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Abstract

Recently, there has been an increasing interest in the in-
vestigation of statistical pattern recognition models forthe
fully automatic segmentation of the left ventricle (LV) of
the heart from ultrasound data. The main vulnerability of
these models resides in the need of large manually anno-
tated training sets for the parameter estimation procedure.
The issue is that these training sets need to be annotated
by clinicians, which makes this training set acquisition pro-
cess quite expensive. Therefore, reducing the dependence
on large training sets is important for a more extensive ex-
ploration of statistical models in the LV segmentation prob-
lem. In this paper, we present a novel incremental on-line
semi-supervised learning model that reduces the need of
large training sets for estimating the parameters of statisti-
cal models. Compared to other semi-supervised techniques,
our method yields an on-line incremental re-training and
segmentation instead of the off-line incremental re-training
and segmentation more commonly found in the literature.
Another innovation of our approach is that we use a statis-
tical model based on deep learning architectures, which are
easily adapted to this on-line incremental learning frame-
work. We show that our fully automatic LV segmentation
method achieves state-of-the-art accuracy with training sets
containing less than twenty annotated images.

1. Introduction

One of the major problems investigated in medical image
analysis is the automatic segmentation of the left ventricle
(LV) of the heart from ultrasound data. From a clinical set-
ting viewpoint, there are important reasons that justify the
interest in solving this problem, such as [4]: 1) it can in-
crease patient throughput; and 2) it can reduce inter-user
variation in the LV delineation procedure. From the medical
image analysis standpoint, LV segmentation has been inten-
sively investigated over the last years because this problem
offers several challenges, including: large appearance and
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shape variation of the LV, low signal-to-noise ratio of ultra-
sound data, and edge dropout due to imaging conditions.

Lately, there has been an increasing interest in the study
of statistical pattern recognition approaches to solve the
automatic LV segmentation problem [2, 3, 5]. These ap-
proaches build a classifier by modeling statistically the LV
appearance and shape using a set of manually annotated
images (i.e., the training set). Essentially, this procedure
consists of estimating a large number of parameters of such
statistical model, and the robustness of this estimation is
directly related to the size and richness of the training set.
Actually, it is not uncommon that systems based on such
approaches need in the order of hundreds of training im-
ages [5, 18]. However, acquiring such large training sets is
prohibitively expensive for most of the researchers working
on medical image analysis, resulting in insufficient investi-
gation of these models. Therefore, methods that alleviate
the dependence on large annotated training sets are of ut-
most importance for a more extensive exploration of statis-
tical models in medical image analysis.

The problem of training statistical models with few man-
ually annotated data can be addressed via semi-supervised
learning methods [20]. The main assumption underlying
these methods is that samples belonging to the same class
tend to cluster together in the feature space, and if a few
annotated examples are given, we can associate unanno-
tated samples of the cluster with the label of annotated sam-
ples in that same cluster, as shown in Fig.1. One class of
semi-supervised learning methods is based on incremental
or self-training algorithms which uses a small training set
to initially estimate the model parameters, and then use this
model to classify unannotated samples and retrain the same
model [9, 11, 12, 15, 16, 17]. Particularly important for
these methods are the type of model used and the way of
classifying unannotated samples for re-training. This clas-
sification of unannotated samples has shown to be more ef-
fective if an external classifier is used [11, 15].

In this paper, we introduce a new incremental on-line
semi-supervised approach for the problem of automatic LV
segmentation. Initially, a small annotated training set is
used to estimate the parameters of a statistical model that
automatically learns the LV shape and appearance, and this
model is used to build an initial classifier that detects and
segments the LV from ultrasound data. Given a new unan-
notated test sequence, the system uses this trained classi-



Figure 1. Semi-supervised learning. The graph on the left shows
the classification problem where only a small subset of the samples
are annotated. The graph on the right displays the result of semi-
supervised learning, whereP (o|x) is the probability of classo
given pointx.

fier to detect positive hypotheses (i.e., LV segmentations)in
each frame, which are verified by an external classifier that
uses a prior LV model of shape and appearance (i.e., this ex-
ternal classifier does not go through any training process).
The positive hypotheses that have survived the verification
process are then added to the training set, which is used to
re-train the statistical model incrementally. The system also
produces an LV segmentation using the updated statistical
model.

