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ABSTRACT

Through the years, several CAD systems have been devel-
oped to help radiologists in the hard task of detecting signs
of cancer in mammograms. In these CAD systems, mass seg-
mentation plays a central role in the decision process. In the
literature, mass segmentation has been typically evaluated in a
intra-sensor scenario, where the methodology is designed and
evaluated in similar data. However, in practice, acquisition
systems and PACS from multiple vendors abound and current
works fails to take into account the differences in mammo-
gram data in the performance evaluation.
In this work it is argued that a comprehensive assessment of
the mass segmentation methods requires the design and eval-
uation in datasets with different properties. To provide a more
realistic evaluation, this work proposes: a) improvements to a
state of the art method based on tailored features and a graph
model; b) a head-to-head comparison of the improved model
with recently proposed methodologies based in deep learn-
ing and structured prediction on four reference databases, per-
forming a cross-sensor evaluation. The results obtained sup-
port the assertion that the evaluation methods from the litera-
ture are optimistically biased when evaluated on data gathered
from exactly the same sensor and/or acquisition protocol.

Index Terms— Mammogram, mass segmentation, trans-
fer learning, cross-sensor

1. INTRODUCTION

The most common imaging modality in breast cancer screen-
ing is mammography. Computer-aided detection (CAD) sys-
tems have been developed in order to provide a “second read-
ing” to aid the radiologist in reaching a final assessment [1].
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A fundamental stage in typical CAD systems is the segmen-
tation of masses in regions of interest (ROIs), which could
have been manually or automatically detected. Depending on
the application, it may be necessary to have a very precise ex-
traction of the contour of the mass. In the mass classification
case, for instance, it is advantageous to have a good segmen-
tation step since some characteristics are extracted from the
mass shape (e.g., it is known that convex masses tend to be
more benign than very spiculated masses).

Most of the state-of-the-art methods rely on level set
methods [2, 3] that are usually based on shape and appear-
ance priors that rarely capture all the variation found in breast
masses given the strong assumptions made by such models
(e.g., strong edges, similar grey value, etc.). Other recently
proposed methods are graph-based models with inference
procedures that search for optimal paths in the graph. Within
these, the closed path approach [4] compared favorably with
methods based on active contours, convergence filters and
a graph-cut method with a star shape prior. More recently,
the task of mass segmentation has been addressed with deep
learning methods [5], in some cases cascading them for im-
proved results [6].

However, all the works present several limitations, par-
ticularly in terms of the empirical estimation of the perfor-
mance. First, the lack of reliable datasets and benchmarks
makes the evaluation difficult and the comparison of the dif-
ferent methodologies unreliable. Second, the methods tend
to be trained and tested for the same dataset, making it un-
clear how they will perform is general. This is exacerbated by
the fact that the few available datasets include mammograms
already processed for presentation (Presentation Intent Type
field in the DICOM header; these images are intended for
viewing by an observer) in the Picture and Archiving Com-
munication System (PACS). This processing is PACS-specific
and therefore methods developed under a specific processing
may not work in mammograms that have undergone a dif-
ferent processing. Third, both the deep learning based meth-
ods and the traditional tailored based features present limi-
tations and advantages that are important to understand for
cross-fertilization of ideas.



The major contributions of this paper are: a) improve-
ments to the tailored, graph-based methodology in [4], by pre-
processing the mammogram with a total variation approach
and improving the computation of the cost function inputted
to the closed path extraction; b) the comparative performance
analysis in a cross-sensor scenario of the following state of the
art models: the proposed improved version of [4], the condi-
tional random field and structured support vector machines
methodologies proposed by Dhungel et al. [6].

2. STATE-OF-THE-ART MODELS FOR MASS
SEGMENTATION

We selected two reference models from the literature, both
presenting state of the art performance, but adopting quite dif-
ferent technical solutions.

2.1. Closed Path Approach

The closed contour computation is usually addressed by trans-
forming the image into polar coordinates, where the closed
contour is transformed into an open contour between two op-
posite margins, but [4] solves the problem in the original co-
ordinate space. After defining a directed acyclic graph appro-
priate for this task, the authors address the main difficulty in
operating in the original coordinate space, which is that small
paths collapsing in the seed point are naturally favored. This
issue is addressed [4] by modulating the cost of the edges to
counterbalance this bias. In the mass segmentation task, the
weights in the graph are set as

w = fl + (fh − fl)
exp((255− d)β)− 1

exp(255β)− 1
, (1)

where d is the magnitude of the radial derivative in the pixel
(normalized in the range [0, 255]), and fl, fh and β are set to
2, 32 and 0.025, respectively. Eq. (1) defines a exponentially
monotonous decreasing function between the derivative and
the cost, with fl being the lowest cost and fh the highest cost
assigned in the graph.

