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Automated Analysis of Unregistered Multi-view
Mammograms with Deep Learning

Gustavo Carneiro, Jacinto Nascimento, Andrew P. Bradley

Abstract—We describe an automated methodology for the
analysis of unregistered cranio-caudal (CC) and medio-lateral
oblique (MLO) mammography views in order to estimate the
patient’s risk of developing breast cancer. The main innovation
behind this methodology lies in the use of deep learning models
for the problem of jointly classifying unregistered mammogram
views and respective segmentation maps of breast lesions (i.e.,
masses and micro-calcifications). This is a holistic methodology
that can classify a whole mammographic exam, containing the
CC and MLO views and the segmentation maps, as opposed
to the classification of individual lesions, which is the dominant
approach in the field. We also demonstrate that the proposed
system is capable of using the segmentation maps generated by
automated mass and micro-calcification detection systems, and
still producing accurate results. The semi-automated approach
(using manually defined mass and micro-calcification segmenta-
tion maps) is tested on two publicly available datasets (INbreast
and DDSM), and results show that the volume under ROC
surface (VUS) for a 3-class problem (normal tissue, benign and
malignant) is over 0.9, the area under ROC curve (AUC) for the
2-class ”benign vs malignant” problem is over 0.9, and for the 2-
class breast screening problem (malignancy vs normal/benign) is
also over 0.9. For the fully automated approach, the VUS results
on INbreast is over 0.7, and the AUC for the 2-class ”benign vs
malignant” problem is over 0.78, and the AUC for the 2-class
breast screening is 0.86.

Deep learning, Mammogram, Multi-view classification,
Transfer learning

I. INTRODUCTION

Recently published data suggests that breast cancer is re-
sponsible for 23% of all cancer cases and 14% of cancer
related deaths amongst women worldwide [45]. One of the
most effective tools in the reduction of morbidity and mortality
associated with breast cancer is based on its early detection via
the analysis of two mammographic views of each breast [52]:
the medio-lateral oblique view (MLO) and the cranio-caudal
view (CC) - see Fig. 1. This analysis is essentially based on the
detection and classification of breast lesions (note the yellow
and red contours of breast masses and micro-calcifications
(MC) in Fig. 1), which is usually manually performed by a
radiologist - a recent study indicates that this manual analysis
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Fig. 1. The main contribution of this paper is the joint analysis of the
unregistered cranio-caudal (CC) and medio-lateral oblique (MLO) mammog-
raphy views with the automatically generated mass (yellow annotations) and
micro-calcification (red annotations) segmentation maps. This is a holistic
methodology that can classify a whole mammographic exam, with the CC
and MLO views and the segmentation maps, as opposed to the classification
of individual lesions, which is the mainstream approach of the field. The
functionality of our methodology relies on the use of deep learning models,
pre-trained with computer vision datasets [4,5,15,81].

has a specificity of 91% and a sensitivity of 84% in the
classification of breast cancer [38]. Giger et al. [38] have
suggested that such performance can be improved with the
use of a second reading of the same mammogram either by
another radiologist or by a computer-aided diagnosis (CAD)
system [38]. Hence, the development of CAD systems that
can be used as adjunct reader is an important step towards the
acceptance of such systems in clinical practice.

The vast majority of mammogram analysis systems are fo-
cused on the analysis (i.e., detection, segmentation and classi-
fication) of individual lesions (e.g., masses or MCs) [38,59,75]
using hand-crafted image features and traditional machine
learning classifiers [9]. The outcome of this analysis usually
consists of the classification of each lesion into benign or
malignant. Lesion detection methods are usually based on
a cascade of classifiers that aim to eliminate an increas-
ingly larger number of false positives while keeping a large
proportion of the true positives [6,7,12,22,30,48,49,67,76,78].
The assumption that not only the appearance, but also the
shape of a lesion is important in its classification motivates
the development of lesion segmentation methods [3,13,23,64].
The final lesion classification step generally uses hand-crafted
appearance and shape features, extracted from the detected and
segmented lesion, that are used as input to a binary classifier
that classifies the lesion into benign or malignant [19,28,71,
77,79]. The use of multiple views of the same lesion has
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also been explored [38,43], and current evidence suggests that
such approaches can potentially improve the performance of
the system. The main issues with these approaches lie in the
sub-optimality (with respect to the classification goal) inherent
to the process of hand-crafting features (a notable exception
is the lesion detection method by Kooi et al. [48]), and the
independent analysis of each lesion that ignores dependencies
and contextual information.

In this paper, we propose a new methodology that analyses
a two-view mammographic exam in a fully automated and
holistic manner. The main innovation behind our approach
is the use of a deep learning model [50,53] that receives
as input, both the CC and MLO mammographic views and
the segmentation maps of the breast lesions (i.e., masses
and MCs) and outputs a classification of the exam into
normal tissue, benign or malignant (hereafter, we refer to the
normal tissue class as negative). The proposed methodology
faces the following challenges: 1) deep learning models need
annotated datasets that are orders of magnitude larger than
what is currently available in medical imaging, and 2) the joint
analysis of unregistered multi-view (CC and MLO) and multi-
modal inputs (images and segmentation maps) require high-
level features that represent the global information present in
those inputs.

