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ABSTRACT
The problem of non-rigid object segmentation is formulated in a
two-stage approach in Machine Learning based methodologies. In
the first stage, the automatic initialization problem is solved by
the estimation of a rigid shape of the object. In the second stage,
the non-rigid segmentation is performed. The rational behind this
strategy, is that the rigid detection can be performed at lower di-
mensional space than the original contour space. In this paper, we
explore this idea and propose the use of manifolds to reduce even
more the dimensionality of the rigid transformation space (first
stage) of current state-of-the-art top-down segmentation method-
ologies. Also, we propose the use of deep belief networks to allow
for a training process capable to produce robust appearance mod-
els. Experiments in lips segmentation from frontal face images are
conducted to testify the performance of the proposed algorithm.

1. INTRODUCTION AND RELATED WORK

This article presents a method for direct object detection and seg-
mentation using a manifold learning based approach. Given a
database of objects represented by a two dimensional contour, in
a first step, a reduced order parameterization is determined from
the corresponding manifold that incorporates the rigid transforma-
tion of the object. The image data term is learned by a deep belief
network learned in a canonical space. In the test phase, the execu-
tion of the segmentation is accomplished by performing gradient
ascent iterative procedure directly on the manifold, i.e. at the low
dimensional parameter space. This makes the segmentation less
complex and faster; the two main goals targeted in this paper.

The proposed method contrasts with most current top-down
segmentation of non-rigid visual objects based on machine learn-
ing approaches [4,7,9,10]. Basically, the above methods partition
the problem into the following procedures: (i) rigid detection fol-
lowed by (ii) non-rigid segmentation that is constrained by the re-
sult of the rigid-detection. In this two-stage strategy, the introduc-
tion of a rigid detection procedure is twofold: it allows to reduce
the search running time complexities as well as the training com-
plexities. In practice, this is achieved by constraining the search
for the visual object borders within a small window around the
output produced by the rigid detection, i.e image patch (see Fig.2
(a) for an illustration).

In this paper, we use a manifold learning strategy, recently
proposed in [1] which provides a low intrinsic dimensionality for
the rigid detection stage (see Fig. 1 for an illustration of the pro-
posal). In this way, the intrinsic low dimensionality of the mani-
fold can decrease the complexity of the rigid detection stage of the
current state of the art methodologies. As an example, let us sup-
pose that we have an input image patch x ∈ Rp (here p stands for
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Fig. 1. Illustration of the two-stage strategy in which is clear the
use of the manifold in the rigid detection step.

the patch dimensionality - number of pixels). Current two-stage
methodologies, outputs a multi-dimensional variable y(x) ∈ Rq,
where q = 5 (accounting for finding the translation, scale and ro-
tation transformations of the sough contour) as in the majority of
the proposed approaches (e.g. [3]). Here, we are able to produce
y(x) ∈ Rn, with n < q, being n the intrinsic dimension of the
manifold. In this way we achieve a decrease in the running time
complexity of the rigid detection stage.

Another concern targeted by the introduction of the rigid de-
tection, is that of alleviating the need of large annotated training
data sets, typically encountered in the majority of current method-
ologies. The typical solution to circumvent this problem, is to
generate a pre-defined number of positive and negative samples
by randomly perturbing the rigid parameters (i.e. translation, rota-
tion and scale), following a normal distribution. What happens is
that, there is no guarantee that the actual training data distributions
indeed follows such theoretical probability density functions, thus
unnecessarily increasing the complexity of the training stage. With
the introduction of manifold, we expect to limit the positive and
negative samples, since now the samples are expected to belong
to the manifold. Thus, the methodology proposed also permits to
improve the second goal (i.e. training complexity) targeted by the
rigid detection.

To summarize, we present the use of manifolds with low in-
trinsic dimension for the rigid detection (the first stage) that can
be applied in pattern recognition based methods [5,7,10]. This is
twofold; first, the intrinsic dimension of the the manifold can de-
crease the search running time complexity in the rigid detection.
Second, it is possible to reduce the number for additional positive
and negative samples of the classifier, during the training process.
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Fig. 2. (a) In yellow a window enclosing the segmentation contour
is illustrated. (b) The manifold and its charts [1]. It is shown
three patches (top), tangent hyperplanes (bottom) and one-to-one
mappings (arrows).

