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Abstract The segmentation of masses from mammogram is a challenging problem
because of their variability in terms of shape, appearance and size, and the low signal
to noise ratio of their appearance. We address this problem with structured output
prediction models that use potential functions based on deep convolution neural
network (CNN) and deep belief network (DBN). The two types of structured output
prediction models that we study in this work are the conditional random field (CRF)
and structured support vector machines (SSVM). The label inference for CRF is
based on tree re-weighted belief propagation (TRW) and training is achieved with
the truncated fitting algorithm; whilst for the SSVM model, inference is based upon
graph cuts and training depends on a max-margin optimisation. We compare the
results produced by our proposed models using the publicly available mammogram
datasets DDSM-BCRP and INbreast, where the main conclusion is that both models
produce results of similar accuracy, but the CRF model shows faster training and
inference. Finally, when compared to the current state of the art in both datasets, the
proposed CRF and SSVM models show superior segmentation accuracy.
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1 Introduction

Statistical findings published by World Health Organisation (WHO) [2] reveal that
23% of all diagnosed cancers and 14% of all cancer related deaths among women
are due to breast cancer. These numbers show that breast cancer is one of the major
diseases affecting the lives of many women across the globe. One of the keys to
reduce these number is the early detection of this disease, which is task that is mostly
based on mammography screening. An important activity involved in this screening
process is the detection and classification of breast masses, which is difficult because
of the variable size, shape and appearance of masses [3] and their low signal-to-
noise ratio (see Fig. 1). In this work we focus on the problem of accurate mass
segmentation because we assume that such precise segmentation is important for the
sub-sequent mass classification task [4, 5]. In clinical practice, the task of detecting
and segmenting masses from mammograms typically consists of a manual process
performed by radiologists. This process can introduce variability depending on the
radiologist’s expertise and the number of mammograms to be analysed at one sitting,
which can reduce the efficacy of the screening process. In a recent study [6], it has
been shown that there is a clear trade-off between sensitivity (Se) and specificity
(Sp) in manual interpretation, with a median Se of 84% and Sp of 91%.

Fig. 1 Examples from INbreast [7] and DDSM-BRCP [8] databases with blue contour denoting
the mass lesion with the blue contour.

Regardless of the development of numerous breast mass segmentation tech-
niques, computer-aided diagnosis (CAD) systems, which depend on accurate breast
mass segmentation methods, are not widely used in clinical practice. In fact, it has
been observed that the use of CAD systems can reduce screening accuracy by in-
creasing the rate of biopsies without improving the detection of invasive breast can-
cer [9]. We believe that one of the reasons is the lack of an easily reproducible and
reliable assessment mechanism that provides a clear comparison between competing
methodologies, which can lead to a better informed decision process related to the
selection of appropriate algorithms for CAD systems. We have addressed this issue
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in previous versions of this work [10, 11], where we propose quantitatively compari-
son mechanisms on the publicly available databases DDSM-BCRP [8] and INbreast
dataset [7]. Another reason for the relatively poor performance of most of the cur-
rently available breast mass segmentation methods lies in their reliance on more
traditional image processing and segmentation techniques, such as active contours,
which typically produce sub-optimal results due to their non-convex cost functions.
Differently from these methods, our approach is based on a machine learning tech-
nique that estimates optimal models directly from annotated data, and for this reason
our approach has the potential to deliver improved segmentation accuracy, a result
previously demonstrated in other medical image analysis problems [12].