Our approach is innovative in the sense that it yieldson-
line re-training and segmentation, instead of the more com-
mon setting adopted in semi-supervised approaches with
off-line re-training and segmentation. This innovation con-
strains the annotated samples to be included in the training
set for re-training. This means that we have to include sam-
ples which have been annotated with relatively low confi-
dence, or the process halts due to lack of new samples for
re-training (this relaxation has also been explored by Levin
et al. [11]). Another innovation of our approach is that the
classifier being trained is based on deep neural networks [7],
which, contrary to the more commonly used boosting clas-
sifiers [9, 11, 15, 16, 17], is straightforward to be adapted
from a batch to an incremental (on-line) learning setting. Fi-
nally, we derive the formulation of the incremental on-line
semi-supervised approach. The main result of the paper is
that we achieved competitive fully automatic LV segmenta-
tion results in public databases [13] using less than twenty
manually annotated images.

2. Incremental On-Line Semi-supervised
Learning

For the derivation of our algorithm, assume that an im-
age region is represented by a feature vectorx ∈ ℜD, and
the annotation of an image region is denoted by a vector
y ∈ ℜ2N containingN two-dimensional points. Consider
that we have a set of training image regions represented by
X with Y denoting the respective set of manual annotations,
and that we also have a test sequence of unannotated im-
ages{It}t=1..T . An image region is a crop of the orig-
inal image that contains the annotation aligned according
to a specific position, scale and rotation of the annotation
points (see Fig.3). The goal of the incremental learning is
to estimate the parametersθ of the classifierp(y|x, θ) that
measures the probability of annotationy given the feature

vectorx, and the parameter vectorθ. In order to estimate
θ, we use the annotated training set{X ,Y}, the test se-
quence{It}t=1..T , and an external classifierp(y

(e)
i |yi,xi),

which represents the probability of segmentationy
(e)
i given

an initial guessyi and feature vectorxi (note that this ex-
ternal classifier does not have any parameters to estimate).
The estimation ofθ can be summarized as [14]:

θ
⋆ = argmax

θ
P (Y|X , θ)

∝ argmax
θ

log
∑

exi∈It

fi

p(Y, ỹ
(e)
i , ỹi|x̃i,X , θ)

fi

= argmax
θ

log
∑

exi∈It

fi

p(ỹ
(e)
i |ỹi, x̃i)p(Y, ỹi|x̃i,X , θ)

fi

,

(1)

wherefi is an auxiliary function that has the constraints∑
i fi = 1 andfi ≥ 0, ỹi = argmaxy p(y|x̃i, θ), and

ỹ
(e)
i = argmaxy p(y|ỹ, x̃i). Using Jensen’s inequality, we

can find the following lower bound to the objective function
(1):

∑

exi∈It

fi log
p(ỹ

(e)
i |ỹi, x̃i)p(Y, ỹi|x̃i,X , θ)

fi

︸ ︷︷ ︸
Lower Bound

≤

log
∑

exi∈It

fi

p(ỹ
(e)
i |ỹi, x̃i)p(Y, ỹi|x̃i,X , θ)

fi

,

(2)

which is easier to maximize than the original objective func-
tion (1). Therefore, we solve the following optimization
problem:

θ
⋆ = arg max

θ

∑

exi∈It

fi log
p(ỹ

(e)
i |ỹi, x̃i)p(Y, ỹi|x̃i,X , θ)

fi

s.t.
∑

exi∈It

fi = 1, fi ≥ 0, ∀i ∈ 1, ..., T .

