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Abstract. We present a novel method for the automatic detection and
segmentation of (sub-)cortical gray matter structures in 3-D magnetic
resonance images of the human brain. Essentially, the method is a top-
down segmentation approach based on the recently introduced concept of
Marginal Space Learning (MSL). We show that MSL naturally decom-
poses the parameter space of anatomy shapes along decreasing levels
of geometrical abstraction into subspaces of increasing dimensionality
by exploiting parameter invariance. At each level of abstraction, i.e., in
each subspace, we build strong discriminative models from annotated
training data, and use these models to narrow the range of possible so-
lutions until a final shape can be inferred. Contextual information is
introduced into the system by representing candidate shape parameters
with high-dimensional vectors of 3-D generalized Haar features and steer-
able features derived from the observed volume intensities. Our system
allows us to detect and segment 8 (sub-)cortical gray matter structures
in T1-weighted 3-D MR brain scans from a variety of different scanners
in on average 13.9 sec., which is faster than most of the approaches in the
literature. In order to ensure comparability of the achieved results and
to validate robustness, we evaluate our method on two publicly available
gold standard databases consisting of several T1-weighted 3-D brain MR
scans from different scanners and sites. The proposed method achieves
an accuracy better than most state-of-the-art approaches using standard-
ized distance and overlap metrics.

1 Introduction

Currently, many scientific questions in neurology, like the revelation of mecha-
nisms affecting generative or degenerative processes in brain development, re-
quire quantitative volumetric analysis of (sub-)cortical gray matter structures
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Department of Siemens Corporate Research.
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Fig. 1. The processing pipeline of the proposed 3-D shape detection and inference
method. Each image (detection and delineation of the left caudate) schematically rep-
resents the input and/or output of individual processing steps. Please view in color.

in large populations of patients and healthy controls. For instance, atrophy in
the presence of Alzheimer’s disease considerably affects morphology of the hip-
pocampus. In addition, 3-D segmentation of various deep gray matter structures
facilitates image-based surgical planning, therapy monitoring, and the generation
of patient-specific geometrical models from imaging data for further processing.
As a result of unclear boundaries, shape complexity, and different anatomical
definitions, precise manual delineation is usually time consuming and user de-
pendent. Moreover, typical artifacts present in MR imaging (Rician noise, par-
tial volume effects, and intra-/inter-scan intensity non-uniformities) challenge
the consistency of manual delineations. Therefore, a system for the automatic
detection and segmentation of (sub-)cortical gray matter structures not only has
the potential to increase segmentation consistency, but also has the capability
of facilitating large-scale neuromorphological studies.

We propose a fully automatic method for the detection and delineation of the
following eight (sub-)cortical gray matter structures: the left and right caudate
nucleus, hippocampus, globus pallidus, and putamen. Our method consists of two
major steps: 1) we standardize the observed MR intensities by non-rigidly align-
ing their histogram to a template histogram by means of Dynamic Histogram
Warping (DHW) [1]; and 2) for each (sub-)cortical structure of interest we de-
tect and infer its position, orientation, scale, and shape in an extended Marginal
Space Learning (MSL) framework [2], which explicitly integrates shape inference
into the overall MSL formulation. The overall system block diagram is depicted
in Fig. 1.

In contrast to other methods [3–5] where a partly manually initialized nine
parameter registration is part of the approaches we do not require the input
volumes to be spatially normalized. In some cases [3, 4], the feature pools used for
discriminative model generation are enriched with features explicitly encoding
normalized location. In accordance with this observation, the approaches are only
evaluated on spatially normalized data sets from one type of MR scanner that are
not publicly available [4, 5]. Nevertheless, Morra et al. [3] report state-of-the-art
results on data sets that have not been subject to spatial normalization. Apart
from that, the mentioned methods make use of machine learning in a similar
manner as we do, but follow a bottom up approach ascending from the lowest
level of abstraction, i.e., the level of individual voxels, to the level of complete
anatomical entities.
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Alignment of a probabilistic atlas by means of an affine registration also plays
an important role in further approaches [6, 7]. While sometimes [6] quantitative
evaluation is only carried out on simulated data, the method of Akselrod-Ballin
et al. [7] is trained and evaluated on only one publicly available dataset that
has been subject to a specific preprocessing including intensity standardization.
By generating observation or discriminative models based on intensity values
without explicitly allowing for inter-scan intensity variations [3–5, 7] the resulting
models are at the risk of being over-adapted to specific contrast-characteristics
of the data at hand.