2. PROBLEM DEFINITION

Let us assume the availability of an image with an object. The goal
is to perform the non-rigid segmentation of that object, producing
the contour s ∈ R2×S of 2-D points, that can be achieved by the
following decision function

s = E [s|I,D] =

∫
s
s p(s|I,D)ds (1)

where D = {(I, s)j}|D|
j=1 is the training set, Ij denotes the training

image and sj denotes the corresponding manual segmentation.
Equation (1) can be expanded in order to account for the two

terms of rigid and nonrigid detections, as follows

p(s|I,D) =

∫
θ

p(θ|I,D) p(s|θ, I,D)dθ (2)

where θ is the variable that encodes the linear transformation of
the window coordinates enclosing the segmentation contours (see
Fig.2 (a)). The linear transformation can be obtained as Aθ =
f(θ), with Aθ ∈ R3×3 comprising the translation, rotation and
scale. The second term in (2), represents the non-rigid (regression)
part of the segmentation, that finds the segmentation s in the image
I , given the value of θ. Thus, θ is viewed an initial guess of s con-
straining the search space of s to be around the mean segmentation
contour transformed by θ.

3. LEARNING THE MANIFOLD

The framework presented herein uses the manifold learning algo-
rithm recently proposed in [1]. Basically, from a training samples
sj , j = 1, .., |D|, this framework finds a manifold M contained in
R2S , associated with a set of one-to-one mappings cp : Pp → Up
(i.e. the charts) and invertible functions sp,j = c−1

p (θp,j), (or pa-
rameterizations), where Pp ⊂ M and Up ⊂ Rn. The manifold
M is covered by the union of the overlapped Pp, with p = 1, .., P .
The Pp are called patches and U are the parametric domains of
M. Locally, M it is at least homeomorphic to Rn having an in-
trinsic dimension of n. See Fig. 2 for an illustration.

4. TRAINING THE MANIFOLD THROUGH
DEEP-STRUCTURED INFERENCE

In general, the training set does not contain enough contour sam-
ples to provide reliable information for a robust training process.

The usual strategy to circumvent this, is to artificially generate pos-
itive and negative training samples perturbing the deformation pa-
rameters of the training data. The generation of the positive and
negative samples from training data can be obtained with the fol-
lowing two-step strategy: (i) first, we estimate the contour in the
original image space ŝp,j = c−1

p (θp,j) and (ii) find the transfor-
mation Aθ ∈ R3×3 of the image window that contains the seg-
mentation contour ŝp,j produced in the previous step (i). Recall
that, the rigid classifier (the first term in (2)) is modeled by the
parameter vector ϕMAP, learned with a maximum a posteriori cri-
terion, which is estimated with a set of training samples taken from
the patch member points θp,j = cp(sp,j), for p = 1, .., P . Thus,
we take θp,j in M to build the positive and negative sets, as fol-
lows

Dist(Pp) = U(R(θp,j)) (3)

where U denote an uniform distribution over the range R of the
patch-member points in P . More specifically, for the p-th patch
we define,

Pos(p,j) =
{
θ
∣∣∣θ ∼ Dist(Pp), |θ − θp,j | ≺ rp

}
N eg(p,j) =

{
θ|θ ∼ Dist(Pp), |θ − θp,j | ≻ 2× rp

for all j ∈ {1, ..., J}
} , (4)

where rp is the margin between positive and negative samples and
where |.| returns the absolute value of the difference. The samples
drawn in (4) are used to learn the rigid classifier by maximizing
the following cost function [8]

ϕMAP = argmax
ϕ

P∏
p=1

Jp∏
j=1

 ∏
θ∈Pos(p,j)

p(θ|I, ϕ)


×

 ∏
θ∈Neg(p,j)

(1− p(θ|I, ϕ))

 .

