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Abstract. In this paper, we propose an ensemble classification approach
to the Pedestrian Detection (PD) problem, resorting to distinct input
channels and Convolutional Neural Networks (CNN). This methodology
comprises two stages: piq the proposals extraction, and piiq the ensemble
classification. In order to obtain the proposals, we apply several detectors
specifically developed for the PD task. Afterwards, these proposals are
converted into different input channels (e.g. gradient magnitude, LUV
or RGB), and classified by each CNN. Finally, several ensemble methods
are used to combine the output probabilities of each CNN model. By cor-
rectly selecting the best combination strategy, we achieve improvements,
comparatively to the single CNN models predictions.

Keywords: Pedestrian Detection,Convolutional Neural Networks, in-
puts channels, ensemble classification

1 Introduction

Driver assistance systems, autonomous vehicles, robots that interact with hu-
mans, and surveillance systems, all of them need to robustly and accurately
detect people in order to perform their task correctly. Therefore, Pedestrian De-
tection (PD) emerges as a relevant and demanding problem, which already has
more than ten years of study. The main factors that increase the difficulty of
this task are: the illumination settings, the pedestrian’s articulations and pose
variations, the different types of clothes and accessories, and the occlusions.

As a result of this research, various image channels and feature representa-
tions [1] have been proposed (surveys are presented in [2] and [3]). Although the
handcrafted features based detectors were popular in the past, the current state-
of-the-art detectors rely on Deep Learning architectures, namely Convolutional
Neural Networks (CNN). Some of these later models, result from the adaptation
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and extension of object detection frameworks, such as R-CNN [4], Fast R-CNN
[5], and Faster R-CNN [6].

Regarding the CNN inputs, the most recent approaches use the RGB images
(for example, [7, 8]), but other color spaces (e.g. LUV) and representations (e.g.
HOG) have been explored in other recent works [9].

In this paper, we propose an improvement to the pipeline of the R-CNN, and
to the PD works of [9, 10]. Two stages can be identified in these methods: 1)the
proposal’s extraction from the original image, and 2) the CNN post-processing.
In our methodology (depicted in Figure 1), we maintain the first stage, by ob-
taining proposals with conventional and already developed pedestrian detectors,
based on handcrafted features. Then, we introduce improvements in the second
stage, by using an ensemble of CNN classifiers, instead of a single CNN model.
Each CNN is trained with a different input channel, generated from the origi-
nal RGB proposals (e.g. LUV or gradient magnitude), and applied to the test
proposals. Then, the outputs of each of the input channel’s CNN models are
combined. We observe gains, when comparing the combination’s performance
with the one from each individual input channel CNN model.

Fig. 1. Pipeline of our method’s overall architecture.

2 Proposed Method

As mentioned in Section 1, our methodology (shown in Figure 1) consists of
the following two stages: 1) proposals extraction, and 2) multi-channel CNN
ensemble classification.

In the first stage, we apply conventional PD detectors to the images, in order
to obtain proposals, i.e. regions of interest that might contain pedestrians. More
specifically, we resort to the Aggregated Channel Features (ACF) [11], the Locally
Decorrelated Channel Features (LDCF) [12] and the Spatial Pooling + (SP+) [13,
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14] detectors. This stage performs the multi-scale sliding window task and Non-
Maximal-Suppression, which reduces the computational demands imposed to the
CNNs, used in the next stage.

In the second stage, we convert the proposals, originally in RGB, to distinct
input channels, namely: gradient magnitude, normalized sum of gradient his-
tograms for six orientations3 and LUV. Each CNN is trained with a different
input channel, and applied to the test proposals. Afterwards, the probabilities
(of a certain proposal containing a pedestrian), resulting from each of the input
channel’s CNN models, are combined. This combination is performed accord-
ing to four different ensemble methodologies [16]: piq averaging, piiq weighted
averaging, piiiq majority voting, and pivq weighted voting.

