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Abstract. We show two important findings on the use of deep convolu-
tional neural networks (CNN) in medical image analysis. First, we show
that CNN models that are pre-trained using computer vision databases
(e.g., Imagenet) are useful in medical image applications, despite the
significant differences in image appearance. Second, we show that mul-
tiview classification is possible without the pre-registration of the input
images. Rather, we use the high-level features produced by the CNNs
trained in each view separately. Focusing on the classification of mammo-
grams using craniocaudal (CC) and mediolateral oblique (MLO) views
and their respective mass and micro-calcification segmentations of the
same breast, we initially train a separate CNN model for each view and
each segmentation map using an Imagenet pre-trained model. Then, us-
ing the features learned from each segmentation map and unregistered
views, we train a final CNN classifier that estimates the patient’s risk of
developing breast cancer using the Breast Imaging-Reporting and Data
System (BI-RADS) score. We test our methodology in two publicly avail-
able datasets (InBreast and DDSM), containing hundreds of cases, and
show that it produces a volume under ROC surface of over 0.9 and an
area under ROC curve (for a 2-class problem - benign and malignant)
of over 0.9. In general, our approach shows state-of-the-art classification
results and demonstrates a new comprehensive way of addressing this
challenging classification problem.
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1 Introduction

Deep learning models are producing quite competitive results in computer vision
and machine learning [1], but the application of such large capacity models in
medical image analysis is complicated by the fact that they need large training
sets that are rarely available in our field. This issue is circumvented in com-
puter vision and machine learning with the use of publicly available pre-trained
deep learning models, which are estimated with large annotated databases [2]
and re-trained (or fine-tuned) for other problems that contain smaller annotated
training sets. This fine-tuning process has been shown to improve the general-
ization of the model, compared to a model that is trained with randomly initial-
ized weights using only the small datasets [1]. However, such pre-trained models

? This work was partially supported by the Australian Research Council’s Discovery
Projects funding scheme (project DP140102794). Prof. Bradley is the recipient of an
Australian Research Council Future Fellowship(FT110100623).



2 Gustavo Carneiro1 Jacinto Nascimento2 Andrew P. Bradley3

Fig. 1: Model proposed in this paper using unregistered CC/MLO views and
MC/Mass segmentations of the same breast, where the classification of the pa-
tient’s risk of developing breast cancer uses a CNN pre-trained with Imagenet [2].

are not available for medical image applications, so an interesting question is if
models pre-trained in other (non-medical) datasets are useful in medical imaging
applications. Another important potential advantage provided by deep learning
methods is the automatic estimation of useful features that provide a high-level
representation of the input data, which is robust to image transformations [3].
A pertinent question with regards to this point is if such features can be used
in multiview classification without the need to pre-register the input views.

Literature Review: Deep learning has become one of the most exciting topics
in computer vision and machine learning [4]. The main advantage brought by
deep learning models, and in particular by deep convolutional neural networks
(CNN) [3], is the high-level features produced by the top layers of the model
that are shown to improve classification results, compared to previous results
produced by hand-built features [4]. Moreover, these high-level features have
also been shown to be robust to image transformations [5]. Nevertheless, the
training process for CNNs requires large amounts of annotated samples (usually,
in the order of 100Ks) to avoid overfitting to the training data given the large
model capacity. This issue has been handled with transfer learning, which re-
trains (in a process called fine-tuning) publicly available models (pre-trained
with large datasets) using smaller datasets [1]. However, it is still not possible to
utilize this approach in medical image analysis given the lack of large publicly
available training sets or pre-trained models.