(5)

where Jp is the number of patch members in the p-th patch. For
training the non-rigid classifier (see second term in (2)) we follow
our previous work [2]

ψMAP = argmax
ψ

P∏
p=1

Jp∏
j=1

L∏
l=1

p(sp,j(l)|θp,j , I, ψ) (6)

whereψ represents the deep neural net (DNN) weights and sp,j(l) ∈
[0, ..C], is the l-th orthogonal line of the contour represented by
sp,j with C-length. More specifically, p(sp,j(l)|θp,j , I), is a re-
gressor that receives as the input a profile of the image gray levels
taken at the orthogonal line from each contour point sp,j(l), and
outputs an image location at that l-th orthogonal line. Notice that,
the training strategy follows the same strategy as in [2] with the
following key difference: the inference procedure to generate the
segmentation contour in the image I , takes each patch-member
θp,j from each learned patch Pp (with p = 1, .., P ) as an initial
guess for the gradiente procedure on the output of the rigid clas-
sifier p(θ|I, ϕMAP) in the manifold M. Whereas in [2], the initial
guess of the gradient is taken at θ ∈ R5 that represents the pa-
rameters of an affine transformation that aligns the contour in a
canonical coordinate system. This approach herein proposed has
the advantage of providing θp,j ∈ Rn, with the lower intrinsic
n-dimensionality of the manifold1.

1In the experiments shown in Section 5 we obtained an intrinsic di-
mension of n = 2.



For the gradient ascent, a number of iterations is used2. Once
the gradient ascent is reached for each patch-member θp,j , the es-
timate ŝ is obtained by the following Monte-Carlo approximation

ŝ ∝
P∑
p=1

Jp∑
j=1

s p(θ̃p,j |I, ϕMAP) p(s|θ̃p,j , I, ψMAP) (7)

where θ̃p,j is the last estimate in the gradient process. In Section
5 it will be shown the impact of (7) by progressively incorporating
the results of the patches.

5. EXPERIMENTAL EVALUATION

In this section we illustrate the performance of the proposed ap-
proach targeted to the two above issues mentioned in Section 1,
i.e. reduction of the training and search running time complex-
ity. To illustrate the improvement regarding the above goals, we
provide a study concerning the use of a relatively small annotated
training sets, providing segmentation results for several configura-
tions of positive and negative sets. Also, we provide a comparison
of running time figures with other methods to observe the running
time improvement.

5.1. Experimental setup

We present results concerning the lip segmentation problem. We
use the Cohn-Kanade (CK+) database [6] of emotion sequences
taken from frontal view, where the manual ground truth is avail-
able. Eight different emotions are available, among which we se-
lected the “happy” and “surprise” since they exhibit higher varia-
tion from onset (neutral frame) to peak expression (last frame).

We used a total of 34 sequences which is split in two disjoint
sets: training and testing sets. The training set contains 10 se-
quences consisting of five sequences of “happy” expression and
five sequences of “surprise” expression. In both, the lips boundary
undergo three distinct phases (i.e. closed, semi-open and open).
The test set consists 24 sequences containing 12 “happy” sequences
and 12 “surprise” sequences.

In the experiments conducted, the dimensionality to represent
the lips boundary is S = 40 key points. The manifold learning
produces P = 4 patches with 395 patch member-points; and an
intrinsic dimension of n = 2 (see for [1] details). Recall that the
current methodologies dimensionality of the rigid search space is
5.

Finally, in order to estimate the robustness of our approach to
small training sets, we gradually enlarge the size of the set of pos-
itive samples as follows |Pos(p, j)| ∈ {1, 5, 10, 15, 20}, and the
size of negative samples as |N eg(p, j)| ∈ {10, 50, 100, 150, 200}.
We added more additional negative samples due to the larger area
occupied by the negative region. Our goal with this experiment is
to study how accurate is the methodology against the variation in
the small size of the training data.

For comparison purposes, we provide results with “CAR” [4]
for the lip segmentation problem. In [4], the coarse-to-fine rigid
detector p(θ|I, ϕMAP) and non-rigid classifier p(s|θ, I, ψMAP) are
based on deep belief networks (DBN) [8]. Recall that, in [4] used
|Pos(p, j)| = 10, and |N eg(p, j)| = 100 per each image in the
training set (i.e., 10 additional positive samples and 100 negative
samples per training image). The extension herein proposed, con-
sists of training and running the rigid classifier in the space defined
by the sparse manifold described in Section 3.