2.1 Datasets and Proposals extraction

To reduce the computational demands required by the CNN, we generate propos-
als with conventional pedestrian detectors, which do not use Deep learning ar-
chitectures. These detectors are applied to a pedestrian dataset, represented by:
rD “ tprx,Bgtqiu

| rD|
i“1, with rx P RH̃ˆW̃ˆD̃ denoting the input RGB images (height,

width and depth, respectively), and Bgt “ tb̃ku
|Bgt

|

k“1 denoting the set of ground

truth bounding boxes containing the pedestrians, with b̃k “ rxk, yk, wk, hks P R4

corresponding to the top-left point and width and height, respectively.
The set of detections provided by the detectors mentioned above, are de-

noted by O “ tprxpBdtq,Sqiu|O|i“1, where Bdt “ tbku
|Bdt

|

k“1 are the bounding boxes
corresponding to the detections, rxpBdtqi constitutes the proposals for image rxi,
i.e. represents the regions of the image rxi delimited by the bounding boxes in

Bdt
i , having Si “ tsku

|Bdt
|

k“1 , with sk P R as the corresponding scores, expressing
the confidence in the existence of a pedestrian.

From the output of the detectors, we build a new dataset, where the CNNs

are used. We denote this dataset by: D “ tpx,yqiu
|D|
i“1, where xi “ rxpBdtqi P

RHˆWˆD represents the proposals, and yi P Y “ t0, 1uC denotes the classes for
the proposal xi: non-pedestrian (label zero) and pedestrian (label one), in our
case the number of classes is C “ 2.

2.2 Input channels

In order to generate several inputs for the CNNs ensemble, we compute three
input channels from the original RGB proposals. In total there are four in-
put channels (as illustrated in Figure 2), denoted by: xt P RHˆWˆD, for t P
T “{RGB,GH,GM,LUV}, which correspond to RGB, normalized sum of gra-
dient histograms for six orientations, gradient magnitude (computed from each
channel in RGB) and LUV [1]. Since, originally, the normalized sum of gradient
histograms for six orientations only has one channel in the third dimension, we
replicate this channel to obtain the remaining depth dimensions.

3 The six orientations are obtained in equally spaced intervals in the range r0, πr, see
details in [15].
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Fig. 2. Depiction of the input channels applied in each CNN model: (a) RGB, (b)
normalized sum of gradient histograms for six orientations, (c) gradient magnitude,
and (d) LUV.

2.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are architectures based on the compo-
sition of multiple layers, i.e. the output at layer l is obtained from the input at
layer l ´ 1 and from the parameters at layer l, according to: xl “ f lpxl´1, θlq,
where θl “ rwl,bl

s denotes the weights and biases (respectively) for the l-th
layer out of the total L layers [17].

The initial input at layer l “ 0, is an image with three channels (height,
width and depth, e.g. RGB), i.e. x0 P RH0ˆW0ˆD0 , with D0 “ 3.

The main operations assumed by these networks at a certain layer l, are
represented by the function f l, and can be of several types: piq convolutional
(followed by an activation function), piiq pooling, piiiq fully connected (a partic-
ular instance of the convolutional one) and pivq multinomial logistic regression
[18].

Therefore, the CNN model fp.q maps each image x “ x0 to classification
probabilities for each class: pc “ softmaxpxL´1, θLq P r0, 1s, where c “ t0, 1u
denotes the non-pedestrian and pedestrian classes (respectively), and the last

function is a softmax, defined by: softmaxpxL´1
c q “

expxL´1
c

ř

j exp
x
L´1
j

, where c “

t0, . . . , C ´ 1u denotes the classes (in our case, C “ 2).
The convolution is defined by:

xl
m1,n1,d1 “

ÿ

mnd

wl
m,n,d,d1 ¨ x

l´1
m`m1,n`n1,d ` bl

d1 , (1)

wherem, n, d, index the image height, width and depth, respectively, and d1 is the
number of filters (see [17]). The convolution is followed by the Rectified Linear
Unit (ReLU) activation function [18] defined by apxl

m1,n1,d1q “ maxp0,xl
m1,n1,d1q
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(see [17]). The max pooling is defined by xl
m,n,d “ maxpxl´1

m1,n1,dq (see [17]), with
m1, n1 P Ipm,nq, where Ipm,nq are the input locations.

2.4 CNN architecture

Regarding the choice of the CNN architecture and initialization, we have consid-
ered the work of [19]. The authors mention the advantages of transfer learning,
i.e. using a model pre-trained with an auxiliary dataset, and re-training (i.e. fine-
tuning) it with the target dataset, instead of randomly initializing the network.

