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Abstract. Mass detection from mammogram plays an crucial role as
a pre-processing stage for mass segmentation and classification. In this
paper, we present a novel approach for detecting masses from mammo-
grams using a cascade of deep learning and random forest classifiers.
The deep learning classifier consists of a multi-scale deep belief network
classifier that selects regions to be further processed by a two-level cas-
cade of deep convolutional neural networks. The regions that survive this
deep learning analysis is then processed by a two-level cascade of random
forest classifiers that use several morphological and texture features ex-
tracted from those surviving regions. We show that the proposed cascade
of deep learning and random forest classifiers are effective in the reduc-
tion of false positive regions, while keeping a high true positive detection,
and that the final mass detection produced by our approach achieves the
best results in the field on public mammogram datasets.
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1 Introduction

Breast cancer is considered to be one of the most common cancers affecting
women around the world. According to the World Cancer Report [1], breast
cancer accounts for 22.9% of diagnosed cancers and 13.7% of cancer related
death worldwide. Mammography is a widely used imaging modality for screening
breast cancer because it enables the detection of suspicious lesions (e.g., masses),
which is the first step in assessing the risk of having, or developing breast cancer.
However, the problem is that, nowadays, this is mostly a manual process, where a
significant number of breast masses are missed or those which are detected turns
out to be benign after their biopsies [2]. In part, this happens because of the
masses’ variability in shape, size and boundary [3, 2], and also because of their
low signal-to-noise ratio as depicted in Fig.(1). Masses are visually characterized
by medium gray to white regions in the breast area of mammograms, and their
shapes are generally described as oval, irregular, or lobulated, with boundaries
that can be circumscribed, obscured, ill-defined or spiculated. An automated
mass detection system is useful in clinical practice to provide a ”second” opinion
that can help improve the mammogram analysis consistency, and as a result,
reduce to some extent, the current dependence on the radiologist’s experience
and workload [4].
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Fig. 1: Some categories of malignant masses from DDSM-BCRP dataset.

In spite of the development of numerous mass detection systems, they are
still not widely used in clinical practice because they tend to reduce the accuracy
of the radiologists [5]. Most of the mass detection systems have a first stage that
detects candidate regions using several filters, such as morphological, difference of
Gaussian, and Laplacian of Gaussian filters [6–13]. This first stage is followed by
a false positive removal step, using different types of classifiers, such as support
vector machine, linear discriminant analysis or neural network [6–13]. One of
the main drawbacks of such systems is that they can generate a large number
of false positives, while missing a good proportion of true positives [2]. Another
problem is that they are usually tested on private datasets or on random subsets
of DDSM [14], which makes direct comparisons difficult [15]. In addition to this,
most of the current methods [6–9] are tested only in mammograms that contain
malignant masses, which creates a bias in the results.

Our main goal of this paper is to present a new approach for the detection
of masses from mammograms that combines two of the most powerful machine
learning techniques developed in last few years: deep learning and random forest
(see Fig. 2). In our method, the first stage consists of a multi-scale deep belief
network (m-DBN) cascade of classifiers [16] combined with a Gaussian mixture
model [17](GMM) classifier that select a set of regions, representing candidates
for containing breast masses. This first step is followed by a second stage, com-
prising a cascade of deep convolutional neural networks [18, 19] that reduces the
number of false postives, while keeping the large majority of the true positive
regions. Finally, we extract texture and morphological features from the remain-
ing regions to be classified by a random forest classifier [20]. We show that our
methodology produces the best results in the field on the public datasets DDSM-
BCRP [14] and INbreast [21] using mammograms containing no findings, and
malignant and benign masses.

2 Methodology

Our mass detection system consists of four modules, as shown in Fig.(2). The
first module combines a multi-scale deep belief network (m-DBN) [16, 3], shown
in Fig. 3, with a Gausssian mixture model [17](GMM) classifier for candidate
generation. These candidates are the inputs to a second step containing a cascade
of two stages of deep convolutional neural networks (CNN) [18, 19] that produce
features for being used by a linear support vector machine (SVM) classifier (this
combination of CNN and SVM is known as an R-CNN [22] in computer vision
literature). The third module consists of a cascade of two stages of random forest
(RF) [20] for further reduction of false positives, where the input features for the
RF classifier is a set of texture and morphological fearures. Finally the fourth
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Fig. 2: Our system consists of a first stage comprising an m-DBN and GMM that
extract candidate regions. Subsequently, it uses 2 cascades of R-CNN, followed
by an RF classifier and a post-processing based on CCA to detect mass regions.