In this work, we propose a new approach for segmenting breast masses from
mammograms using two types of structured output prediction models: 1) con-
ditional random field (CRF) [11, 13] and 2) structural support vector machine
(SSVM) [10, 14]. Our main contribution is related to the introduction of power-
ful deep learning networks into the CRF and SSVM models above, based on the
deep convolutional neural network (CNN) [15, 16] and the deep neural network
(DBN) [17]. These deep learning architectures are able to extract image features in
a fully automated manner, instead of being hand-crafted. In addition, these CNNs
and DBNs have produced state-of-the-art results in several computer vision prob-
lems [15, 18], and we believe that these methodologies have the potential to produce
competitive results in mass segmentation from mammography. The CRF model uses
tree re-weighted belief propagation [19] for inference and truncated fitting for train-
ing [13], whilst SSVM performs label inference with graph cuts [20] and the param-
eters learning with the cutting plane algorithm [21, 14]. Given that these training al-
gorithms learn all parameters for the structured output prediction models using the
manually annotated training data and that we do not make any assumptions about
the shape and appearance of masses, we believe that our proposed approach is capa-
ble of modelling in a robust manner the shape and appearance variations of masses
encountered in the training data if enough annotated training data is available. We
test our proposed methodologies on the publicly available datasets INbreast [7] and
DDSM-BCRP [8], and our methodologies produce state-of-the-art results in terms
of accuracy and running time. Moreover, comparing the CRF and SSVM models,
we note that they produce comparable results in terms of segmentation accuracy, but
the CRF model is more efficient in terms of training and testing.

2 Literature Review

Currently, the majority of the methodologies developed for the problem of segment-
ing masses from mammograms is based on statistical thresholding, dynamic pro-
gramming models, morphological operators and active contour models. A statistical
thresholding method that distinguishes pixels inside the mass area from those out-
side has been developed by Catarious et al. [22]. Although relatively successful, the
main drawback of this type of approach is that it is not robust to low contrast im-
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Fig. 2 The proposed structured output prediction models with a list of unary and pairwise potential
functions for mass segmentation in mammograms, including the deep learning networks.

ages [4]. Song et al. [23] have extended this model with a statistical classifier based
on edge gradient, pixel intensity and shape characteristics, where the segmentation
is found by estimating the minimum cut of a graph representation of the image us-
ing dynamic programming. Similar dynamic programming models have also been
applied by Timp et al. [24], Dominguez et al. [25] and Yu et al. [26]. These ap-
proaches are similar to our proposed structured output prediction models, with the
exception that they do not use structured learning to estimate the weights of the po-
tential functions, which generally leads to sub-optimal performance. Morphological
operators, such as the watershed method [27] or region growing [5], have also been
explored for the mass segmentation problem, but these operators have been shown
to be rather limited in providing sufficiently accurate results mainly because they
only explore semi-local grey level distributions without considering higher level in-
formation (e.g., shape model).

Active contour models are probably the most explored methodology for breast
mass segmentation. The most accurate model reported in the field is the one pro-
posed by Rahmati et al. [4], which is a level set method based on the maximum
likelihood segmentation without edges that is particularly well adapted to noisy im-
ages with weak boundaries. Several other papers also propose mass segmentation
methods based on standard active contour models [28, 29, 30, 31, 32]. The major
drawback of active contour models lies in their need of a good initialisation for the
inference process due to the usual non-convexity of the energy function. Moreover,
the weights of the terms forming the energy function of the active contour models
models are usually arbitrarily defined, or estimated via a cross-validation process
that generally do not produce an optimal estimation of these weights.
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3 Methodology

We start this section with an explanation of the learning process of our struc-
tured output prediction model [33]. Assume that we have an annotated dataset
D containing images of the region of interest (ROI) of the mass, represented by
x : Ω → R (Ω ∈ R2), and the respective manually provided segmentation mask
y : Ω → {−1,+1}, where D = (x,y)|D |i=1. Also assume that the parameter of our
structured output prediction model is denoted by θ and the graph G = (V ,E ) links
the image x and labels y, where V represents the set of graph nodes and E , the set
of edges. The process of learning the parameter of our structured prediction model
is done via the minimisation of the following empirical loss function [33]:

θ
∗ = argmin

θ

1
|D |

|D |

∑
i=1

`(xi,yi,θ), (1)

where `(x,y,θ) is a continuous and convex loss function being minimized that de-
fines the structured model. We use CRF and SSVM formulations for solving (1),
which are explained in detail in Sec. 3.1 and 3.2, respectively, and we explain the
potential functions used for both models in Sec. 3.3. In particular, the CRF formu-
lation uses the loss