The first challenge is addressed with transfer learning [4,
5,81], where the deep learning model is first trained with a
large annotated computer vision dataset [66], and then re-
trained (or fine-tuned) using small annotated mammogram
datasets. In parallel to the development of our own work, other
similar approaches have been proposed, such as the use of
ImageNet [66] to pre-train a deep learning model that identifies
pathologies in chest x-ray images [4,5], or the thorough study
produced by Tajbakhsh et al. [74] on the use of non-medical
image datasets to pre-train deep learning models to be used in
various medical image analysis tasks. The second challenge
is solved with the use of the high-level features produced by
the deep learning models, where we assume that the high-
level nature of the deep learning features reduces the need
for a low-level matching (registration) of the input data [8].
After the development of our original work [15], which is
extended in this paper, there have been relatively similar
proposals that classify whole or large patches of mammograms
using deep learning models [27,37,44]. In fact, Dhungel et
al.’s and Geras et al.’s [27,37] approaches represent extensions
to our own original work [15]. We test two versions of our
proposed methodology: a semi-automated approach that uses
the manually defined segmentation maps of the lesions, and a
fully automated approach that uses the lesion detection results
from Dhungel et al. [22] and Lu et al. [55]. Compared to
previously proposed methods in the field, our model is able
to automatically learn the features that are optimal for the
classification problem (as opposed to hand-crafting them) and
to process a full mammographic exam in a holistic manner,
without making lesion independence assumptions. The semi-
automated approach is assessed on two publicly available
datasets (INbreast [57] and DDSM [42]), where it produces
state of the art results for the 3-class and 2-class classifi-
cation problems. The fully automated approach assessed on

INbreast [57] shows a competitive result with respect to the
semi-automated approach on the same classification problems.

This paper is an extension of two preliminary works [14,15],
where the innovations consist of: 1) the fully automated
methodology based on automatically detected masses and
MCs, 2) a study on the stage of the deep learning model to
merge the different modalities, 3) a study involving a larger set
of data augmentation, and 4) a new way of joining the input
images as 3-D inputs rather than a collection of 2-D data 1.

II. LITERATURE REVIEW

Deep learning models have been studied for decades [53],
but only recently they have achieved important breakthroughs
in computer vision and machine learning [34,39,50,82]. This
achievement can be explained by the availability of large
annotated training sets [66] and the fast training allowed by
graphics processing units. Compared to traditional machine
learning models [9], deep learning models offer the oppor-
tunity to automatically learn features of different abstraction
levels directly from raw input, based on high-level classifi-
cation objective functions [8] and can facilitate the use of
multi-modal inputs [58]. There are currently four main trends
in the development of deep learning models for medical
image analysis. The first is on the acquisition of massive
training sets containing only the original annotations that are
already present in the dataset (e.g., diagnosis, radiology re-
ports, and not manual delineations of lesions). These methods
are producing outstanding results, which are comparable to
expert radiologists’ performance, e.g., Esteva et al. [32] have
developed a deep learning model capable of classifying skin
lesions trained directly from image pixels and disease labels
as inputs, using a dataset of 129,450 clinical images. This
model achieves competitive performance with respect to 21
board-certified dermatologists - unprecedented in terms of the
scale of the training set and the accuracy of the classification.
Similarly, a recently deep learning method developed by
Gulshan et al. [40] has shown to have high sensitivity and
specificity for detecting referable diabetic retinopathy in retinal
fundus photographs, where the training set contained 128,175
annotated retinal images. A similar work has been proposed by
Geras et al. [37], who mention in the paper that their model is
close to our own previously proposed multi-view mammogram
deep learning classifier [14,15], but their approach has been
trained with 103,000 high-resolution images and results show
the importance of using large training sets and high-resolution
images.

The second main trend lies in the development of deep
learning models that use the small training sets already avail-
able in the field. The major challenge behind this second
trend is that such small datasets are rarely enough for training
the high capacity deep learning models. Even though it is
possible in some tasks to extract large training sets from
these small datasets [20,65], for most situations, new solutions
are necessary to address this issue. This is one of the most
studied topics in deep learning for medical image analy-
sis [1,4,5,14]–[16,21,33,54], where systematic studies have

1We thank one of the anonymous reviewers for proposing this variation.
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been published [4,5,72,74,80]. The current evidence shows
that transfer learning appears to address the small dataset
challenge, where models can be pre-trained either in an
unsupervised manner with medical image datasets or in a
supervised way using non-medical image datasets. The third
trend lies in the analysis of multiple input views to produce a
single output - this idea has been explored in medical image
analysis problems [11,14,15,17,27,37,41] and computer vision
tasks [73]. Finally, the fourth trend is the holistic analysis
of medical images [14,15,35,36,47,61,62,83] as opposed to
the localised processing, which in general depend on the
localisation and possible segmentation of structures before a
classification can be achieved [1,2,22]–[26,29,31,38,46,48,63].

