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PROBLEM
Most hashing methods are designed to gen-

erate binary codes that preserve the Euclidean
distance in the original space. Manifold learn-
ing techniques, in contrast, are better able to pre-
serve the intrinsic geodesic distance. However,
the following problems hinders the use of mani-
fold learning for hashing:

1. Prohibitive computational cost
2. Out-of-sample extension problem – Most

manifold learning methods are non-
parametric.

Existing methods – All based on Laplacian eigenmaps
• Spectral Hashing: uniform data assumption
• Anchor Graph Hashing: Nyström extension
• Self-Taught Hashing: out-of-sample extension
by SVM

ALGORITHM

Algorithm 1: Inductive Manifold-Hashing
Input: Training data X := {x1,x2, . . . ,xn},

code length r, base set size m,
neighborhood size k

1 Generate the base set B by random
sampling or clustering (e.g., K-means);

2 Embed B into the low dimensional space by
any appropriate manifold leaning method;

3 Obtain the low dimensional embedding Y
for the whole dataset inductively by (4);

4 Threshold Y at zero;
Output: Binary codes

Y := {y1,y2, . . . ,yn} ∈ Rn×r

SOURCE CODE
available at: http://goo.gl/A9IFL

EVALUATION
Evaluation of manifold learning methods
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Random sampling vs. K-means on CIFAR-10
bits IMH-LE IMH-tSNE

32 Random 16.20 17.26
K-means 17.48 18.38

64 Random 16.98 16.93
K-means 18.20 19.04

96 Random 17.02 17.21
K-means 18.56 19.41

RESULTS
Retrieval results on CIFAR-10 (60K)

(by IMH-tSNE)
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Retrieval results on MNIST (70K)
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Retrieval results on SIFT1M and GIST1M
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Computational times (seconds) on MNIST
Method Train time Test time

64-bits 128-bits 64-bits 128-bits
IMH-LE 9.9 9.9 5.1× 10−5 3.8× 10−5

IMH-tSNE 16.7 20.2 2.8× 10−5 3.1× 10−5

SH 6.8 16.2 5.8× 10−5 1.8× 10−4

STH 266.1 485.4 1.8× 10−3 3.6× 10−3

AGH 9.5 9.5 4.7× 10−5 5.5× 10−5

PCAH 3.8 4.1 5.7× 10−6 1.2× 10−5

SpH 19.7 41.0 1.3× 10−5 2.0× 10−5

ITQ 10.4 20.3 6.9× 10−6 1.1× 10−5

BRE 418.9 1731.9 1.2× 10−5 2.4× 10−5

Classification accuracy with linear SVM

3264 128 256 384 512

70

75

80

85

90

95

Code length

A
cc

ur
ac

y 
(%

)

MNIST

 

 

IMH−LE
IMH−tSNE
AGH
ITQ
SH
PCAH
SphH
STH
BRE

REFERENCES

[1] F. Shen, C. Shen, Q. Shi, A. van den Hengel, Z. Tang. In-
ductive Hashing on Manifolds. In IEEE Conf. Comp. Vis.
Pattern Recogn., 2013.

[2] O. Delalleau, Y. Bengio, and N. Le Roux. Efficient non-
parametric function induction in semi-supervised learn-
ing. In Proc. Int. Workshop Artif. Intelli. Stat., 2005.

CONTRIBUTIONS
We showed how to learn compact binary

embeddings on their intrinsic manifolds. The
proposed approach here is inspired by Delal-
leau et al.[2], where they have focused on semi-
supervised classification. Our contributions in-
clude

1. Make semantic hashing on data manifolds
practical by an inductive hashing frame-
work

• Efficient: Linear indexing time O(n)
and Constant query time O(1)

• Effective: Better than L2 scan with t-
SNE et al.

2. Connect manifold learning and hashing

• Any manifold learning methods can be
applied in the hashing framework.

• Evaluation of 9 manifold learning
methods for hashing

FORMULATION
Denote the training data by X := {x1, x2,

· · · , xn} and their manifold embedding by Y :=
{y1,y2, · · · , yn}. Given a new data point xq ,
we aim to generate an embedding yq which pre-
serves the local neighborhood relationships:

min

n∑
i=1

w(xq,xi)‖yq − yi‖2, (1)

where w(xq,xi) is the similarity. which is only
non-zero for its k nearest neighbors. This results
in

y?
q =

∑n
i=1 w(xq,xi)yi∑n
i=1 w(xq,xi)

. (2)

This provides a simple inductive formulation for
the embedding of a new data point by a linear
combination of the base embeddings.

We developed a prototype algorithm which
was able to approximate yq using only a small
base set with a good bound: m clusters were used
to cover Y. Observing that the cluster centers
have the largest overall weight w.r.t the points
from their own cluster, i.e.,

∑
i∈Ij w(cj ,xi), we

then approximately select all cluster centers to ex-
press ŷq for efficiency.

We obtain our general inductive hash function
by binarizing the low-dimensional embedding

h(x) = sgn

(∑m
j=1 w(x, cj)yj∑m
j=1 w(x, cj)

)
, (3)

where YB := {y1, y2, · · · , ym} is the embedding
for the base set B := {c1, c2, · · · , cm}, which is the
cluster centers obtained by K-means. With this,
the embedding for the training data becomes

Y = W̄XBYB, (4)

where W̄XB is defined such that W̄ij =
w(xi,cj)∑m
i=1 w(xi,cj)

, for xi ∈ X, cj ∈ B. We term
our hashing method Inductive Manifold-Hashing
(IMH). For IMH, any manifold learning methods
can be applied to generate the low dimensional
embedding YB as a base.