`(xi,yi,θ) = A(xi,θ)−E(yi,xi;θ), (2)

where A(x;θ) = log∑y∈{−1,+1}|Ω |×|Ω | exp{E(y,x;θ)} is the log-partition function
that ensures normalization, and

E(y,x;θ) =
K

∑
k=1

∑
i∈V

θ1,kψ
(1,k)(y(i),x)+

L

∑
l=1

∑
i, j∈E

θ2,lψ
(2,l)(y(i),y( j),x), (3)

In (3), ψ(1,k)(., .) denotes one of the K potential functions between label (segmen-
tation plane in Fig. 2) and pixel (image plane in Fig. 2) nodes, ψ(2,l)(., ., .) de-
noting one of the L potential functions on the edges between label nodes, θ =
[θ1,1, ...,θ1,K ,θ2,1, ...,θ2,L]

> ∈ RK+L, and y(i) being the ith component of vector y.
Similarly, the SSVM uses the following loss function

`(xi,yi,θ) = max
y∈Y

(∆(yi,y)+E(y,xi;θ)−E(yi,xi;θ)) , (4)

where ∆(yi,y) represents the dissimilarity between yi and y, which satistfies the
conditions ∆(yi,y)≥ 0 for yi 6= y and ∆(yi,yi) = 0.
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3.1 Conditional Random Field (CRF)

The solution of (1) using the CRF loss function in (2) involves the computation of
the log-partition function A(x;θ). The tree re-weighted belief propagation algorithm
provides the following upper bound to this log-partition function [19]:

A(x;θ) = max
µ∈M

θ
T

µ +H(µ), (5)

where M = {µ ′ : ∃θ ,µ ′ = µ} denotes the marginal polytope, µ = ∑y∈{−1,+1}|Ω |×|Ω |

P(y|x,θ) f (y), with f (y) denoting the set of indicator functions of possible con-
figurations of each clique and variable in the graph [34] (as denoted in (3)),
P(y|x,θ) = exp{E(y,x;θ)−A(x;θ)} indicating the conditional probability of the
annotation y given the image x and parameters θ (where we assume that this
conditional probability function belongs to the exponential family), and H(µ) =
−∑y∈{−1,+1}|Ω |×|Ω | P(y|x;θ) logP(y|x,θ) is the entropy. Note that for general graphs
with cycles (such as the case in this paper), the marginal polytope M is difficult
to characterise and the entropy H(µ) is not tractable [13]. Tree re-weighted belief
propagation (TRW) solves these issues by first replacing the marginal polytope with
a superset L ⊃M that only accounts for the local constraints of the marginals, and
then approximating the entropy calculation with an upper bound. Specifically,

L = {µ : ∑
y(c)\y(i)

µ(y(c)) = µ(y(i)),∑
y(i)

µ(y(i)) = 1} (6)

replaces M in (5) and represents the local polytope (with µ(y(i)) = ∑y′ P(y′|x,θ)
δ (y′(i)−y(i)) and δ (.) denoting the Dirac delta function), c indexes a graph clique,
and the entropy approximation (that replaces H(µ) in (5)) is defined by

H̃(µ) = ∑
y(i)

H(µ(y(i)))−∑
y(c)

ρcI(µ(y(c)), (7)

where H(µ(y(i))) = −∑s(i) µ(y(i)) log µ(y(i)) is the univariate entropy of vari-

able y(i), I(µ(y(c))) = ∑y(c) µ(y(c)) log µ(y(c))
∏i∈c µ(y(i)) is the mutual information of the

cliques in our model, and ρc is a free parameter providing the upper bound on the
entropy. Therefore, the estimation of A(x;θ ) and associated marginals in (5) is based
on the following message-passing updates [13]:

mc(y(i)) ∝ ∑
y(c)\y(i)

exp
{

1
ρc

ψc(y(i),y( j);θ

}

∏
j∈c\i

exp
{

1
ρc

ψi(y(i),x;θ)

