Most hashing methods are designed to gen-
erate binary codes that preserve the Euclidean
distance in the original space. Manifold learn-
ing techniques, in contrast, are better able to pre-
serve the intrinsic geodesic distance. However,
the following problems hinders the use of mani-
fold learning for hashing:

1. Prohibitive computational cost

2. Out-of-sample extension problem — Most
manifold learning methods are non-
parametric.

Existing methods — All based on Laplacian eigenmaps
e Spectral Hashing: uniform data assumption
e Anchor Graph Hashing: Nystrom extension

o Self-Taught Hashing: out-of-sample extension
by SVM

CONTRIBUTIONS

We showed how to learn compact binary

embeddings on their intrinsic manifolds. The
proposed approach here is inspired by Delal-
leau et al.[2], where they have focused on semi-
supervised classification. Our contributions in-
clude

1. Make semantic hashing on data manifolds
practical by an inductive hashing frame-
work

e Lfficient: Linear indexing time O(n)
and Constant query time O(1)

o Lffective: Better than L2 scan with t-
SNE et al.

2. Connect manifold learning and hashing

¢ Any manifold learning methods can be
applied in the hashing framework.

e Evaluation of 9 manifold learning
methods for hashing
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INDUCTIVE HASHING ON MANIFOLDS

FORMULATION

Denote the training data by X := {x;, xo,

-, Xp, } and their manifold embedding by Y :=

{y1,¥2, ---, ¥n}. Given a new data point x,,

we aim to generate an embedding y, which pre-
serves the local neighborhood relationships:

n

min Z W(Xq,Xi)||yq — ¥i
i=1

1*, (1)

where w(x,,x;) is the similarity. which is only
non-zero for its k nearest neighbors. This results
n
y* L Z?:l W(an Xi)Yz’

! Zf?:l W(Xqvxi) |
This provides a simple inductive formulation for
the embedding of a new data point by a linear
combination of the base embeddings.

We developed a prototype algorithm which
was able to approximate y, using only a small
base set with a good bound: m clusters were used
to cover Y. Observing that the cluster centers
have the largest overall weight w.r.t the points
from their own cluster, ie., » . I w(c;,X;), we
then approximately select all cluster centers to ex-
press y, for etficiency.

We obtain our general inductive hash function
by binarizing the low-dimensional embedding

le W(X7 Cj)Yj
J 3
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where Yp :={y1,y2, -+, ¥m} is the embedding
for the base set B := {c1, c2, - - - , ¢,, }, which is the
cluster centers obtained by K-means. With this,
the embedding for the training data becomes

(2)

h(x) = sgn (

Y = WXBYBa (4)

where Wxp is defined such that W,;; =
wxi¢) _forx; € X, ¢; € B. We term

D iy w(x4,¢5)
our hashing method Inductive Manifold-Hashing
(IMH). For IMH, any manifold learning methods
can be applied to generate the low dimensional

embedding Yg as a base.

Algorithm 1: Inductive Manifold-Hashing

Input: Training data X := {x1,x2,...,Xn},
code length r, base set size m,
neighborhood size &

1 Generate the base set B by random
sampling or clustering (e.g., K-means);

2 Embed B into the low dimensional space by

any appropriate manifold leaning method,;
3 Obtain the low dimensional embedding Y
for the whole dataset inductively by (4);
4 Threshold Y at zero;
Output: Binary codes

Y (= {Y17YZ7°°°7YTL} GRnXT

‘ available at: http://goo.gl/A9IFL \

EVALUATION

Evaluation of manifold learning methods
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Random sampling vs. K-means on CIFAR-10

bits IMH-LE IMH-tSNE
39 Random 16.20 17.26
K-means 17.48 18.38
64 Random 16.98 16.93
K-means 18.20 19.04
06 Random 17.02 17.21
K-means 18.56 19.41
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Retrieval results on MNIST (70K)
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Computational times (seconds) on MNIST
Method Train time Test time
64-bits 128-bits 64-bits 128-bits
IMH-LE 9.9 9.9 51 x107° 3.8 x107°
IMH-tSNE 16.7 20.2 28 %x107° 3.1x107°
SH 6.8 16.2 58 x 107° 1.8 x 1074
STH 266.1 4854 | 1.8 x 1073 3.6 x 1073
AGH 9.5 9.5 4.7 x107° 5.5 x 107°
PCAH 3.8 4.1 57 x 107% 1.2 x107°
SpH 19.7 410 | 1.3x107° 2.0x10°°
ITQ 104 20.3 6.9x 107% 1.1 x107°
BRE 418.9 17319 | 1.2x107° 24x107°

Classification accuracy with linear SVM
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