(3)

In order to find the functionfi, we take the derivative
of the LagrangianL = λ(

∑
i fi − 1) −

∑
i γifi −

∑
exi∈It

fi log
p(ey

(e)
i

|eyi,exi)p(Y,eyi|exi,X ,θ)

fi

with respect tofi

and set it to zero, which produces:

fi = p(ỹ
(e)
i |ỹi, x̃i)p(ỹi|x̃i, θ). (4)

Hence, we can formulate an iterative algorithm compris-
ing the following expectation (E) from (4) and maximiza-
tion (M) steps:

• E-step:

f
(t)
i = p(ỹ

(e)
i |ỹi, x̃i)p(ỹi|x̃i, θ

(t−1)) (5)



• M-step:

θ
(t) = arg max

θ
E

f
(t)
i

[
log p(Ỹ|X̃ , θ)

]
, (6)

where the superscript(t) indicates the iteration index,̃X =

X ∪ {x̃i}, Ỹ = Y ∪ {ỹ
(e)
i }, and E

f
(t)
i

[log p(.)] denotes the

expected value oflog p(.) overf (t)
i .

Algorithm 1 Incremental On-line Semi-supervised Learn-
ing

1: for t = 1:T do
2: E-step: Sample and re-build training set

Sample( eY(e)
, eX ) ∼

X

exi∈It

f
(t)
i

×N (ey
(e)
i

, Σ),

with f
(t)
i

≥ γ defined in(5).
UpdateeY = Y ∪ eY(e), eX = X ∪ eX

(7)

3: M-step: re-estimate classifier parameters
θ

(t) = arg maxθ p( eY| eX , θ)

subject tof (t)
i

≥ γ,
P

i
f

(t)
i

= 1
4: Produce annotation for current image

y
∗ =

Z

y

Z

x∈It

yp(y|x,θ
(t))p(x)dydx, (8)

5: end for

Therefore, we propose an iterative on-line EM algorithm
in Alg. 1, whereT denotes the size of the unannotated
test sequence{It}t=1..T . The goal of the algorithm is to
maximize (with respect toθ) and generalize (in the data
spacex) the modelp(y|x, θ) with the constraint that there
are no transitions ofp(y|x, θ) on high density regions of
p(x) [20]. Both the generalization goal and the constraint
are achieved by incrementally incorporating into the train-
ing set the samples(x̃i, ỹ

(e)
i ), which producedf (t)

i ≥ γ (7),
whereγ > 0 is a free variable. Notice that Alg. 1 produces
on-line segmentation results in (8) while incrementally re-
training the classifier. Typically, semi-supervised learn-
ing algorithms re-train the classifier incrementally usingall
training set, and the classification results are producedoff-
line (i.e., after the re-training process is over) [20]. The
main consequence of this difference resides in how the
training set is updated for the re-training process. Using
the off-line classification, one can select the data that pro-
ducedf

(t)
i ≥ γ for high values ofγ [20] (i.e., the data for

which the current classifier is highly confident). For the on-
line classification, high values ofγ may stop the addition
of newly annotated samples tõY andX̃ , which can halt the
incremental re-training process. On the other hand, low val-
ues ofγ may cause the addition of false positive samples to
the training sets̃Y andX̃ . Therefore, finding the optimal
value forγ requires the study of such trade offs. In Sec.2.1
we show a toy example demonstrating the importance ofγ,
and in Sec.6, we provide an empirical study of the influence
of the thresholdγ on the performance of the system.

Another important point in Alg. 1 is the size of the initial
training set used to estimateθ(0). For supervised learning
algorithms (i.e.,withoutre-training), the performance of the
classification in unseen data deteriorates significantly with
the use of small training sets, while semi-supervised learn-
ing approaches tend to be more robust to the size of this
initial training set. We compare these two learning algo-
rithms in Sec.6, where the supervised algorithm is referred
to as ’Supervised’ and the semi-supervised is denoted by
’Incremental’.