}
∏d: j∈d md(s( j))ρd

mc(s( j))
,

(8)

where φi(y(i),x;θ) = ∑
K
k=1 w1,kψ(1,k)(y(i),x) and ψc(y(i),y( j);θ) =

∑
L
l=1 w2,lφ

(2,l)(y(i),y( j),x) (see (3) ). Once the message passing algorithm con-
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verges [19], the beliefs for the associated marginals are written as:

µc(y(c)) ∝
1
ρc

ψc(y(i),y( j))∏
i∈c

ψi(y(i),x;θ)
∏d: j∈d md(y( j))ρd

mc(y(i))

µi(yi) ∝ exp(ψi(y(i),x;θ)) ∏
d:i∈d

md(y(i))ρd .
(9)

The learning process involved in the estimation of θ is typically based on gradi-
ent descent that minimizes the loss in (2) and should run until convergence, which
is defined by the change rate of θ between successive gradient descent iterations.
However, as noted by Domke [13], there are problems with this approach, where
large thresholds in this change rate can lead to bad suboptimal estimations, and
tight thresholds result in slow convergence. These issues are circumvented by the
truncated fitting algorithm [13], which uses a fixed number of iterations (i.e., no
threshold is used in this training algorithm). We refer the reader to [13] for more
details on this training algorithm.

3.2 Structured Support Vector Machine (SSVM)

The SSVM optimization to estimate θ consists of a regularized loss minimization
problem formulated as θ ∗ = minθ ‖θ‖2 +λ ∑i `(xi,yi,θ), with `(.) defined in (4).
The introduction of slack variable leads to the following optimization problem [21,
14]:

minimizeθ
1
2‖θ‖

2 + C
|D | ∑i ξi

subject to E(yi,xi;θ)−E(ŷi,xi;θ)≥ ∆(yi, ŷi)−ξi,∀ŷi 6= yi
ξi ≥ 0.

(10)

This optimization is a quadratic programming problem involving an intractably
large number of constraints. In order to keep the number of constraints manage-
able, we use the cutting plane method that keeps a relatively small subset of the
constraints by solving the maximization problem:

ŷi = argmax
y

∆(yi,y)+E(y,xi;θ)−E(yi,xi;θ)−ξi, (11)

which finds the most violated constraint for the ith training sample given the pa-
rameter θ . Then if the right hand side is strictly larger than zero, the most vi-
olated constraint is included in the constraint set and (10) is re-solved. This it-
erative process runs until no more violated inequalities are found. Note that if
we remove the constants from (11), the optimization problem is simply: ŷi =
argmaxy ∆(yi,y)+E(y,xi;θ), which can be efficiently solved using graph cuts [20]
if the function ∆(., .) can be properly decomposed in the label space. A simple
example that works with graph cuts is ∆(y,yi) = ∑i 1−δ (y(i)−yi(i)), which rep-
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Fig. 3 CNN Model with the input x (mass ROI from the mammogram) and the segmentation of
the whole input with y(i) ∈ {−1,+1}, denoting the absence (blue) or presence (red) of mass,
respectively, and i ∈ |Ω |× |Ω |.

resents the Hamming distance and can be decomposed in the label space. Therefore,
we use it in our methodology.

The label inference for a test mammogram x, given the learned parameters θ

from (10), is based on the following inference:

y∗ = argmax
y

E(y,x;θ), (12)

which can be efficiently and optimally solved for binary problems with graph
cuts [20].

3.3 Potential Functions

It is worth noticing that the model in (3) can incorporate a large number of different
types of potential functions. We propose the use of the deep convolutional neural
networks (CNN) and deep belief networks (DBN), in addition to the more common
Gaussian mixture model (GMM) and shape prior between the nodes of image and
segmentation planes (see Fig. 2). Furthermore, we also propose the use of common
pairwise potential functions.