Consequently, we adopt the configuration D of the VGG Very Deep 16 CNN
model [20], which was subject to pre-training with the Imagenet dataset [21]
(which contains generic objects). Then, we adapt this architecture to the PD
task, by introducing the following changes. First, the original input size is down-
scaled from 224 ˆ 224 ˆ 3 to 64 ˆ 64 ˆ 3, in order to ease the computational
expense associated with the CNN. As a result, we adjust the fully connected lay-
ers to this modification, by randomly initializing and resizing them. To obtain
the probability of the non-pedestrian and pedestrian classes, the softmax was
adjusted to this new number of outputs. Afterwards, we re-train (i.e. fine-tune)
this model with the pedestrian dataset, as described in Section 2.1.

The main pre-processing steps required to use the CNN are: the mean sub-
traction (computed from the training images) and the resize to the defined CNN
input dimensions.

2.5 Ensemble classification

The ensemble is composed of four single CNN models, trained with each of the
four input channels, described in Section 2.2. Each CNN model constitutes an
individual learner ftpxtq, t P T “{RGB,GH,GM,LUV}), where xt corresponds
to the proposal for the t-th input channel, and ftp.q denotes the t-th CNN model.
As mentioned in Section 2.3, each of these CNNs provides a classification score
(i.e., a probability) for each class, denoted by pct “ f ct pxtq P r0, 1s, where c “ 0
represents the non-pedestrian class, and c “ 1 represents the pedestrian class.

To combine the probabilities of the four CNN models, we consider a set G
that contains all possible probabilities combinations4.

For the i-th probability configuration, denoted as Gi P G, four different
ensemble methods are used, that is: piq averaging, piiq weighted averaging, piiiq
majority voting, and pivq weighted voting [16].

For the average computation, we consider the probabilities pct , and for the
voting computation, we transform the probabilities in votes vct , according to:
vct “ 0, if pct ă 0.5, and vct “ 1, if pct ě 0.5.

For the simple and weighted average, for the class c, we consider the following
expression:

P c “
ÿ

tPGi

wt ¨ f
c
t pxtq “

ÿ

tPGi

wt ¨ p
c
t , (2)

4 Considering four input channel’s CNN models, the cardinality of G is |G| “ 15.
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where
ř

tPGi wt “ 1. In the simple average case, we have wt “
1

|Gi|
, and in the

weighted average case, we use the CNN model’s log average miss rate metric

[2] to build the weights, i.e. wt “
p1{MRtq

ř

tPGi p1{MRtq
, where MRt denotes the log

average miss rate for the input channel’s CNN model t.
For the majority voting, the class c is selected, if the number of votes for that

class is greater than half the total number of votes. If there is a tie, the pedestrian
class (c “ 1) is selected. The weighted voting is similar to the majority voting,
but the votes vct are weighted by wt, similarly to the weighted average case.

To find which combination of the probabilities (resulting from different CNN
models, associated with distinct input channels) achieves the best performance,
we try all the possible combination’s subsets Gi Ă G. Then, for c “ 1, if P c ě

0.5, or if c has the most votes, we consider that the proposal x contains a
pedestrian, and, consequently, remains unchanged (including the score provided
by the detector). Otherwise, the proposal is regarded as a negative, i.e. not
enclosing a pedestrian, and is discarded. In fact, we use this final probability to
reduce the number of false positives provided by the detector in the first stage,
and, therefore, improve the accuracy of the method.

3 Experiments

We perform experiments in the Caltech [2] and INRIA [22] pedestrian datasets,
using three detectors for the proposals extraction, namely: LDCF, ACF (ACF-
Caltech+ for Caltech as in [12, 15], and mentioned as ACF+) and SP+. All the
combination methods described in Section 2.5 are used, for all the possible input
channels probabilities combination sets. We adopt the log average miss rate as
the performance metric, as described in [2]. We use the following toolboxes: for
the CNN [17], for the performance assessment, ACF and LDCF [15], and for
SP+, the code provided at 5. The CNN train settings are: ten epochs with a
batch size of 100, a learning rate of 0.001 and a momentum of 0.9.