Fig. 3: Candidate generation using multi scale DBN (m-DBN).

module is a post processing module that merges regions with high overlap ratio
using connected component analysis (CCA). We provide details of our system
in this section.

2.1 Candidate Generation with m-DBN and GMM

The m-DBN classifier [16] is trained to detect candidates in an image using a
grid search over images at four different resolutions, using a mask created by a
breast-air boundary segmentation (using Otsu’s segmentation [23]). Specifically,
assuming that the full resolution image has 264 × 264 pixels, the other three
resolutions are: 160 × 160, 120 × 120 and 80 × 80. Essentially, these m-DBN
binary classifiers are trained discriminatively using input regions of size 7 ×
7 (fixed across the scales), which have positive or negative labels, where the
training process is based on contrastive divergence [16]. This training starts with
the coarsest resolution image using all grid samples, and the samples that are
classified as positive are then used to train the next (finer) resolution, forming
the multi-scale cascade of DBN classifiers [16]. The inference is run in every
position of the grid (i.e., every discrete position that falls within the breast
mask of the respective image resolution) using the mean field approximation of
the values in all DBN layers, which is followed by the computation of the free
energy on the top layer [16]. In addition to m-DBN, we also use a pixel-wise
GMM classification [3] on the full resolution image (features are the pixel gray
values), where the detection results from m-DBN and GMM are combined with
CCA, using a similarity measure based on the distance between the detected
pixels. The result from CCA consists of clusters of pixels being classified as
belonging to a breast region containing a mass.
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2.2 False Positive Reduction with R-CNN

Note that the detection in Sec. 2.1 still produces a significant amount of false
positives, which is usually two orders of magnitude bigger than the number of
true positives, so we need a second stage that can reduce this amount of false
positives. At this second stage, we propose the use of a more complex classi-
fication methodology (compared to the first stage above) given the relatively
small number of samples that remain to be processed, so we use CNN [18, 19] to
extract features that are then used by a linear SVM in the region classification
(this type of approach is called R-CNN [22] and has produced state-of-the-art
results in object detection and semantic segmentation). A CNN [18, 19] model
consists of multiple processing stages, with each stage comprising two layers
(the convolutional plus activation layers, where the linear filters are applied to
the image, with responses being transformed via a non-linear activation func-
tion, and the pooling and subsampling layer that reduces the input image size
for the next stage - see Fig. 2), and a final stage consisting of a fully con-
nected layer. Essentially, the convolution stages compute the output at location
j from input x at i using the linear filter (at qth stage) kq and bias bq using
x(j)q = σ(

∑
i∈Mj

x(i)q−1 ∗ kq
ij + bqj), where σ(.) is the logistic function, ∗ is the

convolution operator, and Mj is the input region addresses; while the non-linear

sub-sampling layers calculate subsampled data with x(j)q =↓ (xq−1
j ), where ↓ (.)

denotes a subsampling function that pools (using either the mean or max func-
tions) the values from a region from the input data. The fully connected layer
consists of the convolution equation above with a separate filter for each out-
put location, using the whole input from the previous layer. Inference is simply
the application of this process in a feed-forward manner, and training is carried
out with stochastic gradient descent to minimize the classification error over the
training set (via back propagation) [18, 19]. In order to compute the features
from the CNN, we first crop the mass candidate with a bounding box around
the candidate region from the first stage in Sec. 2.1, resize the box to a fixed
size of 40× 40 pixels using bicubic interpolation and preprocess it with the Ball
and Bruce technique [24]. Finally, we use features from the final fully connected
layer of the CNN classifier and train a linear SVM. All candidates surviving the
first cascade of the R-CNN are then passed through to the second cascade of
R-CNN to further reduce the false positive as shown in the Fig.(2).