3.3.1 CNN Potential Function

The CNN potential function is defined by [16] (Fig. 3):

ψ
(1,1)(y(i),x) =− logPCNN(y(i)|x,θCNN), (13)

where PCNN(y(i)|x,θCNN) denotes the probability of labeling the pixel i∈ |Ω |×|Ω |
with mass or background (given the whole input image x for the ROI of the mass),
and θCNN denotes the CNN parameters. A CNN model consists of multiple process-
ing stages, with each stage comprising two layers (the convolutional layer, where
the learned filters are applied to the image, and the non-linear subsampling layer,
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Fig. 4 DBN model with variables x (mass ROI from the mammogram) and classification y ∈
{−1,+1}, denoting the absence or presence of mass, respectively.

that reduces the input image size for the next stage - see Fig. 3), and a final stage
consisting of a fully connected layer. Essentially, the convolution stages compute
the output at location j from input at i using the learned filter (at qth stage) kq and
bias bq using x( j)q = σ(∑i∈M j x(i)q−1 ∗kq

i j + bq
j), where σ(.) is the logistic func-

tion and M j is the input region addresses; while the non-linear subsampling layers
calculate subsampled data with x( j)q =↓ (xq−1

j ), where ↓ (.) denotes a subsampling
function that pools (using either the mean or max functions) the values from a re-
gion from the input data. The final stage consists of the convolution equation above
using a separate filter for each output location, using the whole input from the pre-
vious layer. Inference is simply the application of this process in a feed-forward
manner, and training is carried out with stochastic gradient descent to minimize the
segmentation error over the training set (via back propagation) [16].

3.3.2 DBN Potential Function

The DBN potential function is defined as [17]:

ψ
(1,2)(y(i),x) =− logPDBN(y(i)|xS(i),θDBN), (14)

where xS(i) is a patch extracted around image lattice position i of size |Ω | × |Ω |
pixels, θDBN represents the DBN parameters (below, we drop the dependence on
θDBN for notation simplicity), and

PDBN(y(i)|xS(i)) ∝ ∑
h1

...∑
hQ

P(xS(i),y(i),h1, ...,hQ), (15)

with the DBN model consisting of a network with Q layers denoted by:
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P(xS(i),y(i),h1, ...,hQ) = P(hQ,hQ−1,y(i))

(
Q−2

∏
q=1

P(hq+1|hq)

)
P(h1|xS(i)),

(16)
where hq ∈ R|q| represents the hidden variables at layer q containing |q| nodes. The
first term in (16) is defined by:

− log(P(hQ,hQ−1,y(i)))∝−b>QhQ−a>Q−1hQ−1−a>s y(i)−h>QWhQ−1−h>QWsy(i),
(17)

where a, b,W are the network parameters, and the conditional probabilities are fac-
torized as P(hq+1|hq) = ∏

|q+1|
i=1 P(hq+1(i)|hq) because the nodes in layer q+ 1 are

independent from each other given hq, which is a consequence of the DBN structure
(P(h1|xS(i)) is similarly defined). Furthermore, each node is activated by a sigmoid
function σ(.), which means that P(hq+1(i)|hq) = σ(bq+1(i)+Wihq). The inference
is based on the mean field approximation of the values in layers h1 to hQ−1 followed
by the computation of free energy on the top layer [17]. The learning of the DBN
parameters θDBN in (18) is achieved with an iterative layer by layer training of auto-
encoders using contrastive divergence [17].

3.3.3 GMM Potential Function

The GMM potential function is defined by:

ψ
(1,3)(y(i),x) =− logPGMM(y(i)|x(i),θGMM), (18)

where PGMM(y(i)|x(i),θGMM) = (1/Z)∑
G
m=1 πmN (x(i);y(i),µm,σm)P(y(i)) with

θGMM = [πm,µm,σm]
G
m=1 , N (.) is the Gaussian function, Z is the normalizer, x(i)

represents the pixel value at image lattice position i, and P(y(i) = 1) = 0.5. The
parameter vector θGMM in (14) is learned with the expectation-maximization (EM)
algorithm [35] using the annotated training set.