An important note about Alg. 1 is that the samples to
be included in the training set are obtained by sampling a
Gaussian mixture model (GMM) represented by (7), where
N (µ, Σ) is the Gaussian probability density function with
meanµ and covarianceΣ (we setΣ to be10−3 × I, with I
the identity matrix). Note that the number of samples drawn
from the GMM is the same as the size of the initial train-
ing set|{X ,Y}|, and that the number of components of (7)
is the number of detections in(x̃i, ỹ

(e)
i ), which produced

f
(t)
i ≥ γ.

2.1. Toy Example

In this section we describe a toy example that compares
the algorithms ’Supervised’ and ’Incremental’. This exam-
ple also facilitates the understanding of the role ofγ in Alg.
1 (Fig. 2). The setting simulates that of the real experi-
ment as follows: 1) the data space is described by variable
x andy ∈ {0, 1} denotes the annotation, and 2) there is a
hidden generative probabilistic model per class denoted by
p(x|y) ∼ N (µy, σ) with

µy =

{
N (−2, 1), if y = 0
N (+2, 1), if y = 1

, (9)

andσ ∼ N (1, 1) with N (µ, σ) representing the Gaussian
density function with meanµ and standard deviationσ. The
goal is to learn the parameters[a, b] of the logistic model
p(y = 1|x, [a, b]) = exp{ax+b}

1+exp{ax+b} using Alg. 1. This means
that att = 0, we generate annotated samples for classes
y ∈ {0, 1} using the model in (9), and learn[a, b], pro-
ducing the results for the supervised algorithm. Fort > 0,
new unannotated samples for both classes are generated ac-
cording to (9), which are annotated using (7). This new
training set is then used for re-estimating[a, b] (see Alg.1).
The parameters resulting from this learning procedure are
denoted by[â, b̂]. We also estimate the parameters for the
ideal classifier by generating a training set according to the
distributions

p(x|y = 0) ∼ N (−2, 1), andp(x|y = 1) ∼ N (+2, 1).
(10)

The parameters of the logistic model are then learned with
maximum posterior estimation, producinga∗ and b∗. Fi-
nally, we consider the external classifierp(ỹ

(e)
i |ỹi, x̃i) in

(7) as a prior model for the posterior classifier. For this
reason, we simulate this external classifier with a logistic
model with fixed parametersaext = 1 andbext = 0 (red-
dashed curve on left graph in Fig.2).
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Figure 2. Toy example. The left graph shows the ideal and ex-
ternal classifiers, and the right graph displays the error mean and
variance for each algorithm at different values forγ. Note that ’Su-
pervised’ yields the same error values because it does not depend
onγ. Please see text for details.

In this experiment, we consider the following sets:

• initial training setsK = {(200 × 200), (100 ×
100), (50 × 50), (20 × 20), (10 × 10)}, with each el-
ement representing number of positives× number of
negative samples;

• set ofγ valuesL = {0.1, 0.2, ..., 0.9};

• set of algorithmsM = {’Supervised’, ’Incremental’}.

For each elementk ∈ K, l ∈ L and m ∈ M,
we run 10 times the Alg.1. Note that whenm =
’Supervised’, we assumeT = 0 in Alg. 1, otherwise,
T = 10. The error is computed as follows:Pe(k, l, m) =∫

p(error, k, l, m|x)p(x)dx with

p(error, k, l, m|x) = (p(y = 1|x, [a∗, b∗])

− p(y = 1|x, [â(k, l, m), b̂(k, l, m)]))2,
(11)

where[â(k, l, m), b̂(k, l, m)] are the parameters learned for
each of the indicesk ∈ K, l ∈ L andm ∈ M above.
In Fig. 2, the right graph shows the mean and variance of
Pe(k, l, m) over k with respect tol andm. From Fig.2,
we can see that ’Incremental’ yields smaller errors than ’su-
pervised’ in terms of mean and variance ofPe(k, l, m) for
γ < 0.3.