In this paper, the main novelty consists of the use of un-
registered multi-view inputs, where images and segmentation
maps are processed in a holistic manner (our original paper
on the holistic analysis was also developed in parallel to
the approaches cited above - note that even though we use
detection of lesions, we process the whole image and not each
lesion independently). We also explore the transfer learning
approaches mentioned above to deal with the limited amount
of training samples.

The more classic methods designed for the analysis of
mammograms [38] are either based on holistic approaches that
rely on traditional texture analysis [56], or on the localised
analysis of lesions. The latter approach depends on a process
that can be sub-divided into three stages [19,68]: 1) lesion
detection, 2) lesion segmentation and 3) lesion classification.
Usually, methods based on the localised analysis of lesions are
limited to processing single views, but there are exceptions
that work with multiple views [69]. Moreover, there have
also been important developments in the exploration of deep
learning models within such classical framework. In particular,
the problem of detecting lesions with deep learning models has
been studied with the use of large annotated training sets [48]
or the use of a cascade of models and small training sets [22].
Lesion segmentation with deep learning has been addressed
with the use of large training sets [29,31] or with the use of
probabilistic graphical models and small training sets [23]–
[25]. Finally, lesion classification methods that rely on deep
learning models are generally based on a direct classification
of the detected and segmented lesions [2,26,46,63]. It is im-
portant to notice that mammogram analysis systems have two
goals in general: 1) the classification of an exam into normal
(i.e., no findings), benign findings or malignant findings; and
2) the localisation of such findings. The sub-division adopted
by classic methods is reasonable in the sense that it tries to
mimic how expert radiologists work, but mathematically this
sub-division makes restrictive assumptions about the problem,
such as that once the analysis is focused in the lesions, the
global information contained in the whole image is assumed
to be irrelevant. It is also assumed that both the appearance
and shape of the lesion are important for the mammogram
classification process. Finally, the objective functions used
for each stage form goals that are not necessarily linked
with better classification – for example, the minimisation of
the overlap between the annotated and detected bounding
boxes is assumed to be important for classification, but never

Fig. 2. Distribution of BI-RADS (left) and negative, benign and malignant
classes (right) for the cases in INbreast (blue) and DDSM (red), where a case
is represented by the MLO and CC mammographic views with respective
segmentation maps (MCs and masses) of a single breast scan of a patient.

TABLE I
PUBLICLY AVAILABLE DATASETS USED IN THIS WORK.

Datasets: INbreast [57] DDSM [42] Imagenet [66]
# Images 410 680 1.35×106
# Patients 115 172 -
# Classes 6 6 1000
Image Type Mammo Mammo Non-medical
Annotations BI-RADS + BI-RADS + Imagenet

Lesion delineation Lesion delineation classes

properly tested (similarly for objective functions used for
segmentation).

III. MATERIALS AND METHODS

In this section, we first describe the datasets and deep
learning model used. Then we explain the methodological
details of our approach and the experimental setup.

A. Materials

The material used in this work are the images and anno-
tations present in the following publicly available datasets:
INbreast [57], DDSM [42] and Imagenet [66] - Table I shows
the number of images, patients and classes, the image type
and the annotations present in each dataset. For INbreast and
DDSM, a case represents the multi-view mammograms and
respective segmentation maps of masses and MCs extracted
from a single breast of a patient. In these two datasets,
cases are manually classified into six possible Breast Imaging
Reporting and Data System (BI-RADS) classes: 1) negative,
2) benign finding(s), 3) probably benign, 4) suspicious ab-
normality, 5) highly suggestive of malignancy, and 6) proven
malignancy (see Fig. 2 for the distribution of classes in the
datasets considered by this paper). It is important to note
that the manual lesion delineations provided for DDSM are
significantly less precise than the annotations for INbreast, as
shown in Fig. 8 that presents examples of the mass and MC
manual annotations from DDSM.

The INbreast and DDSM datasets are represented by
D = {(x(p,b), c(p,b),m(p,b),y(p,b))}p∈{1,...,P},b∈{left,right},
where x = {xCC,xMLO} denotes the CC and MLO mam-
mography views, with xCC,xMLO : Ω → R (Ω represents
the image lattice), c = {cCC, cMLO} and m = {mCC,mMLO}
denote the MC and mass segmentation maps per view, with
cCC, cMLO,mCC,mMLO : Ω → {0, 1}, y ∈ Y = {0, 1}C
represents the BI-RADS classification with C classes, p ∈
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{1, ..., P} indexes the patients, and b ∈ {left, right} indexes
the patient’s left and right breasts (each breast is denoted as
an individual case because the left and right breasts may have
different BI-RADS scores). Note in Fig. 2 that these datasets
have a limited amount of cases belonging to each of the six
possible BI-RADS classes, so we propose a new set of three
classes: 1) negative, represented by y = [1, 0, 0]>, when BI-
RADS=1; 2) benign, denoted by y = [0, 1, 0]>, with BI-RADS
∈ {2, 3}; and 3) malignant, represented by y = [0, 0, 1]>,
when BI-RADS ∈ {4, 5, 6} (the rightmost graph in Fig. 2
shows the distribution for the 3-class problems in the datasets
considered by this paper). The Imagenet dataset containing
non-medical images is denoted by D̃ = {(x̃(n), ỹ(n))}n, with
x̃ : Ω → R and ỹ ∈ Ỹ = {0, 1}C̃ , where C̃ represents the
cardinality of the set of classes in the dataset D̃. This dataset
is used for pre-training the deep learning model, as explained
below in more details.