3.3.4 Shape Prior Potential Function

The shape prior potential function is computed from the average annotation (esti-
mated from the training set) at each image lattice position i ∈Ω , as follows:

ψ
(1,4)(y(i),x) =− logPprior(y(i)|θprior), (19)

where P(y(i)|θprior) = λ (1/N)∑n δ (yn(i)−1)+(1−λ ), where λ ∈ [0,1].
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3.3.5 Pairwise Potential Functions

The pairwise potential functions between label nodes in (3) encode label and con-
trast dependent labelling homogeneity. In particular, the label homogeneity is de-
fined by:

ψ
(2,1)(y(i),y( j),x) = 1−δ (y(i)−y( j)), (20)

and the contrast dependent labelling homogeneity that we use is as follows [21]:

ψ
(2,2)(y(i),y( j),x) = (1−δ (y(i)−y( j)))C(x(i)−x( j)) (21)

where C(x(i),x( j)) = e−(x(i)−x( j))2
.

4 Experiments

In this section, we first introduce the datasets used, followed by an explanation of
the experimental setup and the results achieved.

4.1 Materials and Methods

We assess performance of our methodology on two publicly available datasets: IN-
breast [7] and DDSM-BCRP [8]. The INbreast [7] dataset consist of set of 56 cases
containing 116 accurately annotated masses. We divide this dataset into mutually
exclusive training and testing sets, each containing 28 cases (58 annotated images
each). The DDSM-BCRP [8] dataset consists of 39 cases (77 annotated images) for
training and 40 cases (81 annotated images) for testing. Segmentation accuracy is
assessed with Dice index (DI) = 2T P

FP+FN+2T P , where T P denotes the number of mass
pixels correctly segmented, FP the background pixels falsely segmented as mass,
and FN the mass pixels not identified. The ROI to be segmented is obtained by
extracting a rectangular bounding box from around the centre of the manual anno-
tation, where the size for each dimension of the rectangle is produced by the size of
the annotation plus two pixels [36]. We use the preprocessing method by Ball and
Bruce [28] in order to increase the contrast of the input image. This ROI is then re-
sized to 40 x 40 pixels using bicubic interpolation. The model selection process for
the structure of the CNN and DBN is performed via cross validation on the training
set, and for the CNN, the net structure is the one in Fig. 3, where the first stage has
6 filters of size 5× 5 and the second stage has 12 filters of size 5× 5, and the sub-
sampling method after each of these stages uses max pooling that reduces the input
to half of its initial size in both stages. The final stage of the CNN has a fully con-
nected layer with 588 nodes and an output layer with 1600 nodes which is reshaped
to 40×40 nodes (i.e., same size of the input layer). For the DBN, the model is the
one shown in Fig. 4 with h1, h2 and h3 each containing 50 nodes, with input patches
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(a) CRF model in (2) (b) SSVM model in (4)

Fig. 5 Dice index on the test set of INbreast dataset for our CRF (a) and SSVM (b) models, using
various subsets of the unary and pairwise potential functions.

of sizes 3× 3 and 5× 5. We assessed the efficiency of our segmentation method-
ology with the mean execution time per image on a computer with the following
configuration: Intel(R) Core(TM) i5-2500k 3.30GHz CPU with 8GB RAM.

4.2 Results

The experimental results presented in Fig. 5 assesses the importance of adding each
potential function to the energy model defined in (3). This figure shows the mean
Dice index results on the testing set of INbreast using the CRF and SSVM models.
In particular, we show these results using several subsets of the potential functions
“CNN”, “DBN3×3”, “DBN5×5”, “GMM” , “Pairwise” and “Prior” presented in
Sec. 3.3 (i.e., the potentials φ (1,k) for k = {1,2,3,4} with 3×3 and 5×5 denoting
the image patch size used by the DBN). It is important to mention that the Dice index
of our methodology using all potential functions on the training set of INbreast is
0.93 using CRF and 0.95 using SSVM. It is also worth mentioning that the results
on the INbreast test set, when we do not use preprocessing [28], falls to 0.85 using
all potential functions for both models.