2.3 Final Candidate Selection by Random Forest and
Post-processing

The result from the second stage presented above still contains around one or-
der of magnitude more false positives than true positives, which need to be
removed. We propose the extraction of hand-designed texture and morphologi-
cal features [13] from the remaining regions to be used in a classification process
based on random forest [20]. In particular, these features include object-based
measures, such as number of perimeter pixels, area, perimeter-to-area ratio, cir-
cularity, rectangularity, and five normalized radial length (NRL) features [13].
The NRL features include: mean value, standard deviation, entropy, area ratio
and zero-crossing count [13]. Furthermore, the texture features are obtained us-
ing gray level co-occurrence matrix (GLCM), where thirteen types of features
are extracted from each candidate at fourteen pixel distances and two angular
directions [13]. These features are used in the training and inference processes
of a two-stage cascade random forest classifier [20], where the candidates that
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survive the first stage are used in the training of the second stage. Finally, the re-
gions detected at the end of this stage are clustered using CCA using a similarity
measure based on the overlap between the regions.

3 Experiments

3.1 Materials and Methods

The evaluation of our methodology is carried out on two publicly available
datasets: INbreast [21] and DDSM-BCRP [14]. The INbreast [21] dataset com-
prises a set of 115 cases containing 410 images, where out of 410 images, 116
images contains the benign or malignant masses, whereas the rest does not con-
tain any masses. We run a five-fold cross validation experiment on INbreast,
where we divide the images in terms of the 115 cases in a mutually exclusive
manner, with 60% of the cases for training, 20% for validation and 20% for test-
ing. All images on the DDSM-BCRP [14] dataset contain malignant masses, with
39 cases for training and 40 cases for testing. We use the free receiver operating
curve (FROC) to calculate number of true positive (TP) at given false positive
per image(FPI). Efficiency is calculated with test time detection using a stan-
dard computer (Intel(R) Core(TM) i5-2500k 3.30GHz CPU with 8GB RAM).
The mass is considered to be detected if the overlap ratio between the bounding
box of candidate region and ground truth is 0.2, similar to other works in the
field [6–13]. The model selection for the structure of DBN, R-CNN and RF is
done via cross validation using training and validation sets for INbreast, and
training only for DDSM-BCRP. We use the m-DBN as shown in Fig. 3, where
the two layers contain 200 and 500 nodes and the input patch has size 7× 7 for
all image scales. For the R-CNN cascade classifiers, we use the LeNet network
structure [18]. We artificially augment the number of positive samples by trans-
lating and rotating the bounding box from positive candidates. The operating
point during the training of each module in the system is fixed to be TP ≥ 0.90,
while gradually reducing the number of false positives per image until the last
module.

3.2 Results

On average, using the results on the test sets obtained on INbreast and DDSM-
BCRP, our method generates 300 mass candidates from the first stage (m-DBN
+ GMM, followed by CCA clustering). During this first stage, our method has
a TP rate of 1, which means that we never miss any of the masses. After the
second stage, the number of candidates is reduced to around 20, and after the
final stage, the number of false positives per image is reduced to around 2.

The FROC with the error bar plot (indicating mean and standard deviation
results), shown in Fig. 4(a), describes the performance of our system using the
five-fold cross validation experiment on INbreast. In general on INbreast, our
true positive performance saturates on the test set at TP of 0.96± 0.03 at FPI
= 1.2 and TP of 0.94± 0.02 at FPI = 0.3 for the training data. The FROC on
DDSM-BCRP shows only the average result on the suggested train and test sets
in Fig. 4(b). Tab. 1 shows a performance comparison of several state-of-the-art
methods for mass detection in mammograms, where the results from the other
methods are as reported by Horsh et al. [15] or by their original authors. However,
note that the majority of the results on DDSM dataset cannot be compared
directly to ours because they have been obtained with an experimental setup that
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(a) FROC curve of INbreast (b) FROC curve of DDSM-BCRP

Fig. 4: FROC curve showing the result on various operating point with true
positive(TP) against false positive per image(FPI) on INbreast (a) and DDSM-
BCRP (b).