2 Methods

2.1 Combined 3-D Shape Detection and Shape Inference

For combined 3-D rigid anatomy detection and shape inference we use a method
based on the concept of Marginal Space Learning (MSL) [2]. We estimate the
structure of interest’s center c = (c1, c2, c3) ∈ R

3, orientation θ = (θ1, θ2, θ3) ∈
[−π, π] × [−π/2, π/2] × [−π, π] represented as Euler angles in z − x − z con-
vention, scale s = (s1, s2, s3) ∈ { s ∈ R

3 | si > 0, i = 1, 2, 3 }, and shape
X = (x1, . . . ,xn) ∈ R

3×n. The latter consists of canonically sampled 3-D points
on the surface of an object to be segmented. Note that θ is relative to c, s is
relative to c and θ, and X is relative to c, θ, and s. Let V = { 1, 2, . . . , N },
N ∈ N, be a set of indices to image voxels, Y = (yv)v∈V , yv ∈ {−1, 1 }, a bi-
nary segmentation of the image voxels into object and non-object voxels, and
f be a function with Y = f(I,Θ) that provides a binary segmentation of vol-
ume I using segmentation parameters Θ = (c,θ, s,X). Let Z = (zΘ) be a
family of high-dimensional feature vectors extracted from a given input volume
I = (iv)v∈V and associated with different discretized configurations of Θ. In our
context Z includes voxel-wise context encoding 3-D generalized Haar features
[8] to characterize possible object centers and steerable features [2] that are ca-
pable of representing hypothetical orientations and optionally scaling relative to
a given object center or shape surface point. These features were chosen for our
method because of their fast computation and effective representation [2].

We search for the optimal parameter vector

Θ
∗ = arg max

Θ

p(y = 1|Θ, I,M (Θ)) = arg max
Θ

p(y = 1|Z,M (Θ)) (1)

maximizing the posterior probability of the presence, i.e., y = 1, of a sought
anatomy given the discriminative model M

(Θ) and the features Z extracted
from the input volume I using a certain set of values for the parameters Θ.

Let π(c)(Z), π(c,θ)(Z), π(c,θ,s)(Z), π(c,θ,s,X)(Z) denote the vectors of com-
ponents of Z associated with individual groups of elements (c), (c,θ), (c,θ, s),
and (c,θ, s,X) of the parameter vector Θ. The MSL method avoids exhaustively
searching the high-dimensional parameter space spanned by all the possible Θ by
exploiting the fact that ideally for any discriminative model for center detection
with parameters M

(c) working on a restricted amount of possible features

c
∗ = arg max

c
p(y = 1|π(c)(Z),M (c)) (2)
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holds, as the object center c is invariant under relative reorientation, relative
rescaling, and relative shape positioning. Similarly, we have

θ
∗ = arg max

θ

p(y = 1|π(c∗,θ)(Z),M (c,θ)) (3)

for combined position-orientation detection with model parameters M
(c,θ) where

only features π(c∗,θ)(Z) with c = c
∗ are considered. This is due to the fact that

position and orientation are invariant under relative rescaling and relative shape
positioning. Analogous considerations yield

s
∗ = arg max

s
p(y = 1|π(c∗,θ∗,s)(Z),M (c,θ,s)) (4)

for the object’s scaling, and

X
∗ = arg max

X

p(y = 1|π(c∗,θ∗,s∗,X)(Z),M (c,θ,s,x),M (c,θ,s,X)) (5)

for the object’s shape where M
(c,θ,s,x) are the parameters of a local shape model

with respect to individual surface points x and parameters M
(c,θ,s,X) represent

a global shape model. Equations (2)–(5) naturally establish a chain of discrim-
inative models exploiting search space parameter invariance for combined 3-D
shape detection and shape inference. It allows us to apply different discrimi-
native models descending along geometrical abstraction as, in our framework,
the object center c alone is the most abstract and the complete set of param-
eters Θ is the least abstract shape representation. Therefore, MSL establishes
a hierarchical decomposition of the search space along decreasing levels of geo-
metrical abstraction with increasing dimensionality of the considered parameter
subspace.

