
THE USE OF DEEP LEARNING FEATURES IN A HIERARCHICAL CLASSIFIER LEARNED
WITH THE MINIMIZATION OF A NON-GREEDY LOSS FUNCTION THAT DELAYS

GRATIFICATION

Zhibin Liao and Gustavo Carneiro

ARC Centre of Excellence for Robotic Vision, University of Adelaide, Adelaide, Australia

ABSTRACT
Recently, we have observed the traditional feature representa-

tions are being rapidly replaced by the deep learning representa-
tions, which produce significantly more accurate classification re-
sults when used together with the linear classifiers. However, it is
widely known that non-linear classifiers can generally provide more
accurate classification but at a higher computational cost involved
in their training and testing procedures. In this paper, we propose
a new efficient and accurate non-linear hierarchical classification
method that uses the aforementioned deep learning representations.
In essence, our classifier is based on a binary tree, where each node
is represented by a linear classifier trained using a loss function that
minimizes the classification error in a non-greedy way, in addition
to postponing hard classification problems to further down the tree.
In comparison with linear classifiers, our training process increases
only marginally the training and testing time complexities, while
showing competitive classification accuracy results. In addition, our
method is shown to generalize better than shallow non-linear clas-
sifiers. Empirical validation shows that the proposed classifier pro-
duces more accurate classification results when compared to several
linear and non-linear classifiers on Pascal VOC07 database.

1. INTRODUCTION

Ever since Krizhevsky and Hinton [1] published the outstanding
classification results on ImageNet [2], the attention of the com-
puter vision community has shifted from the bag of features [3]
and Fisher vector [4] representations to the deep learning represen-
tation provided by convolutional neural networks [5, 6]. Recent
results [7, 8, 9, 10, 11, 12] show that convolutional neural networks
(CNN), a high-capacity multi-layer non-linear classification frame-
work, can produce the most accurate classification results in several
databases in the field. It is generally believed the convolutional
layers of CNN are responsible for generating well-separated image
representations. For this reason, simple linear support vector ma-
chine (SVM) and softmax [1] classifier are used to classify the CNN
image representations. More complex classifiers are with higher
capacity, such as non-linear SVM [13, 14] or boosting [15], but the
main limitations are the high training and testing time complexities
and the risk of overfitting the training data. Hierarchical models
can achieve a good trade off between generalization and training
and testing complexities, and for this reason it has been explored in
computer vision in the past, such as with the probabilistic boosting
tree (PBT) [16] and the discriminative learning of relaxed hierarchy
(DLRH) [17]. In this paper, we propose a new hierarchical clas-
sifier to be used with high dimensional feature vectors (e.g., CNN

This research was supported by the Australian Research Council Centre
of Excellence for Robotic Vision (project number CE140100016)

features). The main novelty of our proposal is the loss function to
learn this hierarchical classifier, which minimizes the classification
error in a non-greedy way and at the same time delays hard classifi-
cation problems to nodes further down the tree. Our main objective
with this new training process of hierarchical classifiers is to reach a
good trade-off between generalization and complexities, particularly
when compared with linear [1, 7] , shallow non-linear [13, 15, 14]
and hierarchical classifiers [17, 16] previoulsly proposed in the field.
We test our method on the Pascal VOC07 [18, 19] database, and
show that we produce better classification results and have less
training test complexities, compared to other linear and non-linear
classifiers using the deep learning features [7, 12].

2. LITERATURE REVIEW

In this section, we briefly describe the related work in the field, by
first introducing the mid-level features extracted from convolutional
neural nets, then by discussing the classifiers that are (or can) be used
with such feature vectors.

Deep learning methods have been present in the field for several
years [20, 21], but their use as feature generators has been consid-
ered only after the outstanding result obtained on ImageNet [1]. Us-
ing millions of training images, a large number of nodes and hidden
layers and an effective implementation, Krizhevsky and Hinton [1]
produced a CNN model that integrates feature extraction and clas-
sification functionalities into an easy-to-use framework. In addition
to this, Razavian et al. [11] have found that the CNN mid-layer acti-
vations trained with ImageNet provide powerful off-the-shelf image
representations for other databases. This results have been confirmed
by Chatfield et al. [3], who showed that much deeper CNN mid-
layer activations produce much more accurate classification results
than the previous bag of features [3] and Fisher vector [4] represen-
tations.