Table 1: Comparision between different state-of-the-art methodologies.
Method Images Rep. Dataset TP@FPI Type Time

Our method 410 yes INbreast 0.96±0.03@1.2,0.87±0.14@0.8 all 20s
Kozegar et al. [6] 116 yes INbreast 0.87@3.67 malig 108 s

Our method 158 yes DDSM-BCRP 0.75@4.8, 0.70@4 all 20s
Beller et al. [7] 160 yes DDSM-BCRP 0.70@8 malig NA

Campanini et al. [9] 512 no DDSM 0.80@1.1 malig NA
Eltonsy et al. [10] 270 no DDSM 0.92@5.4, 0.88@2.4, 0.81@0.6 all NA
Sampat et al. [11] 100 no DDSM 0.88@2.7, 0.85@1.5,0.8@1 all NA
Brake et al. [8] 772 no Nijmegen 0.70@0.10 malig NA

Bellotti et al. [12] 3369 no MAGIC-5 0.80@4.23 all NA
Wei et al. [13] 400 no Uni. of Michigan 0.70@0.79,0.8@1.2,0.9@2 all NA

is not publicly available, and so cannot be reproduced (indicated by the column
“Rep.”). Also in Tab. 1, the acronym “NA” [15] indicates performance measures
that are unavailable, and not all other methodologies are tested in mammograms
containing all possible types of masses (benign, normal and malignant - indicated
by ”all”) - instead they are tested using only a subset of the images containing
malignant masses (indicated by ”malig”). Finally, we show some illustrative
example of results produced by our system in Fig. 5.

4 Discussion and Conclusions

From the results shown in Fig. 4 and Tab.(1), we notice that our method pro-
duces the best results in the field (by a large margin) for the INbreast and
DDSM-BCRP datasets. One of the important observations made during the
training our system is that in order to get the state-of-the-art results on IN-
breast, the FPI from the second stage should be kept under 20 per image. We
also observed that a single R-CNN (i.e., a single-stage cascade) is not able to
reduce the FPI from 300 to 20, but the combination of two cascades of R-CNN
achieves this goal, while keeping the TP above 0.9. Similarly, we also notice that
a single-stage cascade of RF is not able to reduce the FPI to around 2-3 in both
datasets, but the addition of a second stage of RF reaches that objective. The
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Fig. 5: Some few examples of our mass detection system from test data in IN-
breast dataset. Red box is the bounding box generated by our detection algo-
rithm whereas blue lines denotes the contour of the ground truth.

comparison with other methods in Table 1 shows that our methodology cur-
rently produces the best results in both datasets: TP = 0.96 ± 0.03 @ 1.2 FPI
and TP = 0.87±0.14 @ 0.8 FPI for INbreast; and TP = 0.75 @ 4.8 FPI and TP
= 0.70 @ 4 FPI for DDSM-BCRP. Moreover, our methodology compares well
to others with respect to the inference time, where we have 20 seconds against
108 seconds for a competing method [6] on INbreast. There are some important
notes to make about the training process that are not displayed in the results: 1)
different types of CNN structures including different filter sizes have been tried.
We also tried to add more than two stages of cascade in the second stage of our
method (R-CNN), but it did not show significant improvement; 2) for the m-
DBN model, we have also tried different input sizes: 3×3 and 7×7 patches, but
the latter produced the best results. Finally, from the visual results in Fig(5), we
can see that our system produces an accurate detection result in test images at
the operating point of TP = 0.96 ± 0.03TP@1.2FPI. The images in Fig. 5(a-e)
contain a single mass and our system is able to detect all of them without any
false positve. The image in Fig 5(f) represents a normal mammogram without
any mass and our system does not find any FP, which suggests that our system
is robust to mammograms without findings. The result in Fig. 5(g) contains a
large mass, which was detected by our system along with two false positives
(internal to the bounding box of this large mass) - note that we cannot remove
these smaller masses using the CCA post-processing because the overlap must
be large for both masses (not only one of them, as shown in Fig. 5(g) ). Finally,
we show an FP detection in Fig. 5(h) where our system detects a false positive
mass in a normal image. The main issue currently affecting our method is the
limited size of the training sets at the later stages, where not many samples
remain to train our model.