2I this work, and from the experiments conducted, we concluded that
above five iterations no changes were observed.

5.2. Accuracy measurements

The segmentation performance is assessed using (i) the metrics
commonly used in the literature for quantitative comparison be-
tween the generated and the ground truth segmentations; (ii) run-
ning time needed to perform the segmentation and (iii) perfor-
mance of the classifier using different number of positive and neg-
atives samples.

For evaluating the quantitative performance, we use the two
following error measurements: the Jaccard distance and the aver-
age error metrics. The performance of our approach is assessed
by a quantitative comparison over the test sets with CAR [4] as
well as with the manual ground-truth. For both segmentation prob-
lems, we also compare the running times between our approach
and CAR [4].

5.3. Experimental results

In this section we illustrate both qualitative and quantitative per-
formances following the guideline mentioned in Section 5.2 for
the problem of the lip segmentation. Fig. 3 shows the error met-
rics used (Jaccard and average) obtained using 12 sequences of
“happy” expression. Only for the illustration purposes, it is shown
the performance accuracy with the patch integration, showing the
benefits of incorporating the results of the patches (see (7)), mean-
ing that each patch has a particular response and should be inte-
grated in the final segmentation. This figure also shows that, as
we increase the number of positive and negative samples, the re-
sults are improved, being the best accuracies obtained with the sets
{{10, 100}, {{15, 150}, {20, 200}}.

Fig. 4 shows the results using 12 sequences of the “surprise”
expression. Again, the results are shown in terms of the error met-
rics as in the previous example. An additional experiment is per-
formed in this sequence that consists to provide comparison results
with [4]. As above, we see the improvement in the accuracy per-
formance agglomerating the results of the patches and stressing
that the proposed methodology consistently improves for all of the
positive-negative configurations (see Fig. 4 right).
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Fig. 3. Jaccard (top row) and average (bottom row) error
metrics for the happy sequences. The accuracy is shown in
terms of |Pos(p, j)| and |N eg(p, j)| that are in the range
{{1, 10}, {5, 50}, {10, 100}, {15, 150}, {20, 200}}. For the il-
lustration purposes, on the left it is shown the results with one
patch. On the right it is shown the integration of the 4 patches
estimated in the manifold.

It is interesting to note the segmentation results of each patch
in the manifold and the corresponding confidences given by the
deep belief network (DBN). In each of the eight examples shown
in Fig. 5, from two happy sequences, one may see the quality of
the patch segmentation along with the confidence degree. In each
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Fig. 4. Comparison with state-of-the-art (CAR) for the ex-
pression surprise. Jaccard (top row) and average (bottom
row) error metrics are displayed. The accuracy is shown
in terms of |Pos(p, j)| and |N eg(p)| that are in the range
{{1, 10}, {5, 50}, {10, 100}, {15, 150}, {20, 200}}. For the il-
lustration purposes, on the left it is shown the results with one
patch. On the right it is shown the integration of the 4 patches
estimated in the manifold.

image of this figure and for viewing convenience, we plot the es-
timated contour of each patch (red) and the corresponding manual
ground-truth (green). Recall that the confidences of the patches
are not normalized (this should be done when performing the final
segmentation). In both sequences, we see that the better segmen-
tation looks (see the similarity of the green and red contours) the
higher the DBN confidence is.

(0.953) (0.988) (0.183) (0.145)

(0.385) (0.995) (0.919) (0.540)

Fig. 5. Individual patch segmentations in a surprise sequence
along with the confidence provided by the Deep Belief Net at he
top of each image.

