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ABSTRACT
In this paper, we propose a new method for the segmentation of
breast masses from mammograms using a conditional random field
(CRF) model that combines several types of potential functions, in-
cluding one that classifies image regions using deep learning. The
inference method used in this model is the tree re-weighted (TRW)
belief propagation, which allows a learning mechanism that directly
minimizes the mass segmentation error and an inference approach
that produces an optimal result under the approximations of the TRW
formulation. We show that the use of these inference and learning
mechanisms and the deep learning potential functions provides gains
in terms of accuracy and efficiency in comparison with the current
state of the art using the publicly available datasets INbreast and
DDSM-BCRP.

Index Terms— Mammograms, mass segmentation, tree re-
weighted belief propagation, Deep learning , Gaussian Mixture
model.

1. INTRODUCTION

Breast cancer is the most frequent cancer among women (25% of
all diagnosed cancers) and the second most common cancer in the
world population [1]. Screening mammograms (see Fig. 1) is one of
the most effective tools in the early diagnosis of breast cancer, where
clinicians look for suspicious masses (among other structures, such
as micro-calcifications) [2]. Usually, these mammograms are man-
ually analysed, even though computer aided diagnostic (CAD) sys-
tems have shown potential to improve the trade off between sensitiv-
ity and specificity commonly observed in this manual analysis [3].
We believe that one of the issues preventing the realization of this
potential is the fact that the most of the current state-of-the-art ap-
proaches rely on active contours methods [2, 4] that produce sub-
optimal results because of their non-convex cost functions and re-
liance on contour and appearance priors, which cannot represent well
the shape and appearance variations observed in the data.

Our proposed methodology explores statistical learning methods
using a conditional random field (CRF) model for the segmentation
of breast masses from mammograms. The novelties of our approach
is the use of recently developed inference procedure called Tree re-
weighted belief propagation (TRW) with the supervised learned fea-
tures produced by deep learning mechanisms. The inference proce-
dure based on TRW is derived from a variational formulation to find
the marginals of the CRF model, and the learning process minimizes
directly the segmentation error by back propagating the model pa-
rameters [5]. The main reason behind the use of TRW is the fact that
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Fig. 1. Examples of mass segmentation from mammograms.

it has been found to outperform other inference mechanisms, such as
graph cuts [6], for low-connectivity graphs (such as the 4-connected
graph, which is the connectivity used in our paper) [7]. We also pro-
pose the use of several potential functions in this CRF model based
on deep learning methods [8], which are able to directly extract im-
age features from mammograms (i.e.,the features are automatically
learned instead of being hand-designed). The primary motivation
of using deep learning is the fact that it is presenting state of the art
results in recent challenging object detection and segmentation prob-
lems in computer vision [9], and we believe these result results can
be extended to medical image analysis. Given that these statistical
models learn all parameters from manually annotated data and that
we do not make any assumptions about the shape and appearance of
masses, we believe that our proposed approach is capable of mod-
eling all shape and appearance variations encountered in the data if
enough annotated training data is available. We test our method-
ology on the publicly available datasets INbreast [10] and DDSM-
BCRP [11], and our methodology produces competitive results in
terms of accuracy and with respect to efficiency, our approach is sig-
nificantly faster than any of the published methods.

2. METHODOLOGY

In this section, we first describe our model, then the learning and
inference methods, which are followed by an explanation of the po-
tential functions.

2.1. Statistical Model for Breast Mass Segmentation
Let X = {xn}Nn=1 be a collection of mammograms, with x : Ω →
R (Ω denotes the image lattice) representing the region of interest
(ROI) containing the mass, andY = {yn}Nn=1 representing the mass
segmentation of xn, with y : Ω→ {−1,+1} (where +1 represents
mass and−1, background). We are interested in modeling the proba-
bility of a mass annotation y given an image x, which is represented
by a undirected graph with V nodes and E edges between nodes,
defined as follows [5, 12, 13]:

P (y|x;w) = exp {E(y,x;w)−A(x;w)} (1)



where w represents the model parameters,

E(y,x;w) =

K∑
k=1

∑
i∈V

w1,kφ
(1,k)(y(i),x)+

L∑
l=1

∑
i,j∈E

w2,lφ
(2,l)(y(i),y(j),x)

(2)

with φ(1,k)(., .) representing one of the K potential functions
between label (hidden) and pixel (observed) nodes, φ(2,l)(., ., .)
denoting one of the L potential functions on the edges between
label nodes, w = [w1,1, ..., w1,K , w2,1, ..., w2,L]> ∈ RK+L

and y(i) is the ith component of vector y, and A(x;w) =
log
∑

y∈{−1,+1}M×M exp {E(y,x;w)} is the log-partition func-
tion that ensures normalization.