An interesting observation about the use of these CNN features
is that the classifier is usually based on linear SVM [13] or soft-
max [1], which are relatively low-capacity models that are efficiently
trained and tested, but offer limited accuracy depending on the distri-
bution of the training set samples. In general shallow high-capacity
classifiers can handle more difficult classification problems better
than linear classifiers, but at a usually higher running time computa-
tional cost and the risk of overfitting. On the other hand, hierarchi-
cal classifiers that use low capacity classifiers in each node, usually
achieve a good trade-off between complexity and accuracy.

Boosting [15] and non-linear SVM [13] are typical examples
of high-capacity shallow classifiers that can deal with highly com-
plex classification problems. The former uses a quite large number
of features and build simple linear (weak) classifier in each one of
these feature spaces, which are then combined to form a strong clas-

Fig. 1: Comparison between the learning of the root node classi-
fier parameter θ1 (in a binary classification problem, with labels ’+’
and ’-’) using our proposed loss function in (5) in comparison to the
”greedy” loss function in (4).

sifier. In general, the training of each weak classifier involves the
estimation and comparison of low capacity classifiers in all possible
feature spaces, which means that at least this training has complex-
ity O(DN), where D is the size of the feature space and N is the
training set size. Considering that potentially, one can use the whole
feature space, the complexity of the full training process is around
O(D2N) and the testing complexity isO(D). Non-linear SVM uses
the kernel trick to project all training samples in the kernel space
and builds a linear classifier there, which is a training process that
has complexity around O(DN2). The testing complexity of non-
linear SVM is O(ND). In addition to the complex training and
testing processes, both methods can overfit the training data given
their large capacity.

The issues presented above have been realized in several works
that propose the use of hierarchical classifiers instead of their shal-
low counterparts. The boosted cascade classifier [22] is a good ex-
ample of a hierarchical classifier, based on a degenerate binary tree
with a boosting classifier on each node, where the training involved
in each node minimizes a loss function that greedily estimates the
best decision boundary, but delays the decision about hard classifica-
tion problems. The probabilistic Boosting Tree (PBT), proposed by
Tu [16], is a full binary tree structured classifier that has a boosting
classifier in each node, which minimizes a similar loss function. One
important issue that affects the cascade and PBT classifiers is that
each node uses a high capacity boosting classifier that can overfit the
training data, hampering their generalization abilities and increment-
ing the training and testing time complexities. A more relevant work
to our proposal is the discriminative learning of relaxed hierarchy
(DLRH) [17], which consists of a binary tree, where each interior
node is trained using a loss function that delays hard classification
problems, but at the same time greedily reduces the classification
error. This greedy error reduction can again overfit the training data.

3. METHODOLOGY

Assume that an image is represented by a feature vector x ∈ RD ,
the image label is represented by the variable y ∈ {−1, 1}, and the
binary tree classifier has one root node that classifies samples using
a hidden variable b ∈ {−1, 1} (which indicates the left child by −1
and right by +1).

The inference is defined by the following problem:
y∗ = arg max

y∈{−1,1}

∑
b∈{−1,1}

P (y|x, b, θb)P (b|x, θ1), (1)

Fig. 2: Shape of the proposed loss function (5), where dotted red
shows the region where classification is incorrect, solid orange dis-
plays the margin region, and dashed green depicts correct classifica-
tion.

where θb, θ1 ∈ RD denote the classifier parameters of the leaf and
root nodes, respectively. This inference is easily extended to a tree
with three levels, as follows:

P (y|x,Θ) =
∑
b(1)

∑
b(2)

∑
b(3)

P (y|x, b(1), b(2), θb(1,2))

P (y|x, b(1), b(3), θb(1,3))P (b(2)|x, b(1), θ2)

P (b(3)|x, b(1), θ3)P (b(1)|x, θ1),

(2)

where b(1), b(2), b(3) ∈ {−1, 1}, and we assume that the classifier in
the root node is represented by the variable b(1), its left child by b(2)

and right child by b(3). The extension to higher trees is then trivial.
For the learning procedure, assume the availability of a training

set T = {(xi, yi)}Mi=1 and a validation set V = {(xi, yi)}Qi=1. The
description of the learning methodology is clearer if we assume the
tree has only one parent node (the extension to larger tree is again
trivial), where the ideal learning process uses the training set T as
follows:

{θ∗b , θ∗1} = arg max
{θb,θ1}

M∏
i=1

∑
bi

P (yi|xi, bi, θb)P (bi|x, θ1), (3)

where we assume that the training samples are i.i.d. and bi ∈
{−1, 1}. Eq. 3 involves the maximization of two functions, which
are hard to be optimized jointly, so we break this optimization into
the following iterative algorithm containing two alternating stages,
where we assume that the parameters θ(t−1)

b and θ(t−1)
1 are known

at stage (t):

θ
(t)
1 = arg max

θ1

M∏
i=1

∑
bi

P (yi|xi, bi, θ(t−1)
b)P (bi|x, θ1),

θ
(t)
b = arg max

θb

M∏
i=1

∑
bi

P (yi|xi, bi, θb)P (bi|x, θ(t)1).

(4)

Essentially, this learning procedure involves the division of the train-
ing samples into two clusters, one representing the left child samples
(labeled as b = −1) and the other, the right child samples (labeled
as b = +1). After this division is performed, the parameter θ1 of
the classifier P (b|x, θ1) is estimated, and then, the classifier asso-
ciated with each child can have its parameter θb estimated based
on the samples belonging to that child (which is decided based on
P (b|x, θ1)). We consider this training process to be greedy because
we maximize the classification probability P (y|x, b, θb) even when
splitting the training points to the left or right children. Our main
contribution in this paper is the proposal of a non-greedy loss func-
tion used for the estimation of θ1 in (4), which also delays hard clas-
sification problems.

The motivation for our proposed loss function is based on the
graphs shown in Fig. 1. Assuming that both P (y|x, b, θb) and
P (b|x, θ1) are represented by linear classifiers (which means that

θb and θ1 are vectors denoting the normal vectors of the learned hy-
perplane), notice that if we try to maximize P (b|x, θ1)P (y|x, b, θb)
when estimating θ1, using the depicted initial guess (graph on left),
we will greedily label the ’+’ points with ’+1’ (right child) and
the ’-’ points with ’-1’, which generates a very difficulty learning
problem in the next iteration of the algorithm (graph on the bottom
of Fig. 1). On the other hand, our loss function has a shape depicted
by Fig. 2, which means that

1. if the classifiers in both children generate a correct classifica-
tion (or both are incorrect), pick the one (with its respective
child label) with the closest hyperplane,

2. if the classifier of only one child is correct, pick the correct
one as long as it is not farther from the margin than the incor-
rect one.

This means that in addition to performing a division of the training
samples without trying to greedily minimize the classification error
(item (1) above), we also delay the hard classification problems to
later stages of the binary tree [17, 16], as depicted in top part of
Fig. 1. The loss function depicted in Fig. 2 is defined by:

f(bi;xi, yi) =
∑
b

∆b(xi, yi)δ(bi − b), (5)

with δ(.) denoting the Dirac delta function and
∆b(x, y) = γmax(0, 1− y(θ>b x)) + max(0, y(θ>b x)− 1), (6)

where γ ∈ R+ is a scalar that weighs the relative importance of
the two terms in (6), and θb denotes the parameter of a linear SVM
classifier learned for each child node b using the training samples
xi, yi where bi = b.

The proposed learning algorithm iterated steps 1-3 below (until
convergence), assuming that we have the estimated value for θ(t−1)

b :
1). For each training sample i ∈ {1, ...,M}, determine its label
bi with:

b
(t)
i = arg max

b∈{−1,+1}
f(bi;xi, yi), (7)

defined in (5) and using θ(t−1)
b ;

2). Estimate θ(t)1 , as follows:

θ
(t)
1 = arg max

θ1

M∏
i=1

P (b
(t)
i |x, θ1),

= arg min
θ1

1

2
‖θ1‖2 + λ

M∑
i=1

log(1 + exp(−b(t)i θ>1 xi)),

(8)
which is a logistic regression classifier;
3). Estimate θ(t)b , with:

θ
(t)
b = arg max

θb

M∏
i=1

P (yi|xi, b(t)i , θb)δ(b
(t)
i − b)

= arg min
θb

1

2
‖θb‖2 + λ

M∑
i=1

max(0, 1− yi(θ>b xi)),

(9)

for b ∈ {−1,+1}, which is the definition for the linear SVM
classifier (note that we use the soft margin training that allows for
non-separable problems).