References

1. Jemal, A. et al.: Cancer statistics, 2008. CA: a cancer journal for clinicians 58(2)
(2008) 71–96



8 Neeraj Dhungel1 Gustavo Carneiro1 Andrew P. Bradley2

2. Oliver, A., et al.: A review of automatic mass detection and segmentation in
mammographic images. MedIA 14(2) (2010) 87–110

3. Dhungel, N., Carneiro, G., Bradley, A.P.: Deep structured learning for mass seg-
mentation from mammograms. arXiv preprint arXiv:1410.7454 (2014)

4. Elmore, J.G., Jackson, S.L., Abraham, L., et al.: Variability in interpretive perfor-
mance at screening mammography and radiologists characteristics associated with
accuracy1. Radiology 253(3) (2009) 641–651

5. Fenton, J.J., Taplin, S.H., Carney, P.A., et al.: Influence of computer-aided detec-
tion on performance of screening mammography. New England Journal of Medicine
356(14) (2007) 1399–1409

6. Kozegar, E., Soryani, M., Minaei, B., Domingues, I., et al.: Assessment of a novel
mass detection algorithm in mammograms. Journal of cancer research and thera-
peutics 9(4) (2013) 592

7. Beller, M., Stotzka, R., Müller, T.O., Gemmeke, H.: An example-based system to
support the segmentation of stellate lesions. In: Bildverarbeitung für die Medizin
2005. Springer (2005) 475–479

8. te Brake, G.M., Karssemeijer, N., Hendriks, J.H.: An automatic method to dis-
criminate malignant masses from normal tissue in digital mammograms. Physics
in Medicine and Biology 45(10) (2000) 2843

9. Campanini, R., et al.: A novel featureless approach to mass detection in digital
mammograms based on support vector machines. Physics in Medicine and Biology
49(6) (2004) 961

10. Eltonsy, N.H., Tourassi, G.D., Elmaghraby, A.S.: A concentric morphology model
for the detection of masses in mammography. Medical Imaging, IEEE Transactions
on 26(6) (2007) 880–889

11. Sampat, M.P., Bovik, A.C., Whitman, G.J., Markey, M.K.: A model-based frame-
work for the detection of spiculated masses on mammographya). Medical physics
35(5) (2008) 2110–2123

12. Bellotti, R., De Carlo, F., Tangaro, S., Gargano, G., Maggipinto, G., Castellano,
M., Massafra, R., Cascio, D., Fauci, F., Magro, R., et al.: A completely automated
cad system for mass detection in a large mammographic database. Medical physics
33(8) (2006) 3066–3075

13. Wei, J., et al.: Computer-aided detection of breast masses on full field digital
mammograms. Medical physics 32(9) (2005) 2827–2838

14. Heath, M., Bowyer, K., Kopans, D., Moore, R., Kegelmeyer, P.: The digital
database for screening mammography. In: Proceedings of the 5th international
workshop on digital mammography. (2000) 212–218

15. Horsch, A. et al.: Needs assessment for next generation computer-aided mammog-
raphy reference image databases and evaluation studies. International journal of
computer assisted radiology and surgery 6(6) (2011) 749–767

16. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with
neural networks. Science 313(5786) (2006) 504–507

17. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the em algorithm. Journal of the Royal Statistical Society. Series B
(Methodological) (1977) 1–38

18. LeCun, Y., Bengio, Y.: Convolutional networks for images, speech, and time series.
The handbook of brain theory and neural networks 3361 (1995)

19. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep
convolutional neural networks. In: NIPS. Volume 1. (2012) 4

20. Breiman, L.: Random forests. Machine learning 45(1) (2001) 5–32
21. Moreira, I.C., et al.: Inbreast: toward a full-field digital mammographic database.

Academic Radiology 19(2) (2012) 236–248
22. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accu-

rate object detection and semantic segmentation. In: CVPR 2014
23. Otsu, N.: A threshold selection method from gray-level histograms. Automatica

11(285-296) (1975) 23–27
24. Ball, J.E., Bruce, L.M.: Digital mammographic computer aided diagnosis (cad)

using adaptive level set segmentation. In: EMBS 2007