2.2. Tree Re-weighted Belief Propagation
The main issue involving the learning of the model parameters w
in (1) is the computation of the log-partition function A(x;w). A
relatively recent approach to solving this problem is based on the use
of the variational problem [13] that provides an upper bound to this
log-partition function, leading to the design of tree-reweighted belief
propagation algorithms that can solve this optimization problem. In
particular, the log partition function can be represented as [13]:

A(x;w) = max
µ∈M

wTµ+H(µ), (3)

where M = {µ′ : ∃w, µ′ = µ} denotes the marginal poly-
tope, µ =

∑
y∈{−1,+1}M×M P (y|x;w)f(y) (with f(y) de-

noting the set of indicator functions of possible configurations
of each clique and variable in the graph [14]), and H(µ) =
−
∑

y P(y|x;w) logP(y|x;w) is the entropy. For general graphs
with cycles, the marginal polytopeM is difficult to charaterize and
the entropy H(µ) is not tractable [5]. Tree re-weighted belief prop-
agation (TRW) solves these issues by first replacing the marginal
polytope with a superset L ⊃M that only ensures local constraints
of the marginals, and then approximating the entropy calculation
with an upper bound. Specifically,

L = {µ :
∑

y(c)\y(i)

µ(y(c)) = µ(y(i)),
∑
y(i)

µ(y(i)) = 1} (4)

replacesM in (3) and represents the local polytope (with µ(y(i)) =∑
y′ P (y′|x,w)δ(y′(i) − y(i)) and δ(.) denotes the Dirac delta

function), c indexes a graph clique, and the entropy approximation
(that replaces H(µ) in (3)) is defined as

H̃(µ) =
∑
y(i)

H(µ(y(i)))−
∑
y(c)

ρcI(µ(y(c)), (5)

whereH(µ(y(i))) = −
∑
y(i) µ(y(i)) logµ(y(i)) is the univariate

entropy of variable y(i), I(µ(y(c))) =
∑

y(c) µ(y(c)) log µ(y(c))∏
i∈c µ(y(i))

is the mutual information of the cliques in our model, and ρc is a
free parameter that if selected properly gives the true upper bound
on the entropy.

The estimation of A(x;w) and associated marginals in (3)
are achieved via a message passing algorithm, with the following
message-passing updates [5]:

mc(y(i)) ∝
∑

y(c)\y(i)

exp(
1

ρc
φc(y(i),y(j);w)

∏
j∈c\i

exp(
1

ρc
φi(y(i),x;w))

∏
d:j∈dmd(y(j))ρd

mc(y(j))
,

(6)

where φi(y(i),x;w) =
∑K
k=1 w1,kφ

(1,k)(y(i),x) and
φc(y(i),y(j);w) =

∑L
l=1 w2,lφ

(2,l)(y(i),y(j),x). Once the
message passing algorithm has converged [13], the beliefs for the
associated marginals are written as:

µc(y(c)) ∝ 1

ρc
φc(y(i),y(j))

∏
i∈c

φi(y(i),x;w)

∏
d:j∈dmd(y(j))ρd

mc(y(i))

µi(yi) ∝ exp(φi(y(i),x;w))
∏
d:i∈d

md(y(i))ρd

(7)

Finally, in order to learn w in (1), we follow the learning
methodology developed by Domke [5], which is based on the min-
imization of certain loss functions. In particular, we minimize the
smoothed univariate classification error, defined as follows:

L(w,y) =
∑
y(i)

S( max
ŷ(i)6=y(i)

µ(y(i);w)− µ(ŷ(i);w)) (8)

where S(t) = (1 + exp(−αt))−1 and α controls the approxima-
tion quality. This learning process is achieved with truncated fitting
of the weight parameter w with inference using backpropagation in
TRW [5].