The initialization of this algorithm is achieved with the K-means
clustering (with two clusters) considering the set {xi|yi = +1, (xi, yi) ∈
T
⋃
V}. We run this clustering 20 times and pick the labels bi for

the case that minimizes the loss in (5), and then we run from step
(2) of the algorithm above. The stopping criterion is also based on
the computation of the loss in (5), where when the loss difference
between two iterations is smaller than a threshold ε, then we stop
iterating. Finally, there is also a model selection problem involved

in this method concerning the structure of the binary tree, where
after convergence, we verify a condition to determine if we will
backtrack to the previous structure or keep the current tree structure
and thus continue to grow the tree. The initial tree contains only
the root node and a linear SVM classifier (i.e., this is the original
classifier found in previous works [7]), and the condition that we use
for model selection is the classification accuracy (e.g., mean average
precision) measured in the validation set V using the latest trained
tree.

3.1. Complexity Analysis

For each node expansion, we train three separate linear classifiers
per iteration of our algorithm. Therefore, we need K iterations
in a tree with N nodes, where N ∈ [2h − 1, 2h+1 − 1], with
h =maximum tree depth, so the training complexity of our method
isO(3KNDM) (recall thatD is the feature size andM is the train-
ing set size), so this means that compared to the linear classifier, our
training is 3KN slower. Fortunately, we can control the values for
K andN by constraining the number of iterations and the tree depth,
and in general we haveKN << D,M , which means that our train-
ing is significantly faster than typical shallow non-linear classifiers
(see Sec. 2). The testing complexity is essentially based on running
h linear classifiers, which means that the running time complexity is
O(hD), which is just marginally larger than a single linear classifier
given that h ≤ 3, typically.

1 50 100 150 200

Fig. 3: Sorted Pascal VOC07 [19] first 200 retrieval results by us-
ing the VGG features [7]. Note that only the incorrectly classified
images are shown, so the sparsity pattern of the correct retrieval can
be analyzed by noticing the white regions of the image. For each
presented class (see icon on the left [7]), each row is the result of
the methods PBT [16], DLRH [17], Non-linear SVM (3-poly), Non-
linear SVM (RBF), Linear SVM, and our method, respectively.

4. EXPERIMENTS

We quantitatively compare our proposed hierarchical classifier
method with linear and non-linear SVM classifiers (RBF and 3rd-
degree polynomial kernels), and also with the following hierarchical
classification methods: PBT [16] and DLRH [17]. For the compared
methods except the DLRH [17] method, which learns a single model
for all classes jointly, we adopt the one-against-all (OVA) strategy
for training each class. We re-implemented the PBT method ex-
actly as described by Tu [16], and use the publicly available training
method by Gao and Koller [17] available from their web page to train
the DLRH. The LIBLINEAR [23] and LIBSVM [24] are used for
training linear and non-linear SVMs respectively. The implemen-
tation of our method involves setting the values for the maximum
number of iterations to K = 1 and the maximum number of tree
nodes to N = 3 (see Sec. 3.1). Also, the weight γ in (5) and (6)

Table 1: AP results on Pascal VOC07 [19] using the OverFeat [12] and VGG [7] features. The best results per class are highlighted.