B. Deep Learning Model
The deep learning model explored in this work is the con-

volutional neural network (ConvNet) [50,53] CNN-F proposed
by Chatfield et al. [18], which is a simplified version of
the AlexNet model [50]. This model is formally denoted by
f : X → Y , where X represents the image space and Y
denotes the 3-class classification space. A ConvNet is a model
containing L convolutional layers and K fully connected layers
defined as follows (see Fig. 3):
f(x; θ) =

fout(ffc,K(...ffc,1(fL(...f1(x, θ1)..., θL), θfc,1)..., θfc,K), θout),
(1)

where {fi(.)}Li=1 represents a convolutional layer, θl denotes
the parameters of layer l of the ConvNet comprising the weight
matrix Wl ∈ Rkl×kl×nl×nl−1 and bias vector bl ∈ Rnl ,
with kl × kl denoting the size of the filters in layer l that
has nl−1 input channels and nl output channels (the output
of this convolutional layer usually passes through a non-
linear activation function and a sub-sampling stage), ffc,k
is a fully-connected layer with weights {Wfc,k}Kk=1 (with
Wfc,k ∈ Rnfc,k−1×nfc,k representing the connections from
fully connected layer k−1 to k) and biases {bfc,k}Kk=1 (with
b ∈ Rnfc,k ), and fout represents a multinomial logistic regres-
sion layer [50] containing the weights Wout ∈ Rnfc,K×C and
bias bout ∈ RC .

The operation in each convolutional layer l ∈ {1, ..., L} of
the ConvNet is defined by:

Fl = fl(xl−1, θl) = Wl ? Fl−1 + bl, (2)

where ? denotes the convolution operator, Fl = [fl,1, ..., fl,nl
],

with F0 representing the input mammogram x or segmentation
maps c or m. Following the Lth convolutional layer, we have
fully connected layers that take as input the vectorised input
volume fL ∈ R|fL| (from FL) (where |fL| represents the
length of the vector fL) and apply K linear transforms, defined
by [50]:

ffc = ffc(FL, θfc) = (Wfc,K ... (Wfc,1fL + bfc,1) ...+ bfc,K) ,
(3)

where ffc ∈ Rnfc,K . The final classification layer is defined
by a softmax function over a linearly transformed input [50]:

fout = fout(ffc, θout) = softmax(Woutffc + bout), (4)

where softmax(z) = ez∑
j ez(j)

, and fout ∈ [0, 1]C denotes the
output from the inference process, with C representing the
number of output classes. The CNN-F model [18] explored
in this work, depicted in Fig. 3, has an input of 264×264×3
pixels (i.e., the input has three channels of 264×264 pixels),
where the first convolutional stage has 64 11× 11 filters and
a max-pooling that sub-samples the input by 2, the second
convolutional stage has 256 5 × 5 filters and a max-pooling
that sub-samples the input by 2, the third, fourth and fifth
convolutional stages have 256 3 × 3 filters (each) with no
sub-sampling, the first and second fully connected stages have
4096 nodes (each), and the multinomial logistic regression
stage has a softmax layer containing three nodes. Note that
we explore two types of model inputs (see Figures 3): 1) the
2-D input model takes the input image or segmentation map
and replicate it three times to fill the three input channels; and
2) the 3-D input model takes as input the image, mass and
MC segmentation maps of a single view (i.e., CC or MLO)
and feed them into the three input channels.

The training process for estimating θ =
[θ1, ..., θL, θfc,1, ..., θfc,K , θout] in (1) is based on the
minimisation of the cross entropy loss [50] over the training
set, defined as [50]:

`(θ) =
1

N

N∑
i=1

f>out,i logyi, (5)

where N represents the number of cases available for training.

C. Transfer Learning

The pre-training stage of the ConvNet in (1) uses the
Imagenet dataset D̃ in order to model ỹ∗ = f(x̃; θ̃), where
θ̃ = [θ̃1, ..., θ̃L, θ̃fc,1, ..., θ̃fc,K , θ̃out]. This pre-training is
based on the minimisation of the cross-entropy loss in (5)
using the C̃ classes from D̃. This pre-trained model is then
used to initialise the model parameters as follows: θ1 = θ̃1,
..., θL = θ̃L, θfc,1 = θ̃fc,1, ... , θfc,K = θ̃fc,K , and
θout is initialised with random values (normally distributed).
The fine-tuning consists of training this model by minimis-
ing the cross-entropy loss in (5) using the C classes from
D (see Fig. 3). The motivation behind initialising almost
all parameters with the pre-trained model is based on the
results published by Yosinski et al. [81] that show that the
success of similar fine-tuning processes depend on the use
of a large number of pre-trained layers. This fine tuning
process produces six 2-D models and two 3-D models,
where the 2-D models are represented by: 1) f(xMLO; θMLO,im),
2) f(xCC; θCC,im), 3) f(cMLO; θMLO,mc), 4) f(cCC; θCC,mc), 5)
f(mMLO; θMLO,ma) and 6) f(mCC; θCC,ma). The 3-D models
are denoted by: 1) f([xMLO, cMLO,mMLO]; θMLO,3D), and 2)
f([xCC, cCC,mCC]; θCC,3D).