2.2 3-D Shape Detection: Similarity Transformation Estimation

Let Z be the set of annotated image volumes in their transformed feature repre-
sentation as mentioned above. We will refer to Z as the training data. In order to
find the first parts of the optimal parameter vector Θ

∗ describing a nine parame-
ter similarity transformation, i.e., c

∗, θ
∗, and s

∗, we have to learn discriminative
models p(y = 1|π(c∗)(Z)), p(y = 1|π(c∗,θ)(Z)), and p(y = 1|π(c∗,θ∗,s)(Z)). Fol-
lowing the concept of MSL [2] we generate a set of positive and negative train-
ing examples C = { (π(c)(Z), y) |Z ∈ Z } to train a probabilistic boosting tree
(PBT) model [9] for position detection. The feature vectors π(c)(Z) consist of 3-D
generalized Haar features [8] encoding voxel context of candidate object centers
based on observed intensity values. Decreasing the level of geometric abstraction
we analogously train a PBT model for combined position-orientation detection
based on an extended set of training examples P = { (π(c,θ)(Z), y) |Z ∈ Z }
where π(c,θ)(Z), associated with (c,θ) and an image volume, is made of steer-
able features [2]. They allow varying orientation and scaling to be encoded in
terms of aligned and scaled intensity sampling patterns. In accordance with this
scheme, steerable features are also used to finally train a PBT for full nine param-
eter similarity transformation detection based on S = { (π(c,θ,s)(Z), y) |Z ∈ Z }
where π(c,θ,s)(Z) is derived from (c,θ, s) and the associated image volume.
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Table 1. Average segmentation accuracy (left and right structures grouped together)
for IBSR 18 of models trained from mutually exclusive training and test data. Except
for the Dice coefficient (2 · TP/(2 · TP + FP + FN) where TP , FP , and FN denote
the number of true positive, false positive, and false negative voxels, respectively) see
[13] on details on the used accuracy metrics.

Structure Overlap Err. Dice Coeff. Volume Diff. Abs. Dist. RMS Dist. Max. Dist.
[%] [%] [%] [mm] [mm] [mm]

Caudate nucleus 32.42 ± 6.14 80.49 ± 4.51 9.57 ± 8.45 0.67 ± 0.17 1.10 ± 0.23 7.76 ± 1.82
Hippocampus 41.96 ± 4.69 73.34 ± 3.73 21.14 ± 17.29 0.91 ± 0.15 1.33 ± 0.21 6.34 ± 1.63
Globus pallidus 39.72 ± 7.05 74.97 ± 5.88 20.97 ± 12.38 0.79 ± 0.24 1.24 ± 0.37 5.53 ± 1.63
Putamen 29.82 ± 5.20 82.37 ± 3.65 13.76 ± 7.59 0.72 ± 0.20 1.15 ± 0.28 6.60 ± 1.85

2.3 3-D Shape Inference under Global Shape Constraints

For the final object shape we further decompose

π(c,θ,s,X)(Z) =
(

π(c,θ,s,xi)(Z)
)

i=1,...,n

where π(c,θ,s,xi)(Z) are the features associated with an image volume and indi-
vidual relatively aligned candidate points (c,θ, s,xi) for the surface of the object
of interest. In order to apply discriminative modeling we assume the xi and corre-
spondingly π(c,θ,s,xi)(Z) to be independently and identically distributed (i.i.d.)
and approximate

X
∗

= arg max
X

p(y = 1|π
(c
∗,θ∗,s∗,X)

(Z), M
(c,θ,s,x)

, M
(c,θ,s,X)

)

≈ arg max
X

[

n
∏

i=1

p(yi = 1|π
(c
∗,θ∗,s∗,xi)(Z), M

(c,θ,s,x)
)

]

p(X|c
∗

, θ
∗

, s
∗

, M
(c,θ,s,X)

