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Breast cancer is one of the most common types of cancer affecting the lives of
women worldwide. Recent statistical data published by the World Health Organisa-
tion (WHO) estimates that 23% of cancer related cases and 14% of cancer related
deaths among women are due to breast cancer [1]. The most effective tool to reduce
the burden associated with breast cancer consists of early detection in asymptomatic
women via breast cancer screening programs [2], which commonly use mammog-
raphy for breast imaging. Breast screening using mammography comprises several
steps, which include the detection and analysis of lesions, such as masses and cal-
cifications, that are used in order to estimate the risk that the patient is developing
breast cancer. In clinical settings, this analysis is for the most part a manual process,
which is susceptible to the subjective assessment of a radiologist, resulting in a po-
tentially large variability in the final estimation. The effectiveness of this manual
process can be assessed by recent studies that show that this manual analysis has a
sensitivity of 84% and a specificity of 91% [3]. Other studies show evidence that a
second reading of the same mammogram either from radiologists or from computer-
aided diagnosis (CAD) systems can improve this performance [3]. Therefore, given
the potential impact that second reading CAD systems can have in breast screening
programs, there is a great deal of interest in the development of such systems.

A CAD system that can analyse breast lesions from mammograms usually com-
prises three steps [3]: 1) lesion detection, 2) lesion segmentation, and 3) lesion
classification. The main challenges involved in these steps are related to the low
signal-to-noise ratio present in the imaging of the lesion, and the lack of a con-
sistent location, shape and appearance of lesions [4, 5]. Current methodologies for
lesion detection involve the identification of a large number of candidate regions,
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usually based on the use of traditional filters, such as morphological operators or
difference of Gaussians [6, 7, 8, 9, 10, 11, 12, 13]. These candidates are then pro-
cessed by a second stage that aims at removing false positives using machine learn-
ing approaches (e.g., region classifier) [6, 7, 8, 9, 10, 11, 12, 13]. The main chal-
lenges faced by lesion detection methods is that they may generate a large number
of false positives, while missing a good proportion of true positives [4]; in addition,
another issue is the poor alignment of the detected lesion in terms of translation
and scale within the candidate regions - this issue has negative consequences for
the sub-sequent lesion segmentation that depends on a relatively precise alignment.
Lesion segmentation is then addressed with global/local energy minimisation mod-
els on a continuous or discrete space [14, 15, 16]. The major roadblock faced by
these methods is the limited availability of annotated datasets that can be used in the
training of the segmentation models. This is a particularly important problem be-
cause, differently from the detection and classification of lesions, the segmentation
of lesions is not a common task performed by radiologists, which imposes strong
limitations in the annotation process and, as a consequence, in the availability of an-
notated datasets. In fact, the main reason behind the need for a lesion segmentation
is the assumption that the lesion shape is an important feature in the final stage of
the analysis: lesion classification. This final stage usually involves the extraction of
manually or automatically designed features from the lesion image and shape and
the use of those features with traditional machine learning classifiers [17, 18, 19].
In this last stage, the main limitation is with respect to the features being extracted
for the classification because these features are usually hand-crafted, which cannot
guarantee optimality for this classification stage.

The successful use and development of deep learning methods in computer vision
problems (i.e., classification and segmentation) [20, 21, 22, 23, 24] have motivated
the medical image analysis community to investigate the applicability of such meth-
ods in medical imaging segmentation and classification problems. Compared to the
more traditional methods presented above (for the problem of mammogram analy-
sis), deep learning methods offer the following clear advantages: automated learning
of features estimated based on specific detection/segmentation/classification objec-
tive functions; opportunity to build complete ”end-to-end” systems that take an im-
age, detect, segment and classify visual objects (e.g., breast lesion) using a single
model and a unified training process. However, the main challenge faced by deep
learning methods is the need for large annotated training sets given the scale of
the parameter space, usually in the order of 106 parameters. This problem is par-
ticularly important in medical image analysis applications, where annotated train-
ing sets rarely have more than a few thousand samples. Therefore, a great deal of
research is focused on the adaptation of deep learning methods to medical image
analysis applications that contain relatively small annotated training sets.

There has been an increasing interest in the development of mammogram analy-
sis methodologies based on deep learning. For instance, the problem of breast mass
segmentation has been addressed with the use of a structured output model, where
several potential functions are based on deep learning models [25, 26, 27]. The as-
sumption here is that deep learning models alone cannot produce results that are
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accurate enough due to the small training set size problem mentioned above, but
if these models are combined with a structured output model that makes assump-
tions about the appearance and shape of masses, then it is possible to have a breast
mass segmentation that produces accurate results - in fact this method holds the
best results in the field in two publicly available datasets [19, 28]. Segmentation
of breast tissue using deep learning alone has been successfully implemented [29],
but it is possible that a similar structured output model could improve even more
the accuracy obtained. Dhungel et al. [30] also worked on a breast mass detection
methodology that consists of a cascade of classifiers based on the Region Convo-
lutional Neural Network (R-CNN) [23] approach. The interesting part is that the
candidate regions produced by the R-CNN contain too many false positives, so the
authors had to include an additional stage based on a classifier to eliminate those
false positives. Alternatively, Ertosun and Rubin [31] propose a deep learning based
mass detection method consisting of a cascade of deep learning models trained with
DDSM [28] - the main reason that explains the succesful use of deep learning mod-
els here is the size of DDSM, which contains thousands of annotated mammograms.
The classification of lesions using deep learning [32, 33, 34] has also been success-
fully implemented in its simplest form: as a simple lesion classifier. Carneiro et
al. [35] have proposed a system that can classify the unregistered two views of a
mammography exam (cranial-caudal and mediolateral-oblique) and their respective
segmented lesions and produce a classification of the whole exam. The importance
of this work lies in its ability to process multi-modal inputs (images and segmenta-
tion maps) that are not registered, in its way of performing transfer learning from
computer vision datasets to medical image analysis datasets, and also in its capa-
bility of producing high-level classification directly from mammograms. A similar
high-level classification using deep learning estimates the risk of developing breast
cancer by scoring breast density and texture [36, 37]. Another type of high-level
classification is the method proposed by Qiu et al. [38] that assesses the short-term
risk of developing breast cancer from a normal mammogram.

Based on the recent results presented above, it is clear that the use of deep learn-
ing is allowing accuracy improvements in terms of mass detection, segmentation
and classification. All the studies above have been able to mitigate the training set
size issue with the use of regularisation techniques or the combination of different
approaches that can compensate the relatively poor generalisation of deep learning
methods trained with small annotated training sets. More importantly, deep learning
is also allowing the implementation of new applications that are more focused on
high-level classifications that do not depend on lesion segmentation. The annotation
for this higher level tasks is readily available from clinical datasets, which generally
contain millions of cases that can be used to train deep learning models in a more
robust manner. These new applications are introducing a paradigm shift in how the
field analyses mammograms: from the classical 3-stage process (detection, segmen-
tation and classification of lesions) trained with small annotated datasets to a 1-stage
process consisting of lesion detection and classification trained with large annotated
datasets.
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