D. Multi-view Analysis

The multi-view analysis of mammograms is based on merg-
ing the six 2-D and two 3-D models introduced in Sec. III-C,
where we propose an evaluation that shows the performance
of the classifier as a function of which layer is used to merge
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the models. The process of merging the models involves the
concatenation of the outputs from a particular layer, as shown
in Fig. 3. In particular, we test four types of merging: 1) ”JOIN
1”: merge the representations F1 in (2) from the fine-tuned
models from Sec. III-C; 2) ”JOIN 2”: merge the representa-
tions F2 in (2) from the fine-tuned models; 3) ”JOIN 3”: merge
the representations FL in (2) from the fine-tuned models; and
4) ”JOIN 4”: merge the representations ffc in (3) from the
fine-tuned models. After merging, the multi-view model is
fine-tuned using the minimisation of the cross-entropy loss in
(5) with the C classes in D. In addition, we train four multi-
view 2-D models (and another four multi-view 3-D models)
using the manually defined segmentation maps and another
four multi-view 2-D models (+ four multi-view 3-D models)
for the automatically defined segmentation models. Given that
the use of a pre-trained model can be regarded as a training
regularisation approach, we compare it to another common
regularisation method: data augmentation [50], obtained by
randomly cropping the original training images (and respective
segmentation maps) with a bounding box, whose top-left and
bottom-right corners are uniformly sampled from a range
of [1, 10] pixels from the original corners. Note that when
augmenting the data, the same transformation is applied to the
mammogram view and respective mass and MC segmentations
maps, but the transformations applied to the two views of the
same breast may not be the same given that we do not have
the registration between these two views. Therefore, all models
specified above are trained with data augmentation by adding
5, 10, 20 and 50 new samples per training image.

E. Automated Lesion Detection

For the automated lesion detection methods, we use recently
proposed methods that produce state-of-the-art results in the
INbreast dataset [57]. In particular, we use the mass detection
methodology proposed by Dhungel et al. [22], consisting of
a cascade of deep learning detectors that select a relatively
large set of mass regions of interest (ROI), which are then
processed by a cascade of random forest classifiers [10]
that use appearance and shape features [78] extracted from
those ROIs. For the MC detection, we use the methodology
proposed by Lu et al. [55], which is based on a cascade of
boosting classifiers [70] that selects ROIs containing individual
MCs, where these classifiers also use appearance and shape
features [78] from those ROIs. We refer the reader to those
papers for more details.

F. Experimental Setup

The input CC and MLO mammograms are pre-processed
with local contrast normalisation in order to enhance the
visualisation of image features and Otsu’s segmentation [60]
that selects a tight bounding box from the mammogram
containing the breast region (see Fig. 7 for examples of the
appearance of the pre-processed mammograms). The bounding
box extracted from the mammogram is subsequently resized
(via bi-cubic interpolation) to 264× 264 pixels. We also align
the input mammogram such that the pectoral muscle is always
located on the right-hand side of the image. The MC and

Fig. 3. Multi-view ConvNet models using different types of merging strategies
for 2-D and 3-D models. The baseline model contains L = 5 convolutional
layers, K = 2 fully connected layers and one final softmax layer. The model
can have 2-D or 3-D inputs (a), and be pre-trained and fine-tuned in four
different manners, as depicted in (b)-(e) (i.e., JOIN 1 to JOIN 4), where for
the 2-D model, there are six inputs and for the 3-D model there are two inputs.

mass segmentation maps are represented by binary images
that are cropped, resized and flipped in the same way as their
respective mammograms.

For the transfer learning experiments, all models are pre-
trained [18] using the Imagenet dataset [66] that contains
1000 visual classes, 1.2×106 training, 50×103 validation
and 100×103 test images. If transfer learning is not used,
then the model parameters θ in (1) are initialised with an
unbiased Gaussian with standard deviation 0.01. In all training
processes, the learning rate is fixed at 0.001, momentum is
equal to 0.9, weight decay is set to 0.0005, the mini-batch
size is 10 and the number of epochs is 20.

The automated lesion detection experiment is run only on
the INbreast dataset [57] because the manual segmentation
annotations are accurate enough to allow us to build effective
mass and MC detection approaches [22,55]. The imprecise
manual lesion segmentation present in the DDSM dataset [42]
(clearly seen in Fig. 8) does not allow the implementation of
lesion detection systems [22,55], which have a detection accu-
racy that is high enough to allow our proposed methodology
to work reliably.