In spite of the issues above, we have seen the successful use of deep learning
in medical imaging. Recently, Cireşan et al. [6] and Roth et al. [7] set up their
training procedures in order to robustly estimate CNN model parameters, and
in both cases (mitosis and lymph node detection, respectively), their results
suparssed the current state of the art by a large margin. Another way of handling
the issues above is with unsupervised training of deep autoencoders that are fine-
tuned to specific classification problems [8–11]. Other interesting approaches
using autoencoders for processing multiview data have been proposed [12, 13],
but they require pre-registered input data. However, to date we have not seen
the use of pre-trained CNN models in medical imaging, and we have not seen
the analysis of unregistered input images in multiview applications with CNN
models.
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The literature concerning the classification of the patient’s risk of developing
breast cancer using mammograms is quite vast, and cannot be fully covered here,
so we focus on the most relevant works for our paper. In a recent survey, Giger
et al. [14] describe recent methodologies for breast image classification, but these
methods focus only on binary classification of microcalcification (MC) and mass
like lesions. This is different from the more comprehensive approach taken here,
where we aim at classifying a whole breast exam. The state-of-the-art binary
classification of masses and MCs into benign/malignant [15, 16] produces an
area under the receiver operating characteristic (ROC) curve between [0.9, 0.95],
but these results cannot be used as baseline because they usually use databases
and annotations that are not publicly available. More similar to our approach,
the multimodal analysis that takes lesions imaged from several modalities (e.g.,
mammograms and sonograms) have been shown to improve the average per-
formance of radiologists [17]. We believe that the new approach here proposed
based on the combination of multiview analysis with MC and mass detection
has the potential to improve the overall breast exam classification in terms of
sensitivity and specificity.

Contributions: We show two results in this paper (see Fig. 1). First, we show
that CNN models pre-trained with a typical computer vision database [2] can be
used to boost classification results in medical image analysis problems. Second,
we show that the high-level features produced by such CNN models allow the
classification of unregistered multiview data. We propose a methodology that
takes unregistered CC/MLO mammograms and MC/Mass segmentations and
produce a classification based on Breast Imaging-Reporting and Data System
(BI-RADS) score. Using two publicly available databases [18, 19], containing a
total of 287 patients and 1090 images, we show the benefits of these two contri-
butions and also show that we demonstrate improved classification performance
for this problem. Finally, given our use of publicly available datasets only, these
results can be used as baseline for future proposals.

2 Methodology

Assume we have a dataset D = {(x(p,b), c(p,b),m(p,b),y(p,b))}p,b, where x =
{xCC,xMLO} denotes the two views (CC and MLO) available (with xCC,xMLO :
Ω → R and Ω denoting the image lattice), c = {cCC, cMLO} is the MC segmen-
tation in each view with cCC, cMLO : Ω → {0, 1}, m = {mCC,mMLO} represents
the mass segmentation in each view with mCC,mMLO : Ω → {0, 1}, y ∈ Y =
{0, 1}C denotes the BI-RADS classification with C classes, p ∈ {1, ..., P} indexes
the patients, and b ∈ {left, right} indexes the patient’s left and right breasts (each
patient’s breast is denoted as a case because they can be labeled different BI-
RADS scores). The BI-RADS classification has 6 classes (1: negative, 2: benign
finding(s), 3: probably benign, 4: suspicious abnormality, 5: highly suggestive of
malignancy, 6: proven malignancy), but given the small amount of training data
in some of these classes in the publicly available datasets (Fig. 3), we divide these
original classes into three categories: negative or y = [1, 0, 0]> (BI-RADS=1),
benign or y = [0, 1, 0]> (BI-RADS ∈ {2, 3}) and malignant or y = [0, 0, 1]>

(BI-RADS ∈ {4, 5, 6}). We also have a dataset of non-medical image data for
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a) Single view CNN model b) Multiview CNN model

Fig. 2: Visualization of the single view (a) and multiview (b) CNN models with
K1 stages of convolutional and non-linear sub-sampling layers, K2 stages of fully
connected layers and one final layer of the multinomial logistic regressor.

pre-training the CNN, D̃ = {(x̃(n), ỹ(n))}n, with x̃ : Ω → R and ỹ ∈ Ỹ = {0, 1}C̃
(i.e., the set of C̃ classes present in dataset D̃).

Convolutional Neural Network: A CNN model consists of a network with
multiple processing stages, each comprising two layers (the convolutional layer,
where the filters are applied to the image, and the non-linear subsampling layer,
which reduces the input image size), followed by several fully connected layers
and a multinomial logistic regression layer [4] (Fig. 2(a)). The convolution layers
compute the output at location j from input at i using the filter Wk and bias bk
(at kth stage) using xk(j) = σ(

∑
i∈Ω(j) xk−1(i) ∗Wk(i, j) + bk(j)), where σ(.) is

a non-linear function [4] (e.g., logistic or rectification linear unit), ∗ represents
the convolution operator, and Ω(j) is the input region addresses; while the non-
linear subsampling layers are defined by xk(j) =↓ (xk−1(j)), where ↓ (.) denotes
a subsampling function that pools (using the mean or max functions) the values
from the region Ω(j) of the input data. The fully connected layers consist of the
convolution equation above using a separate filter for each output location, using
the whole input from the previous layer, and the multinomial logistic regression
layer computes the probability of the ith class using the features xL from the

Lth layer with the softmax function y(i) = exL(i)∑
j e

xL(j) . Inference consists of the

application of this process in a feedforward manner, and training is carried out
with stochastic gradient descent to minimize the cross entropy loss [4] over the
training set (via back propagation).