) (6)

in an iterative manner. The term p(yi = 1|π(c,θ,s,xi)(Z)) describes the probabil-
ity that the relatively aligned point (c,θ, s,xi) is part of the shape to be inferred,

i.e., lies on its surface, and p(X|c∗,θ∗, s∗,M (c,θ,s,X)) is a global shape model
[10]. We estimate p(y = 1|π(c,θ,s,xi)(Z)) with a PBT model [9] using steerable
features [2] trained on X = { (πc,θ,s,xi

(Z), y) | i = 1, . . . , n;Z ∈ Z }. An iterative
approach for (6) is suitable as, in practice, X ∈ R

3×n only varies around the
mean shape positioned relatively to the (c∗,θ∗, s∗) detected before at time t = 0
and the previous most likely anatomy shape in each iteration t = 1, . . . , T .

3 Material and Experimental Setting

For training and quantitative evaluation of our system there were four sets of
T1-weighted MRI scans available. The first one is a subset of the “Designed
Database of MR Brain Images of Healthy Volunteers”5 [11] (DDHV) contain-
ing 20 scans. The associated ground-truth annotations were manually recovered

5 The database was collected and made available by the CASILab at the University
of North Carolina, Chapel Hill. The images were distributed by the MIDAS Data
Server at Kitware, Inc. (insight-journal.org/midas). The authors would like to thank
Martin Styner, Clement Vachet, and Paul Pandea for helping to preprocess parts of
the data.
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from automatically generated segmentations [12] of the structures of interest.
The second collection of 18 MRI scans was provided by the Center of Morpho-
metric Analysis at the Massachusetts General Hospital and is publicly avail-
able on the Internet Brain Segmentation Repository6 (IBSR 18). The scans are
accompanied by detailed ground-truth annotations including the (sub-)cortical
structures of interest in this paper.7 A subset8 of the data provided by the NIH
MRI Study of Normal Brain Development9 consisting of 10 pediatric data sets
states another collection (NIH) of annotated MR scans used for model genera-
tion. They have been manually annotated by the authors for training purposes.
Additionally, we use data provided by the ongoing “3-D Segmentation in the
Clinic: A Grand Challenge” competition10 [13] for training and evaluation of
the proposed method. The collection consists of several volumetric T1-weighted
MR brain scans of varying spatial resolution and size from multiple sources
(MICCAI’07 training/testing). The vast majority of data (29 scans) has been
provided by the Psychiatry Neuroimaging Laboratory (PNL) at the Brigham
and Women’s Hospital (BWH), Boston. The other 20 data sets arose from a pe-
diatric study, a Parkinson’s Disease study, and a test/re-test study carried out
at the University of North Carolina’s (UNC) Neuroimaging Laboratory (NIAL),
Chapel Hill. A predefined evaluation protocol is carried out fully automatically
after uploading the testing fraction of the data to the Cause’07 file server. We
refer to Heimann et al. [13] for details on the used evaluation measures and
scoring system.

All the images were re-oriented to a uniform orientation (“RAI”; right-to-
left, anterior-to-posterior, inferior-to-superior) and resampled to isotropic voxel
spacing (1.0×1.0×1.0 mm3) for processing. For increasing the amount of training
data we exploited natural brain symmetry and therefore doubled the size of any
training data set used for model generation by mirroring all the data sets with
respect to the mid-sagittal plane. Throughout all our experiments we ensured
that training and testing data are mutually exclusive: We trained on DDHV,

6 www.cma.mgh.harvard.edu/ibsr
7 We corrected the ground-truth annotations for the left and the right caudate in the

IBSR 18 data set to better meet the protocol applied by the “3-D Segmentation in
the Clinic: A Grand Challenge” competition where the caudate is grouped with the
nucleus accumbens in the delineations [13, 14].

8 The following 10 data sets were used: defaced native 100{2,3,7} V{1,2} t1w r2, de-
faced native 100{1,4,8} V2 t1w r2, and defaced native 1005 V2 t1w r2.

9 The NIH MRI Study of Normal Brain Development is a multi-site, longitudinal study
of typically developing children, from ages newborn through young adulthood, con-
ducted by the Brain Development Cooperative Group and supported by the NICHD,
the NIDA, the NIMH, and the NINDS (Contract #s N01-HD02-3343, N01-MH9-
0002, and N01-NS-9-2314, -2315, -2316, -2317, -2319 and -2320). A listing of the
participating sites and a complete listing of the study investigators can be found at
www.bic.mni.mcgill.ca/nihpd/info/participating centers.html. This manuscript re-
flects the views of the authors and may not reflect the opinions or views of the
NIH.