The classification accuracy is measured as follows. For a
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(a) Semi-automated - INbreast

(b) Fully automated - INbreast

(c) Semi-automated - DDSM

Fig. 4. 3-Class Problem: VUS results on INbreast [57] (a-b) and DDSM [42]
(c) for “JOIN 4” (pre-trained - first column) for the multi-modal (MultiView
(2D) and (3D)) and individual inputs (mammographic views and segmentation
maps) as a function of training data augmentation; and for all types of
merging strategies (as displayed in Fig. 3) of the pre-trained and randomly
initialised multi-view models using the 2-D input (“JOIN 1” to “JOIN 4” -
second column). Also notice that we show the results for the semi-automated
(rows a,c) and fully-automated methods (row b). The p-values show the t-test
results comparing the pre-trained and randomly initialised models regarding
the merging strategies and data augmentation.

3-class problem, with classes negative, benign and malignant,
the accuracy is measured with the volume under ROC surface
(VUS) [51]. The lesion classification ”benign vs malignant”
2-class problem is assessed with the area under ROC curve
(AUC), where it is assumed that all cases contain at least
one finding (i.e., an MC or a mass). The breast screening
”malignant vs benign/normal” 2-class problem is also assessed
with AUC. We assess the semi-automated method (using the
manually defined segmentation maps of masses and MCs)
on both datasets, and the fully-automated method (using the
automatically defined segmentation maps of lesions explained
in Sec. III-E) on INbreast. Finally, for the INbreast dataset, re-
sults are computed from a 5-fold cross validation experiment,
where each fold consists of a training set containing 90 patients
and a testing set with 25 patients. For DDSM, the results are
calculated using the suggested division of training and testing
sets for DDSM [42], with 86 patients for training and 86
for testing - this allows a direct comparison with previously

(a) Semi-automated - INbreast

(b) Fully-automated - INbreast

(c) Semi-automated - DDSM

Fig. 5. 2-Class Problem - lesion classification (benign vs malignant):
AUC (lesion classification) results on INbreast [57] (a-b) and DDSM [42]
(c) for “JOIN 4” (pre-trained - first column) for the multi-modal (MultiView
(2D) and (3D)) and individual inputs (mammographic views and segmentation
maps) as a function of training data augmentation; and for all types of merging
strategies (as displayed in Fig. 3) of the pre-trained and randomly initialised
multi-view models using the 2-D input (“JOIN 1” to “JOIN 4” - second
column). Also notice that we show the results for the semi-automated (rows
a,c) and fully-automated methods (rows b). The p-values show the t-test
results comparing the pre-trained and randomly initialised models regarding
the merging strategies and data augmentation.

reported results. All statistical significance tests are based on
the unpaired t-test.

IV. RESULTS

Before presenting the results of our proposed methodology,
we summarised the results of the lesion detection systems
presented in Sec. III-F. For the INbreast dataset, using 5-fold
cross validation experiment, the automated MC detection [55]
can detect 40% of the MCs at one false positive per image
(FPI), and 80% of the MCs at 10 FPI, while the mass
detection [22] can detect around 96% of the masses at around 1
FPI and more than 98% of the masses at 10 FPI. The operating
point for both detectors was chosen in order to have on average
1 FPI.

The assessment of our approach is depicted in Figures 4-6.
We focus the explanation of the results with respect to the
following points: 1) individual versus multi-modal inputs, 2)
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(a) Semi-automated - INbreast

(b) Fully-automated - INbreast

(c) Semi-automated - DDSM

Fig. 6. 2-Class problem- breast screening (negative/normal findings vs
malignant): AUC (lesion classification) results on INbreast [57] (a-b) and
DDSM [42] (c) for “JOIN 4” (pre-trained - first column) for the multi-modal
(MultiView (2D) and (3D)) and individual inputs (mammographic views and
segmentation maps) as a function of training data augmentation; and for all
types of merging strategies (as displayed in Fig. 3) of the pre-trained and
randomly initialised multi-view models using the 2-D input (“JOIN 1” to
“JOIN 4” - second column). Also notice that we show the results for the semi-
automated (rows a,c) and fully-automated methods (rows b). The p-values
show the t-test results comparing the pre-trained and randomly initialised
models regarding the merging strategies and data augmentation.

different types of merging strategies (JOIN 1 to 4), 3) pre-
trained versus randomly initialised models, and 4) fully- versus
semi-automated methods. We also show several visual results
in Figures 7 and 8.

The first column of Figures 4-6 show the VUS (3-class
problem) and AUC (2-class problems) results on INbreast and
DDSM for the individual inputs (CC and MLO views, mass
and MC segmentation maps) and the multi-modal input
(labelled as multi-view). For the majority of the cases, the
main evidence noticed is that the multi-modal input produces
classification results that tend to be at least as good as the
best result from the individual inputs. Furthermore, the second
columns of Figures 4-6 show the results produced by the
different types of merging strategies (JOIN 1 to 4) of the
Multi-view ConvNet models averaged over the all different
amounts of data augmentation considered in this work (1,
5, 10, 20, and 50). In all cases, it is clear that the JOIN 4
strategy for the pre-trained model produces the best overall

results. For the randomly initialised model, the trend is slightly
different with the JOIN 1,2,3 strategies producing similar
results and JOIN 4 with a slightly worse performance. It is also
noticeable that the pre-trained model is consistently better
than the randomly initialised counterpart, as evidenced
by the statistically significant t-test results. Finally, another
important point to notice is the difference in performance
between the fully and semi-automated method, shown in
Figures 4-6 for the INbreast dataset. More specifically, row (a)
of these figures display the semi-automated methods and rows
(b) show the fully automated cases (on INbreast). There is a
significant performance deterioration for the 3-class problem,
which is less significant for the 2-class problems.