The process of pre-training a CNN, represented by the model ỹ∗ = f(x̃; θ̃)

(with θ̃ = [θ̃cn, θ̃fc, θ̃mn]), is defined as training K1 stages of convolutional and

non-linear subsampling layers (represented by the parameters θ̃cn), then K2 fully

connected layers (parameters θ̃fc) and one multinomial logistic regression layer

θ̃mn by minimizing the cross-entropy loss function [4] over the dataset D̃. This
pre-trained model can be used by taking the first K1 +K2 layers to initialize the
training of a new model [1], in a process called fine-tuning (Fig. 2(a)). Yosinski
et al. [1] notice that using a large number of pre-trained layers and fine tuning
the CNN is the key to achieve the best classification results in transfer learn-

ing problems. Following this result, we take the parameters θ̃cn, θ̃fc and add a
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new multinomial logistic regression layer θmn (with random initial values), and
fine tune the CNN model by minimizing the cross-entropy loss function using
D. This fine tuning process will produce six models per case: 1) MLO image
y = f(xMLO; θMLO,im), 2) CC image y = f(xCC; θCC,im), 3) MLO MC map
y = f(cMLO; θMLO,mc), 4) CC MC map y = f(cCC; θCC,mc), 5) MLO mass
map y = f(mMLO; θMLO,ma) and 6) CC mass map y = f(mCC; θCC,ma). The
final multiview training (Fig. 2(b)) takes the features from the last fully con-
nected layer (i.e., L − 1th layer, labeled as xMLO,L−1 for the first model above,
and similarly for the remaining ones) from the six models, and train a single
multinomial logistic regression layer using those inputs (Fig. 2(b)), resulting
in y = f(xMLO,L−1,xCC,L−1, cMLO,L−1, cCC,L−1,mMLO,L−1,mMLO,L−1; θmn),
where θmn is randomly initialized in this multiview training.

3 Materials and Methods

Fig. 3: Distribution
of BI-RADS cases in
InBreast (blue) and
DDSM (red).

We use the publicly available InBreast [18] and
DDSM [19] mammogram datasets. InBreast [18] has
115 patients (410 images), and it does not have any di-
vision in terms of training and testing sets, so we run a
5-fold cross validation experiment, where we randomly
divide the original set into 90 patients for training
and validation and 25 for testing. DDSM [19] has 172
patients (680 images), obtained by joining the origi-
nal MC and mass datasets proposed, but removing all
cases that appear in the training set of mass and test-
ing set of MC and vice versa. With DDSM, we run an
experiment with the proposed 86 patients for train-
ing and 86 for testing. The distribution of patients
in terms of BI-RADS for both datasets is depicted in
Fig. 3. We use the MC and mass maps provided with
these datasets, and if no mass or MC map is available
for a particular case, we use a blank image of all zeros
instead.

We use the publicly available CNN-F model
from [20], consisting of a CNN that takes a 264× 264
input image with four stages of convolution and non-linear sub-sampling layers,
two stages of fully connected layers and a final multinomial logistic regression
stage. Specifically, CNN-F has stage 1 with 64 11× 11 filters and a max-pooling
that sub-samples the input by 2, stage 2 with 256 5×5 filters and a max-pooling
that sub-samples the input by 2, stages 3-5 with 256 3× 3 filters (each) with no
sub-sampling, stage 6-7 with 4096 nodes (each), and stage 8 containing the soft-
max layer. This model is pre-trained with Imagenet [2] (1K visual classes, 1.2M
training, 50K validation and 100K test images), then we replace stage 8 with a
new softmax layer containing only three classes (negative, benign and malignant)
and fine tune for the CC and MLO views and the MC and mass segmentation
maps (Fig. 2(a)). Finally, we take the features from stage 7 for the six models
and train stage 8 of the multiview model (Fig. 2(b)). The use of the proposed
pre-training can be seen as a regularization approach, which can be compared
to other forms of regularization, such as data augmentation [4], obtained by
artificially augmenting the training set with random geometric transformations
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applied to each original sample that generates new artificial training samples.
Hence, we also run an experiment that uses the same CNN-F structure with no
pre-training (i.e., with random weight initialization using an unbiased Gaussian
with standard deviation 0.001) and runs the training with data augmentation
by adding 10 or 20 new samples per training image. Each new training sam-
ple is built by cropping the original image using randomly defined top-left and
bottom-right corners (within a range of [1, 10] pixels from the original corners).
For completeness, we also apply this data augmentation to the pre-trained CNN-
F model. Finally, the learning rate = 0.001, and momentum = 0.9. With this
experimental design, we can then compare the pre-training and data augmenta-
tion regularizations.