The comparison between the results from our methodology and other state-of-
the-art results is shown in Tab. 1. This comparison is performed on the testing sets
of DDSM-BCRP and INbreast, with the Dice index, average training time (for the
whole training set) and testing time (per image), where our CRF and SSVM models
have all potential functions: CNN+DBN3x3 + DBN5x5 + GMM + Prior + Pairwise.
Notice that in this table, we only list the results available for the methods that use
these publicly available databases because the great majority of papers published in
this area have used subsets of the DDSM dataset and manual annotations that are not
publicly available, which makes a direct comparison with these methods impossible.
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Table 1 Comparison between the proposed CRF and SSVM models and several state-of-the-art
methods.

Method #Images Dataset Dice Index Test Run.Time Train Run. time
Proposed CRF model 116 INbreast 0.90 0.1s 360s

Proposed SSVM model 116 INbreast 0.90 0.8s 1800s
Cardoso et al. [36] 116 INbreast 0.88 ? ?
Dhungel et al. [10] 116 INbreast 0.88 0.8s ?
Dhungel et al. [11] 116 INbreast 0.89 0.1s ?

Proposed CRF model 158 DDSM-BCRP 0.90 0.1s 383s
Proposed SSVM model 158 DDSM-BCRP 0.90 0.8s 2140s

Dhungel et al. [10] 158 DDSM-BCRP 0.87 0.8s ?
Dhungel et al. [11] 158 DDSM-BCRP 0.89 0.1s ?

Beller et al. [5] 158 DDSM-BCRP 0.70 ? ?

Fig. 6 Mass segmentation results produced by the CRF model on INbreast test images, where the
blue curve denotes the manual annotation and red curve represents the automatic segmentation.

Finally, Fig. 6 shows examples of segmentation results produced by our CRF model
on the test set of INbreast.

5 Discussion and Conclusions

The results from Fig. 5 explains the importance of each potential function used
in the CRF and SSVM models, where it is clear that the CNN potential function
provides the largest boost in performance. The addition of GMM and shape prior to
deep learning models provides considerable improvements for both CRF and SSVM
models. Another interesting observation is the fact that image preprocessing [28]
appears to be important since it shows a substantial gain in terms of segmentation
accuracy. The comparison with other methods in Table 1 shows that our methodol-
ogy currently produces the best results for both databases, and the CRF and SSVM
models hold comparable results in terms of segmentation accuracy. However, the
comparison in terms of training and testing running times shows a significant ad-
vantage to the CRF model.

There are other important conclusions to make about the training and testing
processes that are not displayed in these results: 1) we tried other types of CNN



14 Neeraj Dhungel, Gustavo Carneiro and Andrew P. Bradley

structures, such as with different filter sizes, and we also tried to use more than one
CNN model as additional potential functions, but the use of only one CNN with
the structure detailed in Sec. 4.1 produced the best result in cross validation (the
main issue affecting the CNN models is overfitting); 2) for the DBN models, we
have also tried different input sizes (e.g., 7× 7 patches), but the combinations of
the ones detailed in Sec. 4.1 provided the best cross-validation results; and 3) the
training for both the CRF and SSVM models estimates a much larger weight to the
CNN potential function compared to other potential functions in Sec. 3.3, indicating
that this is the most important potential function, but the CNN model alone (without
CRF or SSVM) overfits the training data (with a Dice of 0.87 on test and 0.95
on training), so the structural prediction models serve as a regularizer to the CNN
model. Finally, from the visual results in Fig. 6, we can see that our proposed CRF
model produces quite accurate segmentation results when the mass does not show
very sharp corners and cusps. We believe that the main issue affecting our method in
these challenging cases is the limited size of the training sets in the DDSM-BCRP
and INbreast datasets, which do not contain enough examples of such segmentations
in order to allow an effective learning of a model that can deal with such complicated
segmentation problems.
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