In Tab. IV, we compare our results to the latest state-
of-the-art (SoA) results published in the field [27,37,83,83]
- note that all these SoA results have been published after
our original publication [15], but before the submission of
our revised manuscript, so these SoA methods have been
developed either in parallel or after our own approach. The
t-test between our proposed method and Dhungel et al. [27]
for breast screening using automated detected lesions on
INbreast shows p < 1 × 10−10, and p > 0.05 when relying
on manually detected lesions. Also, the t-test between our
proposed method and Zhu et al. [83] for breast screening using
automated detected lesions on INbreast shows p > 0.05 (in
fact, Zhu et al. [83]’s approach does not need an automated
lesion detection stage - but they can detect lesion as a side
effect of their approach). We cannot compare directly the
meanAUC results between our approach and Geras et al. [37]
because they have been obtained from different datasets and
different classification problems (classes are different - see
column ”Classes”). Finally, using our proposed model, we
also compute the specificity and sensitivity results for the
breast screening problem using the operating point closest to
the equal error rate on the ROC curves. For INbreast, using
manually detected lesions, we have sp = 0.92 ± 0.08 and
se = 0.69 ± 0.28, and using automatically detected lesions,
we have sp = 0.66± 0.14 and se = 0.69± 0.23. For DDSM,
using manually detected lesions, we have sp = 0.97 ± 0.01
and se = 0.94± 0.01.

We also show several correctly and incorrectly (Fig. 7)
classified test cases from INbreast produced by the fully-
automated method (JOIN 4) trained with 50× data augmenta-
tion, and test cases from DDSM (Fig. 8) produced by the semi-
automated method (JOIN 4) trained with 50× data augmenta-
tion. Finally, running Matconvnet [18] on a standard desktop
(2.3GHz Intel Core i7 with 8GB, and graphics card NVIDIA
GeForce GT 650M 1024 MB), the time for training six models
and the multi-view model (without data augmentation) is one
hour. With the addition of 10× data augmentation, the training
time increases to four hours, with 20 × data augmentation,
the training time increases to seven hours, and with 50 × data
augmentation, the training time increases to over 12 hours.

V. DISCUSSION

Figures 4-6 show that our proposed approach can jointly
classify unregistered and multi-modal (images and segmenta-
tion maps) inputs using high-level deep learning features. In
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TABLE II
THIS TABLE DISPLAYS FOR EACH SOA METHOD (PROPOSED: PRE-TRAINED, JOIN4, WITH 50× DATA AUGMENTATION), THE DATASET (COLUMNS 2-5),

IF IT IS FULLY AUTOMATED (COLUMN ”AUTO”), THE 3-CLASS (VUS) RESULT, THE LESION CLASSIFICATION (LC) AND BREAST SCREENING (BS)
2-CLASS RESULTS, AND THE MEANAUC RESULTS (THE MEANAUC [37] IS COMPUTED BY TAKING THE AVERAGE OF THREE CLASSIFICATION PROBLEMS

BASED ON MAKING ONE OF THE THREE CLASSES POSITIVE AND THE OTHER TWO, NEGATIVE). THE SYMBOL ‘?’ INDICATES THAT THE RESULT IS NOT
PUBLICLY AVAILABLE.

Method Dataset # cases # images Classes Auto VUS AUC (LC) AUC (BS) meanAUC
Proposed INbreast 115 410 {Neg., Ben.,Mal.} NO 0.94± 0.05 0.94± 0.05 0.91± 0.08 0.87± 0.08
Proposed DDSM 172 680 {Neg., Ben.,Mal.} NO 0.96± 0.05 0.96± 0.05 0.99± 0.01 0.91± 0.03

Dhungel et al. [27] INbreast 115 410 {Neg., Ben.,Mal.} NO ? ? 0.91± 0.03 ?
Proposed INbreast 115 410 {Neg., Ben.,Mal.} YES 0.68± 0.14 0.78± 0.09 0.86± 0.09 0.72± 0.10

Dhungel et al. [27] INbreast 115 410 {Neg., Ben.,Mal.} YES ? ? 0.80± 0.04 ?
Zhu et al. [83] INbreast 115 410 {Neg., Ben.,Mal.} YES ? ? 0.86± 0.03 ?