3. Segmenting the Left Ventricle using Deep
Learning Methods

The classifierp(y|x, θ) is based on deep neural net-
works [7], which is a type of deep learning classifier. Deep
neural networks have been recently explored by Carneiro
et al. [2], who showed that this classifier can achieve
state-of-the-art LV segmentation results with 400 annotated
training images. Moreover, contrary to boosting classi-
fiers [9, 11, 15, 16, 17], the adaptation of deep belief net-
works from a batch to an on-line learning is straightforward.

The annotated training set (Fig.3) is denoted byD =
{(I, ϑ,y)i}i=1..M , with LV imagesIi, rigid transformation
parametersϑi ∈ ℜ5 (position p ∈ ℜ2, orientationξ ∈
[−π, π], and scaleσ ∈ ℜ2), and manual annotationsyi =

Figure 3. Original training image (top left) with the manualLV
segmentation in yellow line and star markers (top middle) with the
rectangular patch representing a canonical coordinate system for
the segmentation markers. The top-right image shows the refer-
ence patch with the base and apical points highlighted and located
at their canonical locations within the patch (these pointsare used
to define the rigid transform of the patch). The images on the sec-
ond and third rows display several positive and negative patches
(respectively) used to train the rigid classifier.

[sj ]j=1..N with sj ∈ ℜ2. Note thatx is obtained with the
rigid transformationϑ applied to the imageI through the
function h : I × ϑ → Xi. The rigid transformation is
obtained in order to align the base and apical points of the
annotation (top-right image of Fig.3) into specific values in
a canonical system.

The classifierp(y|x, θ) is composed of rigid and non-
rigid detectors. The rigid detector determines the proba-
bility that x represents an image region containing a left
ventricle aligned in the same way as the training set images
(see positive patches in Fig.3). The non-rigid detector de-
termines the probability that the contoury represents an LV
segmentation ofx. More specifically, we have:

p(y|x, θ) =
∑

c=0,1

p(y|c,x, θ1,n)p(c|x1, θ1,r), (12)

whereθ = [θn, θr] with θn andθr representing the param-
eters of the non-rigid and rigid classifiers [2], respectively,
andc denotes a random variable, wherec = 1 means thatx
represents an LV image region (andc = 0 denotes the prob-
ability thatx does not represent an LV image region). The
parameters of the rigid classifierθr are the following: 1)
number of hidden layers, 2) number of nodes per layer, and
3) the parameters of the logistic model of each connection
between network nodes. The non-rigid classifier consists
of separate a deep neural network where the parametersθn

comprises not only the parameters 1-3 above, but also the
parameters of the shape model, which is represented by a
principal component analysis (PCA) model that reduces the
dimensionality of the annotation. The input for the non-
rigid classifier are the profiles of perpendicular lines taken
across an average LV contour traced in the image regionx,
and the output is the likelihood of a specific annotationy
indicating the LV border (see Fig.4).

The parameters of the classifier are learned with maxi-
mum a posteriori strategy using the training procedure pro-
posed by Hinton and colleagues [7]. The training consists of
two stages: an unsupervised training where an auto-encoder
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Figure 4. Intensity value profiles (from inside to outside the LV)
of the lines drawn perpendicularly to annotation points. Those
intensity profiles (and respective LV contour location) areused to
train the non-rigid classifier. Figure from [2].

is built, and a supervised learning that produces the clas-
sifier. In the first stage, several layers of restricted Boltz-
mann machines (RBM) are greedily learned where the goal
is to reconstruct the input data. Then, one last network
layer is added, and the network weights are updated (via
back-propagation) using a supervised training set, which
produces a discriminative classifier.

4. External Model-based Left Ventricle Seg-
mentation

The external LV classifier consists of a model-based
method that uses a hand designed model (i.e., no model pa-
rameter is estimated from training data). Recall that this
external segmentation is denoted byp(ỹ

(e)
i |ỹi, x̃i) used in

the definition offi in (4). In this model, the left ventri-
cle has a prior shape, its borders are represented by image
edges, and the distribution of gray values are consistent in-
side and outside the chamber. In particular we implemented
the Shape Probabilistic Data Association (S-PDAF) algo-
rithm proposed by Nascimento et al. [13], which is an exten-
sion of the seminal work by Bar-Shalom [1]. The S-PDAF
is used in this paper because of its fast detection, easy im-
plementation and robustness to typical image noise present
in medical images.