O
ve

rF
ea

tf
ea

tu
re

s
[1

2] Classifier aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv MAP
Non-linear SVM (RBF) 87.59 78.64 87.72 78.76 46.61 70.11 85.34 82.44 63.81 59.61 66.37 77.27 77.82 80.92 89.11 47.06 70.77 61.46 88.41 68.66 73.42
Non-linear SVM (3-poly) 85.26 79.46 82.31 81.30 42.55 72.18 83.31 80.87 59.41 58.84 67.26 76.91 79.01 78.22 88.88 54.17 71.13 63.49 87.21 71.08 73.14
DLRH [17] 86.69 78.33 82.94 82.39 37.00 69.52 85.26 81.21 59.08 52.37 65.54 78.56 79.00 79.28 88.33 53.17 68.72 60.99 86.22 68.35 72.15
PBT [16] 85.44 78.40 82.86 80.54 40.48 69.38 84.41 78.01 55.68 59.35 63.94 75.46 81.11 77.41 89.36 49.72 71.96 56.20 85.85 66.35 71.60
Linear SVM 88.89 79.72 84.35 82.02 44.63 73.26 85.98 81.76 61.47 57.49 67.08 77.99 81.20 78.92 90.55 55.71 71.43 63.57 87.13 72.10 74.26
Our Method 88.89 80.63 84.32 82.75 43.25 73.55 85.66 81.76 61.47 59.51 67.20 79.03 81.20 78.92 90.72 55.71 71.46 63.57 86.96 72.10 74.43

V
G

G
fe

at
ur

es
[7

] Classifier aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv MAP
Non-linear SVM (RBF) 90.76 87.33 89.79 86.47 51.83 81.99 88.29 87.89 64.01 77.47 76.82 86.64 88.13 85.80 92.19 60.82 82.36 70.15 90.39 75.38 80.73
Non-linear SVM (3-poly) 90.39 84.91 88.15 86.06 53.47 79.16 85.40 86.46 62.85 73.91 78.42 84.57 84.69 81.16 89.63 59.66 81.82 70.49 90.83 73.50 79.28
DLRH [17] 93.13 85.19 88.99 86.69 51.28 78.28 87.67 87.69 60.72 71.58 72.63 85.92 85.64 84.00 90.19 58.21 80.56 70.80 91.41 71.81 79.12
PBT [16] 91.16 84.58 87.96 82.70 47.68 77.30 86.02 86.68 57.77 74.75 69.18 82.28 86.89 82.32 91.20 53.90 79.49 66.30 91.19 70.97 77.52
Linear SVM 91.44 86.31 89.54 85.93 53.16 79.74 87.74 87.93 64.79 75.97 78.05 85.14 88.20 83.83 92.33 60.16 82.52 71.59 91.84 74.57 80.54
Our Method 91.90 86.80 89.88 86.59 53.59 80.47 87.87 88.75 66.50 75.53 77.87 85.88 87.83 84.46 92.70 62.18 82.22 72.65 91.94 75.38 81.05

that controls the shape of loss function is set at γ = 1 (we reached
this value by varying γ ∈ [0.1, 100] and noticing little change in the
classification results).

We evaluate the performance of the methods on the Pascal
VOC07 [19] database, which contains 9963 images of 20 visual
classes. The performance of each class is measured by average
precision (AP), which is the standard ranking efficiency measure-
ment. The mean AP (MAP) of all 20 classes is also listed to show
the average performance. The parameter C of the SVM training
are cross-validated from the standard training-validation split of the
database. The running time of the training and testing processes
are obtained using a computer with the following configuration:
Intel(R) Xeon(R) CPU @ 2.70GHz, with 8GB of memory.

The features are extracted from two publicly available CNN
models: OverFeat [12] and VGG [7]. Both models were trained on
the ImageNet ILSVRC12 [25] database, which contains 1.2 million
images with 1000 classes. For all experiments, the extracted CNN
features are L2 normalized before being used as the input features
for the classifiers. The OverFeat [12] feature is extracted from the
first fully connected layer (layer 22) of its ‘accurate’ architecture,
which has 4096 dimensions and is the fully connected layer before
the rectification layer. No data augmentations were used to increase
the training volume. For the VGG [12], Chatfield et al. offer several
pre-trained models and data augmentation choices. We choose the
2048-dimensional feature model with the augmentation choice ‘ss’
(both training and testing are max-pooled as one sample from the
ten samples) option because this combination is reported with the
top results in [7]. In our experiments, we noticed the VGG features
are extracted after the rectification layer (note that we consider the
fact that these features are extracted after the rectification layer as
one of the major differences compared to the OverFeat features).