10 www.cause07.org
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Table 2. Average left/right caudate segmentation accuracy for the MICCAI’07 test-
ing data set. The complete results can be found at www.cause07.org (“Segmentation
Team”). As of 03/10/2009 our method ranks number 2 in the overall ranking list.

Cases Overlap Err. Volume Diff. Abs. Dist. RMS Dist. Max. Dist. Total
[%] Score [%] Score [mm] Score [mm] Score [mm] Score Score

Average UNC Ped 27.31 82.82 7.24 86.70 0.65 76.08 1.29 76.99 10.73 68.44 78.21
Average UNC Eld 34.48 78.31 10.73 81.18 0.73 72.82 1.31 76.59 11.57 65.96 74.97
Average BWH PNL 31.72 80.05 -16.54 70.20 0.65 76.08 1.26 77.56 11.19 67.09 74.20

Average All 31.38 80.27 -5.91 75.92 0.66 75.40 1.27 77.24 11.17 67.14 75.19

NIH, and IBSR 18 1-9 to evaluate on IBSR 18 10-18 and on DDHV, NIH, and
IBSR 18 10-18 to evaluate on IBSR 18 1-9. We trained on DDHV, NIH, IBSR
18, and MICCAI’07 training to evaluate on MICCAI’07 testing.

As pointed out by Heimann et al. [13] there are differences in the annotation
protocols used for annotating the caudate nuclei in data sets originating from
the BWH and the UNC. In the former the “tail” of the caudate is continued
much further dorsally. We therefore decided to detect it as a separate structure
that can be attached to the caudate if required. We did not try to automatically
determine the annotation protocol used from the imaging data itself as this may
lead to over-fitted systems.

As our real discriminative models are not ideal as assumed for theoretical
considerations we keep the top 100 candidates after position detection and the
top 25 candidates after position-orientation detection for further processing steps
in order to make the full similarity transformation detection more robust. For
shape inference we use T = 3 iterations.

In an optimized and parallelized C++ implementation of our segmentation
method it takes on average 13.9 sec. to detect and segment 8 (sub-)cortical
structures in an MRI volume on a Fujitsu Siemens notebook equipped with an
Intel Core 2 Duo CPU (2.20 GHz) and 3 GB of memory. Intensity standard-
ization takes 1–2 sec. Our method is therefore faster than other state-of-the-art
approaches whose timing is 50 sec. for 8 structures [5], 60 sec. for 1 structure
[3], and 8 min. for 8 structures [4].

4 Experimental Results

As can be seen from Table 1 in terms of the Dice coefficient our method achieves
better results (80%,73%,75%,82%) for the segmentation of the caudate nuclei,
hippocampi, globi pallidi, and putamina on the same IBSR 18 data set than
the methods of Akselrod-Ballin et al. [7] (80%, 69%, 74%, 79%) and Gouttard
et al. [12] (76%,67%,71%,78%) except for the caudate nuclei in comparison to
the method of Akselrod-Ballin et al. [7], where we reach a comparable accuracy.
It also reaches a higher score for the caudate nuclei and putamina on IBSR 18
than the method of Bazin and Pham [14] (78%,81%), which does not address
segmentation of the hippocampi and globi pallidi.

The overall average score in Table 2 shows that for segmenting the caudate
nuclei our method performs better than the methods of Morra et al. [3] (73.38),
Bazin and Pham [14] (64.73) and Tu et al. [4] (59.71). All the mentioned methods
were evaluated on the same MICCAI’07 testing data set.
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5 Conclusions

In this paper we integrated shape inference into the overall MSL methodology
from the theoretical point of view. We showed that MSL decomposes the param-
eter space of anatomy shapes along decreasing levels of geometrical abstraction
into subspaces of increasing dimensionality and applied MSL to the difficult
problem of (sub-)cortical gray matter structure detection and shape inference.
In an evaluation on publicly available gold standard databases our method works
equally fast, robust, and accurate at a state-of-the-art level.
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