The algorithm (Fig.5) has the following major steps.
Given an initialization contour̃yi, S-PDAF searches for
several coherent hypotheses (strokes) for alternative loca-
tions of the LV contour. The search for strokes uses an en-
ergy function that is minimized based on the support from
the image in terms of texture and edge location. The final
LV contourỹ(e)

i is formed by combining a set of strokes ac-
cording to the prior LV model of shape and appearance [13],
where stroke overlaps are suppressed and gaps are filled.

In order to compute the probabilityp(ỹ
(e)
i |ỹi, x̃i) of

the contour̃y(e)
i produced by S-PDAF, we need to have a

way to measure whether the strokes used to produce this
LV contour has good continuation, few overlaps and few
gaps. The qualitative probability (QP) proposed by Jepson
and Mann [10] provides a principled way of measuring the

Figure 5. Contour produced by the external model-based LV seg-
mentation (right) given the initial guess (left) and set of strokes.

Training set

Test set

Figure 6. First images of a subset of the training and test sets.

likelihood that a set of edges forms a specific shape. We
adapt QP to measure the likelihood that a set of strokes
represent an LV contour as follows:Q(ỹ

(e)
i , ỹi, x̃i) =∏

i∈strokes αLsi × βLgi × νLoi , whereLsi represents the
stroke length,Lgi denotes the gap length, andLoi is the
overlap length. The QP parameters have been arbitrarily
set as follows:α = 2, β = 0.9, ν = 0.2, which means
that we give positive weight to stroke length and negative
weight to contour gaps and stroke overlaps (note that vari-
ations of these values produce little effect in the final seg-
mentation result, as long asα ∈ [1.5, 3.0], β ∈ [0.6, 0.95],
andν ∈ [0.1, 0.3]) Hereafter, assume thatp(ỹ

(e)
i |ỹi, x̃i) =

Q(ỹ
(e)
i , ỹi, x̃i).

5. Learning and Detection Details

In this section, we first introduce the training and test
sets, and then we provide some details of the incremental
on-line learning and detection procedures.

We use the two sets of data available from [13], which
have been annotated by a cardiologist. The first set con-
tains 400 ultrasound images of the left ventricle of the heart,
which have been taken from 12 sequences (12 sequences
from 12 subjects with no overlap), where each sequence
contains an average of 34 annotated frames. Let us denote
this set asD. The second set, used exclusively for testing,
contains two sequences of 80 images, where each sequence
has 40 annotated images (two sequences from two subjects
with no overlap). This set is denoted byT with sequences



Figure 7. Convergence of the deep belief network parametersfor
each one of the classifiers by computing the average of the abso-
lute difference of the weights between on-line learning iterations.
The legend shows the number of images used during supervised
training of the classifier (initial training set size).

A andB. Note that there is no overlap between subjects
in setsD andT . All quantitative comparisons of various
algorithms [13] use only the two sequences in the test set
T , so we use the same sequences in order to provide a fair
comparison with the other methods. The first image of two
sequences fromD and two sequences fromT are shown in
Fig. 6.

For the training procedure, recall that the parameters of
the discriminative classifierp(y|x, θ) presented in (1) con-
sists of the parametersθr andθn of the rigid classifier and
non-rigid regressor, respectively. This classifier is initially
trained (supervisedtraining) with a subset ofD (in this
paper, we consider subsets of sizes{2, 6, 10, 20, 50, 100}
that are formed by uniformly samplingD) to maximize
p(Y|X , θ), which buildsθ

(0) in Alg. 1. Given a test se-
quence inT the classifier is iteratively trained (incremental
training), according to the description of Alg. 1.