Table 2: Average running times (in seconds) of the training and
testing methods using the VGG features of Table 1 on Pascal
VOC07 [19]. The results is reported as the average training time
(in seconds) per visual class and the testing time per testing image.

Classifier Training time/class Testing time/image
Non-linear SVM (RBF) 36.7 36.4
Non-linear SVM (3-poly) 40.1 34.1
DLRH [17] 16.6 2.5
PBT [16] 1459.3 0.5
Linear SVM 1.4 0.6
Our method 11.7 0.1

4.1. Results

In Table 1, we show the AP results obtained with the OverFeat fea-
tures [12] and VGG features [7] on Pascal VOC07 [19] using the
studied classifiers. The running time of the training and testing pro-
cesses of these classifiers listed are shown in Table 2. We show in
Fig. 3 the sorted retrieval results, where only the wrong cases are
shown in order to assess the sparsity pattern of the detection results
for each classifier (i.e., the white regions represent correctly retrieved
samples).

5. DISCUSSION AND CONCLUSIONS

By analyzing the results, our methodology provides the best MAP
among all considered classifiers in Tables 1. We also notice to no-
tice the non-linear methods provide competitive results for some in-
dividual classes. This demonstrates that non-linear SVM methods
are relevant, particularly in cases where the database is not large
(such as the case with Pascal VOC07). On the other hand, the linear
SVM always produce robust average classification results, but rarely
presents the best per-class result. This shows that linear SVM can
generalize well but may have difficulties dealing with some of the
more complicated classification problems. Compared to the other hi-
erarchical methods [17, 16], our approach shows superior accuracy,
which, we believe, is related to the use of our proposed loss func-
tion for training the hierarchical classifier and the fact that the node
classifiers are linear methods (which provides good generalization
properties). Analyzing the sparsity pattern of the retrieval results in
Fig. 3, we see that our approach tends to have one of the most sparse
results among the studied methods. It also shows that our approach
takes longer to retrieve the first incorrectly classified images. These
two facts confirm the AP results from Tables 1.

In addition, our binary trees can grow up to N = 3 nodes lim-
its the number of vector multiplications (x>θ) to 2 times per test
image which brings the fastest testing time. For linear SVM, the
testing time is longer than our method mostly because of the over-
heads involved in running LIBLINEAR [23]. In terms of training
time, we are significantly faster than the non-linear SVM methods
and PBT [16], but comparable to DLRH [17], while the linear SVM
classifier has the fastest training time. We believe that our train-
ing time presents competitive results because we limit the number
of iterations to K = 1 and the size of the tree in N = 3 nodes
(see Sec. 3.1), which make the theoretical training complexity only
slightly larger than linear SVM.

We plan to apply this method to other databases [2, 26, 27] and
use other CNN features that will become available in the near future.
We also plan to increase the difficulty of the current database and
verify if the impact of the non-linear methods is more remarkable.

6. REFERENCES

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton, “Ima-
genet classification with deep convolutional neural networks,”
in Advances in neural information processing systems, 2012,
pp. 1097–1105.

[2] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and
Li Fei-Fei, “Imagenet: A large-scale hierarchical image
database,” in Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on. IEEE, 2009, pp. 248–255.

[3] Josef Sivic and Andrew Zisserman, “Video google: A text re-
trieval approach to object matching in videos,” in Computer
Vision, 2003. Proceedings. Ninth IEEE International Confer-
ence on. IEEE, 2003, pp. 1470–1477.

[4] Florent Perronnin, Jorge Sánchez, and Thomas Mensink, “Im-
proving the fisher kernel for large-scale image classification,”
in Computer Vision–ECCV 2010, pp. 143–156. Springer, 2010.

[5] Dan Ciresan, Ueli Meier, and Jürgen Schmidhuber, “Multi-
column deep neural networks for image classification,” in
Computer Vision and Pattern Recognition (CVPR), 2012 IEEE
Conference on. IEEE, 2012, pp. 3642–3649.

[6] Yann LeCun, Bernhard Boser, John S Denker, Donnie Hen-
derson, Richard E Howard, Wayne Hubbard, and Lawrence D
Jackel, “Backpropagation applied to handwritten zip code
recognition,” Neural computation, vol. 1, no. 4, pp. 541–551,
1989.