We also compare the running time figures of the proposed
methodology with [4] (the most-left box-plot shown in Fig. 4)
in each image. For the “happy” sequences the proposed approach
takes 2.40 seconds for the rigid detection plus 0.2 seconds (aver-
age time per frame) for the non-rigid segmentation (total of 2.63
sec.). For the “surprise” sequences, the mean time spent is similar,
2.43 seconds plus 0.2 seconds for the rigid a non-rigid segmenta-
tions, respectively. The running time for the approach in [4] is 11.8
seconds. Recall that, these running time figures were obtained with
unoptimized Matlab implementations.

Finally, Fig. 6 illustrates several images comparing the ma-
chine generated contours (magenta) to human ground-truth con-
tours (cyan).

Fig. 6. Test lip sequences displaying the “happy” (top) and “sur-
prise” (bottom) expressions. The ground truth (in cyan) is super-
imposed with the segmentation results (in magenta).

6. CONCLUSIONS

In this paper we presented a new method for non-rigid object seg-
mentation. The methodology proposed deals with both deep learn-
ing inference and manifold learning. The focus of contribution is
the dimensionality reduction of the segmentation contour parametriza-
tion for the rigid components. A manifold learning based approach
has been proposed and allows to reduce the dimension of the rigid
space. Also, it allows for a faster running time in both training and
segmentation stages. This is because, the training and parame-
ters search are both reformulated directly in terms of the manifold
parametrization. Further work will include other directions, for
instance, to incorporate a tracking mechanism directly in the man-
ifold, where the object dynamics is learned directly at a low di-
mensional space. Concerning the manifold learning strategy, para-
metric based approaches should be explored in a nearly future.

7. REFERENCES

[1] J. C. Nascimento, J. G. Silva, J. M. Lemos and J. S. Marques, “Man-
ifold learning for object tracking with multiple nonlinear models”,
IEEE Trans. Image Processing, vol. 23, no. 4, pp. 1593-1605, 2014.

[2] G. Carneiro and J. C. Nascimento, “Combining Multiple Dynamic
Models and Deep Learning Architectures for Tracking the Left Ven-
tricle Endocardium in Ultrasound Data”, IEEE Trans. Pattern Anal.
Machine Intell. vol. 35, no. 11, pp. 2592-2607, 2013.

[3] G. Carneiro and J. C. Nascimento and A. Freitas, “The segmentation of
the left ventricle of the heart from ultrasound data using deep learning
architectures and derivative-based search methods”, IEEE Trans. on
Image Processing, vol. 21, no. 3, pp. 968-982, March 2012.”

[4] G. Carneiro and J. C. Nascimento,“Multiple dynamic models for
tracking the left ventricle of the heart from ultrasound data using par-
ticle filters and deep learning architectures”, CVPR, pp. 2815-2822,
2010.

[5] S. Zhou, “Shape regression machine and efficient segmentation of left
ventricle endocardium from 2D B-mode echocardiogram”, Medical
Image Analysis, vol. 14, pp. 563-581, 2010.

[6] Lucey, P. and Cohn, J.F. and Kanade, T. and Saragih, J. and Ambadar,
Z. and Matthews, I., “The Extended Cohn-Kanade Dataset (CK+): A
complete dataset for action unit and emotion-specified expression”,
IEEE Comp. Vision and Pattern Recognition Workshops, pp. 94-101,
2010.

[7] Y. Zheng, A. Barbu, B. Georgescu, M. Scheuering and D. Comaniciu,
“Four-Chamber Heart Modeling and Automatic Segmentation for 3-D
Cardiac CT Volumes Using Marginal Space Learning and Steerable
Features”, IEEE Trans. Med. Imaging, vol. 27, no, 11, pp. 1668-1681,
2008.



[8] G. Hinton and R. Salakhutdinov, “Reducing the dimensionality of data
with neural networks”, Science, vol. 313, no. 5786, pp. 504-507, 2006.

[9] B. Georgescu, X. S. Zhou, D. Comaniciu and A. Gupta, “Databased-
guided segmentation of anatomical structures with complex appear-
ance”, CVPR, 2005.

[10] X. S. Zhou, D. Comaniciu and A. Gupta, “An information fusion
framework for robust shape tracking”, IEEE Trans. Pattern Anal. Ma-
chine Intell., no. ”1”, vol. 27, pp. 115-129, 2005.