2.3. Potential Functions
It is worth noticing that the model in (1) can incorporate a large
number of different types of potential functions. In this paper, the
potential functions between label and pixel nodes are based on deep
belief networks (DBN), Gaussian mixture model (GMM), and the
mean shape from the training images. The DBN potential function
is defined as [8]:

φ(1,1)(y(i),x) = − logPd(y(i) = 1|xS(i), θd,S), (9)

where xS(i) is a patch extracted around image lattice position i of
size S × S pixels, θd,S represents the DBN parameters (below, we
drop the dependence on θd,S for notation simplicity). The DBN
model consisting of a network containing Q layers is denoted by:

P (xS(i),y(i),h1, ...,hQ) =

P (hQ,hQ−1,y(i))
(∏Q−2

q=1 P (hq+1|hq)
)
P (h1|xS(i)),

(10)
where hq ∈ R|q| represents the hidden variables at layer q contain-
ing |q| nodes. The first term in (10) is defined by:

− log(P (hQ,hQ−1,y(i))) ∝
−b>QhQ − a>Q−1hQ−1 − a>y [y(i)+1

2
, 1−y(i)

2
]>

−h>QWhQ−1 − h>QWy[y(i)+1
2

, 1−y(i)
2

]>
(11)

where a, b,W are the network parameters, and the conditional
probabilities are factorized asP (hq+1|hq) =

∏|q+1|
i=1 P (hq+1(i)|hq)

because the nodes in layer q + 1 are independent from each
other given hq , which is a consequence of the DBN structure
(P (h1|xS(i)) is similarly defined). Furthermore, each node is ac-
tivated by a sigmoid activation function σ(.), which means that
P (hq+1(i)|hq) = σ(bq+1(i) + Wihq). As a result, (9) is com-
puted by:

Pd(y(i) = 1|xS(i)) ∝ Pd(y(i) = 1,xS(i)) =∑
h1

...
∑
hQ

Pd(xS(i),y(i) = 1,h1, ...,hQ), (12)



which is estimated with the mean field approximation of the values
in layers h1 to hQ−1 followed by the computation of free energy
on the top layer [8]. The learning of the DBN parmeters θd,S in (9)
is achieved with an iterative layer by layer training of auto-encoders
using contrastive divergence [8]. The GMM potential function is
defined by:

φ(1,2)(y(i),x) = − logPg(y(i) = 1|x(i), θg), (13)

where Pg(y(i) = 1|x(i), θg) = (1/Z)
∑G
m=1 πmN (x(i);y(i) =

1, µm, σm)P (y(i) = 1) with θg = [πm, µm, σm]Gm=1 , N (.)
is the Gaussian function, Z is the normalizer, x(i) represents the
pixel value at image lattice position i, and P (y(i) = 1) = 0.5.
The parameter vector θg in (13) is automatically learned with the
expectation-maximization (EM) algorithm [15] using the annotated
training set. The mean shape is computed from the average annota-
tion (estimated from the training set) at each image lattice position
i ∈ Ω, as follows:

φ(1,3)(y(i),x) = − logPp(y(i) = 1|θp), (14)

where P (y(i) = 1|θp) = λ(1/N)
∑
n δ(yn(i) − 1) + (1 − λ),

where λ ∈ [0, 1].
The potential functions between label nodes in (1) encode la-

bel and contrast dependent labelling homogeneity. In particular, the
label homogeneity is defined by:

φ(2,1)(y(i),y(j),x) = 1− δ(y(i)− y(j)), (15)

with δ(.) denoting the Dirac delta function, and the contrast depen-
dent labelling homogeneity is as follows:

φ(2,1+n)(y(i),y(j),x) =(1− δ(y(i)− y(j)))

δ(min(0, ‖x(i)− x(j)‖2 − τn))
(16)

where x(i) represents the pixel value at position i, and τn ∈
{τ1, τ2, ..., τ10} is a set with 10 thresholds [5]. Therefore, in to-
tal there are 11 pairwise potentials.

3. EXPERIMENTS

In this section, we first present the material and methods used in the
experiments, and then we show a comparison between the results
produced by our methodology and by other approaches.

3.1. Materials and Methods
The evaluation of our methodology is performed on two publicly
available datasets: Inbreast [10] and DDSM-BCRP [11].The In-
breast [10] dataset comprises a set of 56 cases containing 116
accurately annotated masses. We divide this dataset into mutually
exclusive train and test sets,containing 58 images each on train-
ing and testing sets. The DDSM-BCRP [11] dataset consists of 9
cases (77 annotated images) for training and 40 cases (81 annotated
images) for testing. It is worth mentioning that the annotations
provided with DDSM-BCRP are generally inaccurate [16, 10], so
most of the literature uses subsets of DDSM with bespoke anno-
tations that are not publicly available. Note that some cases in
DDSM-BCRP and INbreast database contain multiple masses, and
each case presents the Craniocaudal (CC) and Mediolateral (MLO)
views.