The input CC and MLO views are pre-processed with local contrast normal-
ization, then Otsu’s segmentation [21] to remove most of the background. This
pre-processing steps is found to improve the final results (Fig. 5 shows some
samples of these pre-processed images). The classification accuracy is measured
using volume under ROC surface (VUS) for a 3-class problem [22], and the area
under ROC curve (AUC) for the benign/malignant classification of cases that
have at least one finding (MC or mass).

4 Results

Figure 4 shows the VUS for the test sets of InBreast (average and standard
deviation of 5-fold cross validation and the two breasts) and DDSM (average and
standard deviation of the two breasts). We show the results for the six inputs
per case (two views and four maps) and the result of the multiview model, and
we also display the improvement achieved with the Imagenet pre-trained model
compared to the randomly initialized model. Figure 5 shows four typical results
of the pre-trained model (without data augmentation) on InBreast test cases.
The classification of the cases into benign or malignant (where each case has
at least an MC or a mass) produces an AUC of 0.91(±0.05) on InBreast and
0.97(±0.03) on DDSM using the pre-trained model with no data augmentation,
where the same general trends can be observed compared to Fig. 4. Finally, the
training time for all six models and the final multiview model (with no data
augmentation) is one hour. With 10 additional training samples, the training
time is four hours and with 20 additional training samples, the training time
increases to 7.5 hours. These training times are obtained on InBreast, measured
using Matconvnet training [20] on a 2.3GHz Intel Core i7 with 8GB, and graphics
card NVIDIA GeForce GT 650M 1024 MB.

5 Discussion and Conclusion

The results show a clear improvement of multiview compared to single views,
demonstrating that the high-level features of the individual CNN models provide
a robust representation of the input images, which do not need to be registered.
This is particularly important in mammograms, where registration is challeng-
ing due to non-rigid deformations. The poor performance of some single view
classifications is due to: 1) including some MC view cases with BI-RADS > 1
that do not have annotation, which makes its classification difficult (similarly for
some mass view cases); and 2) the classification using mammogram only is chal-
lenging because of the lack of sufficient detail in the image. We also notice that
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Fig. 4: VUS in terms of data augmentation on InBreast (top) DDSM (bottom).
1st column shows the results with the Imagenet pre-trained model, 2nd shows
the randomly initialized models, and the third displays the average improvement
in the results with pre-trained models, compared to the randomly initialized
models.

Fig. 5: InBreast test case results using Imagenet pre-trained model with no data
augmentation (the ground truth and the automatic classifications are shown).

the pre-trained multiview model provides better classification results compared
to the randomly initialized model, with improvements of 5% to 16%, where the
largest differences happen with the no data augmentation test. This is expected
given that this is the condition where the random initialized model is more likely
to overfit the training data. These results are difficult to compare to previously
published results in the field (see Sec. 1) given that: 1) most of the previously
published results are computed with datasets that are not publicly available,
and 2) these other results focus mostly on the specific classification of masses
or MCs instead of the full breast exam. Nevertheless, looking exclusively at the
AUC results, our methodology can be considered to be comparable (on InBreast)
or superior (on DDSM) to the current state of the art, which present AUC be-
tween [0.9, 0.95] for MCs and mass classification [15, 16]. However, we want to
emphasize that our results can be used as baseline in the field given that we
only use public data and models, and consequently be fairly compared to other
works, resolving one of the issues identified by Giger et al. [14]. We believe that
our work opens two research fronts that can be applied to other medical image
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analysis applications, which are the use of pre-trained models from non-medical
imaging datasets and the comprehensive analysis of unregistered multiview data.
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