We follow the same multi-scale training procedure for
the rigid classifier and non-rigid regressor described by
Carneiro et al. [2]. The image scale space is built as fol-
lows: L(p, σ) = N (p, σ) ∗ I(p), whereN (p, σ) is the
Gaussian kernel,∗ is the convolution operator,I(p) is the
input image,σ is the image scale parameter, andp is the
image coordinate. The rigid classifier is trained at three
scalesσ = {4, 8, 16} in order to form a coarse-to-fine de-
tection approach. For the rigid classifier, we build positive
and negative training sets that are defined based on a scale-
dependent margin, which increases by a factor of two after
each octave. The positive set is built using samples that are
within the margin explained above using the manual anno-
tations of the training set and the detections in (7) of Alg. 1,
while the negative set consists of samples taken from ran-
dom locations, scales and orientations that have a distance
from the samples in the positive set of at least the margin
explained above (Fig.3). The non-rigid regressor is trained

only atσ = 4, where the training sample consists of a line
of 41 pixels extracted perpendicularly from the LV contour
points (see Fig.4) and the label to learn is the pixel index in
{1, ..., 41} that is closest to the LV contour. Fig.7 displays
the evolution of the average of‖θ(t) − θ

(t−1)‖ as a func-
tion of the iteration parametert for the rigid classifier in at
scalesσ ∈ {4, 8, 16} and non-rigid regressor in atσ = 4.
It is worth noticing that as the number of initial training im-
ages increases, the convergence of the incremental on-line
training improves.

The detection procedure consists of running the rigid
classifier at scaleσ = 16 on theKcoarse initial hypothe-
ses [2] (here,Kcoarse = 1000), by sampling a distribution
in the space of rigid transformations (the parameters of this
distribution are learned from the training set). From this
detection, cluster the hypotheses (using k-means algorithm)
and select the topKfine clusters (here,Kfine = 10) in terms
of the best hypothesis within each cluster. Then run the rigid
classifier at scaleσ = 8 on these hypotheses and repeat
the procedure for scaleσ = 4. Finally, run the non-rigid
classifier over the final topKfine hypotheses. The final seg-
mentation contour points are then projected to the principal
component analysis (PCA) space built with the respective
subset of the training setD [2]. The PCA space transforms
the 41-dimensional vector (representing the contour) to a 5-
dimensional vector, which is back projected onto the origi-
nal contour space, producing a less noisy final contour. All
hypotheses found are then averaged (this is an estimation of
the decision function in Eq.8 in Alg. 1) using the result of
the classifierp(y|x, θ) as weights.

6. Experiments

In this section, we show empirical evidence of the im-
portance of two key parameters in Alg.1, which are: 1)
the confidence thresholdγ, and 2) the number of images
used to estimateθ(0). We also show a quantitative compari-
son between the algorithms ’Supervised’ and ’Incremental’.
Furthermore, we compare quantitatively the performance of
our algorithm and of state-of-the-art LV detectors recently
proposed [2, 5, 13]. The performance of the detectors is
assessed by comparing the contour estimates with manual
reference contours (see Sec.5) using the error measures de-
fined below.

Let y1 = [s⊤i ]i=1..N , and y2 = [t⊤i ]i=1..N , with
si, ti ∈ ℜ2, be two vectors of points representing the esti-
mated and reference LV contours, respectively. The small-
est distance from a pointsi to the curvey2 is d(si,y2) =
minj ||tj −si||2, which is known as the distance to the clos-
est point (DCP). We use the error measures below for the
experiments. The average error (AV) is defined as [13]:

dAV(y1,y2) =
1

N

N∑

i=1

d(si,y2). (13)

The Hausdorff distance (HDF) [8] is described as:

dHDF(y1,y2) =

max
(
max

i
{d(si,y2)}, max

j
{d(tj ,y1)}

)
.

(14)



Figure 8. Mean and standard deviation of error measures (13) and
(15) as a function ofγ for several initial training sets of variable
sizes. Other error measures have been omitted due to lack of space.