Segmentation accuracy is assessed with Dice index (DI) =
2TP

FP+FN+2TP
, where TP denotes the number of mass pixels cor-

rectly segmented, FP the background pixels falsely segmented as
mass, and FN the mass pixels not identified. Efficiency is estimated

Fig. 2. Dice index over the test set of Inbreast of different versions
of our model, containing various subsets of the potential functions.

with the running time of the segmentation algorithm, reported as the
average execution time per image on a standard computer (Intel(R)
Core(TM) i5-2500k 3.30GHz CPU with 8GB RAM). The ROI to
be segmented is obtained by extracting a rectangular bounding box
from around the center of the manual annotation from the test/train
image, where the size for each dimension of the rectangle is pro-
duced by the size of the annotation plus two pixels [17]. This ROI
is then resized to 40 x 40 pixels using bicubic interpolation. We use
the preprocessing method by Ball and Bruce [4] in order to increase
the contrast of the input image.

3.2. Results
The first experiment presented in Fig. 2 shows the importance of the
potential functions in the model (1), where we train the model with
the Inbreast train set and show the mean Dice index results on its
test set. In particular, we show these results using several subsets of
the potential functions presented in Sec. 2.3. In this figure, “DBN”
and “GMM” represent the potentials φ(1,k) for k = {1, 2} with
3×3 and 5×5 denoting the image patch size used by the DBN, and
pairwise potentials. It is important to mention that the Dice index
of our methodology using all potential functions on the training set
is 0.90, which is similar to the performance on the test set shown in
Fig. 2. Furthermore, the Dice index of our methodology on the test
set when we do not adopt the pre-processing described by Ball and
Bruce [4] is 0.85

Tab. 1 shows the Dice index and running time results of our
approach (using the model (1) with potential functions DBN3x3 +
DBN5x5 + GMM + pairwise) on the test sets of DDSM-BCRP and
INbreast. The results from the other methods are as reported by
Horsh et al.[16] or by their original authors. The great majority of
papers published in this area have used subsets of the DDSM dataset
and manual annotations that are not publicly available. For this rea-
son, a direct comparison with these methods is impossible, and we
indicate the reproducibility of each experiment in the column ‘rep’
in Tab. 1. Finally, Fig. 3 shows a few segmentation results produced
by our methodology.

4. DISCUSSION AND CONCLUSION

In this paper, we have demonstrated the suitability of TRW to mam-
mogram mass segmentation both in terms of accuracy and compu-
tational efficiency. In particular, we have demonstrated the benefit
of combining multiple potential functions based on deep learning,
gaussian mixture model and shape prior. Fig. 2 demonstrates that



Table 1. Comparison between the proposed and several state-of-the-
art methods.

Method Rep. #Images Dataset Dice Run.Time
Proposed yes 158 DDSM-BCRP 0.89 0.1s

Dhungel et al. [18] yes 158 DDSM-BCRP 0.87 0.8s
Beller et al. [19] yes 158 DDSM-BCRP 0.70 ?

Ball et al. [4] no 60 DDSM 0.85 ?
Rahmati et al. [2] no 100 DDSM 0.93 ?
Yuan et al. [20] no 483 DDSM 0.78 4.7s

Proposed yes 116 INbreast 0.89 0.1s
Cardoso et al. [17] yes 116 INbreast 0.88 ?
Dhungel et al. [18] yes 116 INbreast 0.88 0.8s

Fig. 3. Mass segmentation produced by our approach, where the red
contour denotes the result of our methodology and blue represents
the ground truth.

segmentation accuracy improves with the use of all potential func-
tions together with the TRW which provides an increase in accu-
racy. Our method also shows good generalization capability given
the small difference between the training and testing results. Fur-
thermore, note that the pre-processing stage provides increase in ac-
curacy. The comparison against the state-of-the-art in Tab. 1 shows
that our approach is the most accurate and most efficient in the field
on Inbreast and DDSM-BCRP. If one considers other subsets and
annotations of DDSM, our method is still competitive, presenting
the second best overall result, with [2] apparently being the most ac-
curate. However, this is not a fair comparison because we do not
have access to the annotations used in their experiment. As depicted
in Fig. 3 (particularly in images (g) and (h), showing poor dice re-
sults), the main problem affecting the results of our methodology is
that the produced mass segmentation tend to be a smoothed version
of the ground truth annotation. This happens because of the high
weight that the learning mechanism places in the mean shape term
(14), which is a consequence of the small training set (available from
the DDSM-BCRP and INbreast databases) that do not fully repre-
sent all possible appearance and shape variations of breast masses.
We believe that by training our methodology with larger and more
representative training set, we can improve segmentation accuracy.
Therefore we plan to acquire such training sets and make them avail-
able for the community.
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