3.1 Caltech dataset

In order to build the dataset to train the CNN (as described in Section 2.1), we
extract positive proposals (i.e. containing pedestrians) using the ground truth
annotations from the Caltech dataset with third frame sampling (for further
details, see [2]). Afterwards, we augment this set by horizontally flipping each of
the proposals. In total, we obtain 32752 positive train proposals.

The negative proposals (i.e. not containing pedestrians) result from applying
a non-completely trained version of the LDCF detector to the Caltech dataset
with thirtieth frame sampling (for additional information, see [2]). A maximum
of five negative proposals are extracted in each image, and the Intersection over
Union with the ground truth is restricted to be less than 0.1. By not training

5 https://github.com/chhshen/pedestrian-detection
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this specific LDCF detector with the same amount of data as in [15], we are able
to obtain more negative proposals, which correspond to false positive detections
(i.e. detector errors). In total, we obtain 17420 negative train proposals.

Finally, the positive and negative proposals collected previously (50172, in
total), are split into train (90% of the total amount, i.e. 45155) and validation
(10% of the total amount, i.e. 5017) sets.

We assess the performance in the Caltech test set according to the reasonable
setting, i.e. the pedestrians must have 50 pixels of height or more, and the
occlusion must be partial or inexistent (additional details can be found in [2]).

3.2 INRIA dataset

For the construction of the CNN training set, we resort to the ground truth
annotations of the INRIA positive images, in order to obtain positive proposals
(i.e. containing pedestrians). Subsequently, this set is expanded by using hori-
zontal flipping. Then, the overall set is further augmented by applying random
deformations. In total, we extract 4948 positive proposals.

The negative proposals (i.e. not containing pedestrians) are acquired with a
non-completely trained version of the LDCF detector (similarly to the Caltech
case), by establishing that only a maximum of 18 negative proposals could be
obtained from each of the INRIA negative images. In total, we extract 12552
negative proposals.

Finally, the acquired positive and negative proposals (17500, in total) are
split into train (90% of the total amount, i.e. 15751) and validation (10% of the
total amount, i.e. 1749) sets.

3.3 Results

Table 1 presents an overview of the results for the INRIA and Caltech datasets
by using the proposals extracted with various detectors (column ”Proposals”),
adding the CNN classification for different input channels (columns from ”RGB”
to ”LUV”) and finally, selecting the best combination of the probabilities for
these input channels (the column ”Inputs” contains the input channels used for
the method in the column ”Method”, to achieve the performance in the column
”Comb.”).

From Table 1, it can be seen that adding the CNN classification generally im-
proves the baseline detector performance. Although there are some exceptions
where the CNN performance is worst than the baseline, we can see that, by
correctly choosing the best combination strategy, the proposed ensemble classi-
fication is always able to boost the results, reaching the top classification score.
This means that the proposed method is effective in the exploration of synergies
among individual learners.
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Table 1. Log average miss rate % of the detector’s proposals, the proposals with CNN
classification for distinct input channels, and the best combination of probabilities for
several input channels, evaluated using the INRIA and Caltech datasets.

Dataset Detector Proposals RGB GH GM LUV Comb. Inputs Method

ACF 16.83 15.24 15.84 16.52 15.55 15.03 {RGB,LUV} weighted average
INRIA LDCF 13.89 12.43 14.75 13.53 13.29 12.15 {RGB,GM} weighted average

ACF+ 29.54 23.23 28.93 28.19 25.09 22.55 {RGB,LUV} weighted average
Caltech LDCF 25.19 21.49 27.19 26.14 22.42 21.10 {RGB,GH,LUV} weighted average

SP+ 21.48 16.85 22.94 21.48 19.00 16.60 {RGB,LUV} simple average

4 Discussion and Conclusions

A novel approach to the PD problem, based on ensemble classification with sev-
eral input channel’s CNN models, is proposed. Comparatively to the individual
CNN models performance, we achieve gains by combining the classification re-
sults of various CNNs, where each one of them was trained with different input
channels (namely, RGB, normalized sum of the gradient histograms, gradient
magnitude, and LUV). We show that synergies can be found resorting to en-
semble methods, and our approach is easily extensible to more channels and
features of different types. As further work, the weights used during the combi-
nation could be learned jointly by all CNN models during training, or the CNN
features of the top layers could be extracted to train a classification model.
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