[7] Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and An-
drew Zisserman, “Return of the devil in the details: Delving
deep into convolutional nets,” arXiv preprint arXiv:1405.3531,
2014.

[8] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Ma-
lik, “Rich feature hierarchies for accurate object detection
and semantic segmentation,” arXiv preprint arXiv:1311.2524,
2013.

[9] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev,
Jonathan Long, Ross Girshick, Sergio Guadarrama, and Trevor
Darrell, “Caffe: Convolutional architecture for fast feature em-
bedding,” arXiv preprint arXiv:1408.5093, 2014.

[10] Maxime Oquab, Leon Bottou, Ivan Laptev, Josef Sivic, et al.,
“Learning and transferring mid-level image representations us-
ing convolutional neural networks,” 2013.

[11] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan,
and Stefan Carlsson, “Cnn features off-the-shelf: an astound-
ing baseline for recognition,” arXiv preprint arXiv:1403.6382,
2014.

[12] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Mathieu,
Rob Fergus, and Yann LeCun, “Overfeat: Integrated recogni-
tion, localization and detection using convolutional networks,”
arXiv preprint arXiv:1312.6229, 2013.

[13] Corinna Cortes and Vladimir Vapnik, “Support-vector net-
works,” Machine learning, vol. 20, no. 3, pp. 273–297, 1995.

[14] Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y
Ng, “Convolutional deep belief networks for scalable unsu-
pervised learning of hierarchical representations,” in Proceed-
ings of the 26th Annual International Conference on Machine
Learning. ACM, 2009, pp. 609–616.

[15] Yoav Freund and Robert E Schapire, “A desicion-theoretic
generalization of on-line learning and an application to boost-
ing,” in Computational learning theory. Springer, 1995, pp.
23–37.

[16] Zhuowen Tu, “Probabilistic boosting-tree: Learning discrimi-
native models for classification, recognition, and clustering,” in
Computer Vision, 2005. ICCV 2005. Tenth IEEE International
Conference on. IEEE, 2005, vol. 2, pp. 1589–1596.

[17] Tianshi Gao and Daphne Koller, “Discriminative learning of
relaxed hierarchy for large-scale visual recognition,” in Com-
puter Vision (ICCV), 2011 IEEE International Conference on.
IEEE, 2011, pp. 2072–2079.

[18] Mark Everingham, LV Gool, Chris Williams, and Andrew Zis-
serman, “Pascal visual object classes challenge results,” Avail-
able from www. pascal-network. org, 2005.

[19] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman, “The PASCAL Visual Object Classes
Challenge 2007 (VOC2007) Results,” http://www.pascal-
network.org/challenges/VOC/voc2007/workshop/index.html.

[20] Yann LeCun and Yoshua Bengio, “Convolutional networks for
images, speech, and time series,” The handbook of brain theory
and neural networks, vol. 3361, 1995.

[21] Geoffrey E Hinton and Ruslan R Salakhutdinov, “Reducing
the dimensionality of data with neural networks,” Science, vol.
313, no. 5786, pp. 504–507, 2006.

[22] Paul Viola and Michael Jones, “Rapid object detection using
a boosted cascade of simple features,” in Computer Vision
and Pattern Recognition, 2001. CVPR 2001. Proceedings of
the 2001 IEEE Computer Society Conference on. IEEE, 2001,
vol. 1, pp. I–511.

[23] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui
Wang, and Chih-Jen Lin, “Liblinear: A library for large linear
classification,” The Journal of Machine Learning Research,
vol. 9, pp. 1871–1874, 2008.

[24] Chih-Chung Chang and Chih-Jen Lin, “Libsvm: a library for
support vector machines,” ACM Transactions on Intelligent
Systems and Technology (TIST), vol. 2, no. 3, pp. 27, 2011.

[25] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei, “Imagenet large scale visual recognition challenge,”
2014.

[26] Ariadna Quattoni and Antonio Torralba, “Recognizing indoor
scenes,” 2009.

[27] Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva,
and Antonio Torralba, “Sun database: Large-scale scene recog-
nition from abbey to zoo,” in Computer vision and pattern
recognition (CVPR), 2010 IEEE conference on. IEEE, 2010,
pp. 3485–3492.