Geras et al. [37] Private ≈ 18K ≈ 100K BIRADS ∈ {0, 1, 2} YES ? ? ? 0.69

Fig. 7. Correct (a-c) and incorrect (d) classifications on INbreast [57] test cases using Imagenet pre-trained “JOIN 4” model with 50× data augmentation,
where the ground truth (GT) and the automatic (AUTO) mass (GT in white, AUTO in yellow) and MC (GT in green, AUTO in cyan) detections and
classifications (text below images) are shown.

particular, it is important to observe that amongst pre-trained
models, “JOIN 4” presents better results than “JOIN 1,2,3”,
suggesting that higher level features in the deep learning model
are more appropriate to achieve the goal of multi-view classi-
fication. Similar conclusions have been achieved by previous
approaches that showed that the merging of deep learning
models is more effective when they are joined at the high-
level layers [8]. Moreover, for the randomly initialised models,
“JOIN 4” performs worse than “JOIN 1,2,3”, suggesting that
the larger number of parameters present in that model (as
shown in Fig. 3) makes the use of pre-trained models more
critical. Another important point shown in Figures 4-6 is that
all results indicate that the use of the 3-D input does not lead
to competitive classification results - this may happen because
these networks are likely to need channels containing highly
correlated data, but this is a topic that needs more study in
future works. Furthermore, Figures 4-6 suggest that pre-trained
models lead to statistically significant improvements compared
to the randomly initialised ones.

The little difference between the VUS for the 3-class prob-
lem and AUC for the 2-class problem (benign vs malignant)

in the semi-automated model can be explained by the fact
that the proposed model is nearly perfect in classifying cases
that do not contain any findings, demonstrating the ability of
the model to classify an input without lesions as negative - a
high level classification challenge. Furthermore, given the false
positive detections produced by the automated lesion detectors,
the fully-automated model must try to classify negative cases
even with the presence of false positive mass or MC detections,
which is shown to happen in Fig. 7. From Figures 4-6, we
see that the results for the fully-automated multi-view pre-
trained models is better than the individual results for the 3-
class problem, but on par with the best individual input for
the 2-class problems. This also indicates robustness to the
false positive detections of the automated lesion detectors,
but it also shows that such false positive detections have a
negative impact in the ability of the model to classify correctly
a whole exam in a holistic manner. In general, the models show
poor performance for the single view classifications, which
may happen because cases where BI-RADS > 1 may contain
annotations for either MC or mass, but not for both lesions.
Moreover, mammographic views (CC and MLO) may have
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insufficient information for a robust classification, especially
considering that they are down-sampled around ten times
from their original size. Finally, in the 3-class problem, the
MC segmentation maps produce better classification results in
isolation than mass maps, which in turn are better than the
mammograms, while for 2-class problems, mass maps tend
to produce better classification results than MC maps. This
is evidence that these segmentation maps have different roles
depending on the classification problem being studied.

The comparison with SoA methods in Tab. IV shows
that our approach is competitive with methods effectively
published after our own original publication [15]. We can
also compare our approach with previously published semi-
automated lesion classification methods [38], which produce
and AUC in [0.9, 0.95] for MCs and mass classification [19,
79]. Hence, our proposed method is competitive on INbreast
(our AUC in [0.9, 0.98]) and superior on DDSM (our AUC in
[0.91, 1.0]) with respect to these approaches. In addition, we
can also compare our results to more recently proposed meth-
ods based on deep learning. Dhungel et al.’s semi-automated
mass classification method [26] has produced an AUC =
0.91, and the fully automated has yielded an AUC = 0.76 on
INbreast - these results are comparable, but slightly worse than
our results. Finally, the sensitivity and specificity results shown
by our proposed model is competitive to the results produced
by radiologists in breast screening classification when we rely
on manual lesion annotation. However, when considering the
fully automated method, ours and current SoA methods still
need to match human performance.

Fig. 8. Correct (a-c) and incorrect (d) classifications on DDSM [42] test
cases using Imagenet pre-trained “JOIN 4” model with 50× data augmen-
tation, where the ground truth mass (white) and MC (green) detections and
classifications (text below images) are shown. Notice that the manual mass
and MC annotations are significantly less precise than the ones from INbreast,
shown in Fig. 7.

VI. CONCLUSION AND FUTURE WORK

In this paper, we demonstrate that high-level deep learning
features can be used in the classification of unregistered multi-
view and multi-modal input mammograms and segmentation
maps. The use of such deep learning models is facilitated by
the use of models that have been pre-trained with computer
vision datasets containing millions of non-medical images.
Our results shown in Sec. IV can be used as a benchmark
in the field given that both datasets are publicly available.
We believe that our proposed work introduces an important

research topic to the field: the analysis of un-registered multi-
view and multi-modal medical images. We plan to extend
our proposed approach in the following directions: 1) make
it robust to the large number of false positives produced by
the automated lesion detections, 2) remove the dependence on
manual lesion annotations for training the deep learning model
and rely only on the annotations available from the clinical
dataset [83] (e.g., mammogram classification, radiology re-
ports, and patient data), 3) use large scale datasets containing
high-resolution images [37], and 4) combine different breast
imaging modalities.

REFERENCES

[1] A. Akselrod-Ballin, L. Karlinsky, S. Alpert, S. Hasoul, R. Ben-Ari, and
E. Barkan. A region based convolutional network for tumor detection
and classification in breast mammography. In International Workshop on
Large-Scale Annotation of Biomedical Data and Expert Label Synthesis,
pages 197–205. Springer, 2016.
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