The definition of the Hammoude distance (HMD) [6] is as
follows:

dHMD(y1,y2) =
#((Ry1 ∪ Ry2) − (Ry1 ∩ Ry2))

#(Ry1 ∪ Ry2)
, (15)

whereRy1 represents the image region delimited by the
contoury1 (similarly for Ry2), and#(.) denotes the num-
ber of pixels within the region described by the expres-
sion in parenthesis. Finally, the mean absolute distance
(MAD) [ 19] is defined by:

dMAD(y1,y2) =
1

N

N∑

i=1

‖si − ti‖2. (16)

Figure8 usesT (A) (i.e., the sequenceA of the test set
T ) to show how the error measures (13) and (15) vary as
a function ofγ. The results in Fig.8 are shown using the
average and standard deviation results after running Alg. 1
with initial training sets of sizes{2, 6, 10, 20, 50, 100} (re-
call that each initial training set is formed by samplingD
uniformly). From Fig.8, we see that ’Incremental’ pro-
duces smaller and more stable results forγ ∈ {0.001, 0.1},
so we useγ = 0.001 for the experiments below.

The final experiment shows how the incremental on-line
training method improves the performance of the system
initially trained with small training sets (this initial system
is denoted by ’Supervised’). We also compare the results
with the performance of the following methods: 1) the su-
pervised training method of Carneiro et al. [2] that uses
400 training images; 2) the supervised training approach by
Georgescu et al. [5] that uses hundreds of training images;
and 3) the model-based method by Nascimento et al. [13]
that does not use any training set, but requires elaborate
strategies for producing the initial guess for the optimiza-
tion function. It is important to mention that, different from
the method proposed in this paper, the two competing ap-
proaches [5, 13] also use a dynamical model of the heart
motion, which is usually associated with more precise LV
segmentation results. For this experiment, we build three
different training sets of sizes{2, 6, 10, 20, 50, 100} (that
is, we have6 × 3 = 18 distinct training sets) and show
the results using mean and standard deviation for each er-
ror measure (Fig.9). Compared to ’Supervised’, note that
the ’Incremental’ reduces the standard deviation and mean
errors for almost all error measures in both test sequences.
Finally, compared to the state-of-the-art, notice that ’Incre-
mental’ produces competitive results with training sets with
less than twenty images for most of error measures. Fig-
ure10displays four cases comparing the LV segmentations
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Figure 9. Comparison of the performance of the proposed incre-
mental on-line methods and the supervised approach using the er-
ror measures (13)-(16) (each row represents one error measure,
and each column denotes a different test sequence). We also show
the detection results on the same test sets of the supervisedtrain-
ing methods [2] and [5] and the unsupervised model-based method
[13].

produced by ’Incremental’ and ’Supervised’ using an initial
training set containing 10 annotated images.

7. Discussion and Conclusions

In this paper, we presented a novel incremental on-line
semi-supervised learning methodology applied to the fully
automatic segmentation of the left ventricle of the heart
from ultrasound data. The main novelty resides in the for-
mulation of the on-line learning and segmentation algorithm
that keeps adding training images and producing LV seg-
mentation as frames of a new test sequence are presented to
the system. This contrasts with the off-line learning and de-
tection commonly found in similar semi-supervised learn-
ing approaches. This novelty restricts the set of samples
that can be introduced into the training set, so the selection



SequenceT (A)

a) Incremental b) Supervised
SequenceT (B)

a) Incremental b) Supervised

Figure 10. Examples of the detection on test sequencesT (A) and
T (B) produced by the ’Incremental’ (first column) and the ’Su-
pervised’ (second column) models, where the initial training set
contained 10 annotated images.

criterion to add unannotated images to the training set be-
comes a critical aspect of the algorithm, and we provide an
empirical study on this issue. Another novelty lies in the
use of deep neural network which is easily adapted to the
semi-supervised learning framework. The results show that
it is possible to have state-of-the-art results with training
sets containing less than twenty annotated training images.
We plan to extend this work for the LV segmentation in 3D
ultrasound, and also in the joint detection of the LV endo-
cardium and epicardium.
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