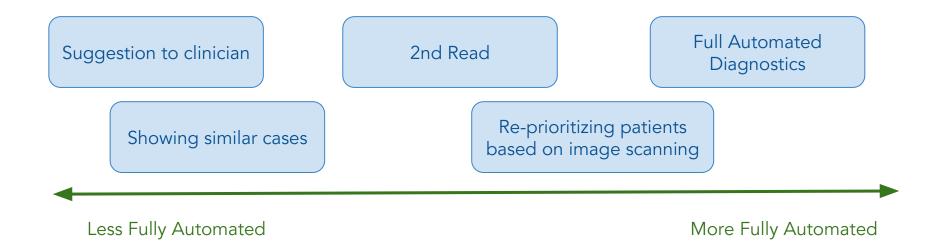
LV hypertrophy 9%

Cavity Obliteration 5%

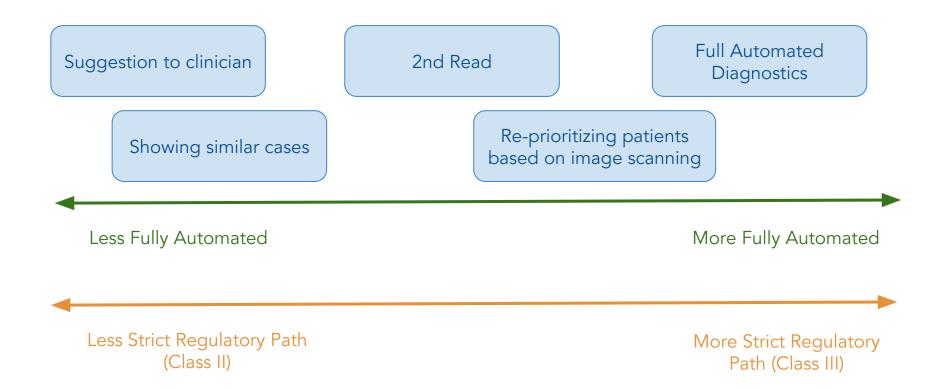
Annotator variability



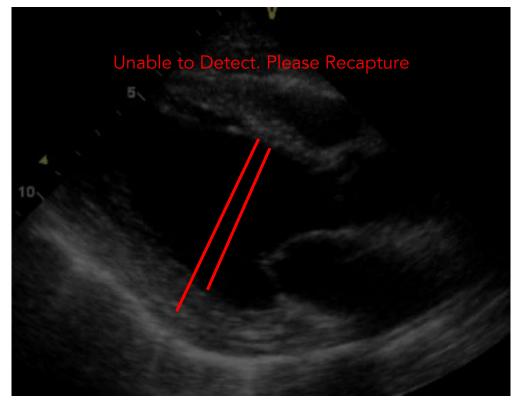
You don't need to be fully automatic to be clinically useful



You don't need to be fully automatic to be clinically useful

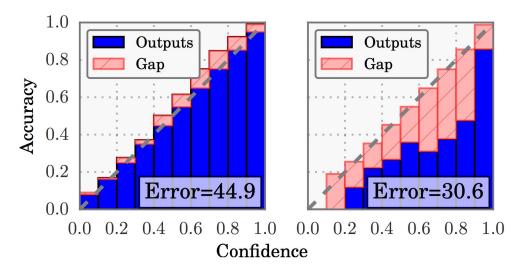


Quality Control



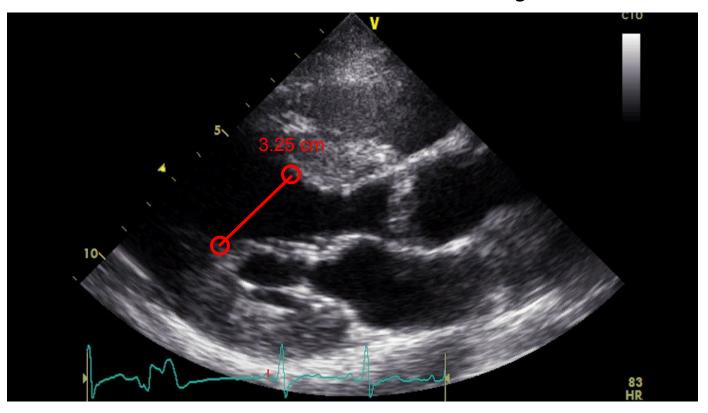
Model Confidence

- Important to know when a model is not confident.
 - Most DL models are poorly calibrated [1].
 - If a model isn't confident, need to turn over control to a human.



^[1] On Calibration of Modern Neural Networks, Chuan Guo, Geoff Pleiss, Yu Sun, Kilian Q. Weinberger

Provenance and Correctability



Domain Adaptation

 $zebra \rightarrow horse$

summer \rightarrow winter

Zhu et al, ICCV 2017

Philips Medical Systems

3:12:00 PM

RAB2-5-RSIABD MI 1.1 117.cm / 42Hz Tis 0.2 02/09/2006 01/40/42 PM Ahd. Pert. 6.30 2.70 9 Pert 1000 01/40/42 PM 6.30 2.70 Pert 1000 01/40/42 PM 9.80 00.20 C GL MD 01/40/42 PM 01/40/42 PM 01/40/42 PM Pert 1000 01/40/42 PM 01/40/42 PM

 $GE \rightarrow Philips$

?

Liu et al., NIPS 2017

Domain Adaptation

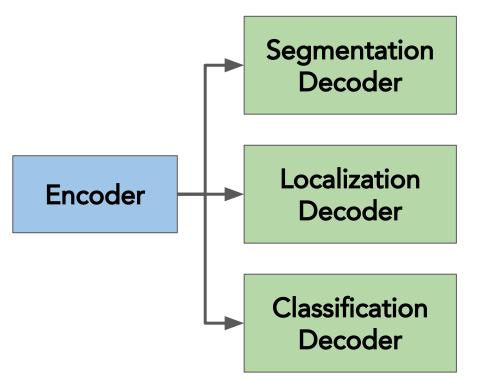
- Pixel-level domain adaptation across imaging devices
- Can we ensure that we don't introduce unwanted artifacts

Train	Test	Accuracy	Mean Class
External Device	Butterfly	49.6%	62.0%
Fake Butterfly	Butterfly	95.2%	96.7%
Butterfly	Butterfly	97.2%	98.1%

Harry Yang, USC PhD Candidate

Multi-Task Models

- How can we leverage data across tasks?
 - ImageNet-style pretraining?
 - Avoid O(N) data scaling
- Deploy smaller models with shared layers
 - Wider models?



Butterfly Network

msofka@4catalyzer.com

office

CHE SEA