2.2. Deep Learning and Structured Prediction Based Ap-
proaches

The deep learning and structured prediction based approaches
proposed by Dhungel et al. [6] consist of two probabilistic
graphical models, namely 1) Structured support vector ma-
chines (SSVM) and 2) Conditional Random Field (CRF).
Both of these models includes a number of deep learning
based shape models, such as patch based deep belief net-
works (DBN) [7], convolutional neural network (CNN) [8]
based on global image along with other models based on
Gaussian mixture model (GMM) [9] and shape prior. The
SSVM model uses graph cuts [10] for inference and cutting
plane optimization [11] to learn the parameter of the model.

Similarly, the inference of the CRF model is based on Tree
re-weighted belief propagation (TRW) [12, 13] and the pa-
rameters of the CRF model are learned with truncated fitting
algorithm [12].

3. IMPROVED CLOSED PATH APPROACH

In this section, we propose several improvements to the closed
path approach presented in Sec. 2.1, as illustrated in Fig. 1.
In particular, we introduce a preprocessing step based on total
variation to denoise and enhance the ROI data.

Given an input 2D signal x, the goal of total variation reg-
ularization [14] is to find an approximation, y, that is “close”
to x but has smaller total variation than x. One measure of
closeness is the sum of square errors and the total variation of
y can be defined by

V (y) =
∑
n,m

{|yn+1,m − yn,m|+ |yn,m+1 − yn,m|}

So the total variation denoising problem amounts to minimize
the following discrete functional over the signal y:

0.5
∑
n,m

(xn,m − yn,m)2 + λV (y) (2)

Furthermore, while the reference methodology [4] relied
only in the radial derivative g(p) at a pixel p to set the weights
in the graph, we consider both the radial derivative and a
measure of regularity of the grey values, both inside and out-
side the mass. For each pixel p, we consider the radial seg-
ment through p connecting the centre O to the border of the
ROI. We compute the standard deviation of the gray values,
stdi(p) and stde(p), in the segments connecting O to p and
p to the border pixel, respectively. The function h(p) =
max(stdi(p), stde(p)) measures the quality of the pixel p in
terms of internal and external regularity. Finally, the fitness
of p is measured by

f(p) = g(p)a/h(p)b, (3)

where a and b are to be set experimentally. The weight in the
graph is finally set as in the original work [4], see Eq.(1), but
with β also set experimentally.

4. CROSS-SENSOR EXPERIMENTAL ANALYSIS

We performed the standard intra-sensor analysis, by splitting
the data from a single database in two parts, one for training
and the other for performance estimation. Additionally, we
also study the cross-sensor performance by training and test-
ing in different databases. We use Dice metric, D, to assess
the segmentation accuracy:

D = 2
#(X ∩ Y )

#X +#Y
,
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Fig. 1: Block diagram of the improved closed path approach.

where X is the annotated mass region, #X is the number of
pixels in X, Y is the detected mass region, #Y is the number
of pixels in Y.

4.1. The Databases

We conduct our experimental work in four databases, IN-
Breast [15], DDSM-BCRP [16], and two subsets from
BCDR [17]. The INBreast comprises Full Field Digital
Mammographies (FFDM) acquired in Porto, Portugal, be-
tween April 2008 and July 2010; the acquisition equipment
was the MammoNovation Siemens FFDM, with a solid-state
detector of amorphous selenium, pixel size of 70 µm (mi-
crons), and 14-bit contrast resolution. The image matrix was
3328 × 4084 or 2560 × 3328 pixels, depending on the com-
pression plate used in the acquisition (according to the breast
size of the patient). Images were saved in the DICOM format.
The INBreast database provides 116 masses with high-quality
manual annotation by experts with the OsiriX software.

The DDSM-BCRP [16] database consists of 39 cases (77
annotated images) for training and 40 cases (81 annotated im-
ages) for testing, with rough manual annotation of the masses.
These film mammograms were scanned on a HOWTEK 960
digitizer with a sample rate of 43.5 microns at 12 bits per
pixel.

The BCDR database is organized in four subsets, two with
film based mammograms and two with digital mammogra-
phies. We selected BCDR-F02 (film based) and BCDR-D01
(digital) for the transfer learning evaluation. BCDR-F02 in-
cludes 188 masses manually annotated while BCDR-D01
comprises 143 masses. For the film based subset, MLO and
CC images are grey-level digitized mammograms with a res-
olution of 720 (width) by 1168 (height) pixels and a bit depth
of 8 bits per pixel, saved in the TIFF format. In the digital
subset, the MLO and CC images are grey-level mammograms
with a resolution of 3328 (width) by 4084 (height) or 2560
(width) by 3328 (height) pixels, depending on the compres-
sion plate used in the acquisition (according to the breast size
of the patient). The bit depth is 14 bits per pixel and the
images are saved in the TIFF format.

The rectangular Region of Interests (ROI) for our exper-
iments were generated from the bounding boxes (BB) of an-
notated mass, by expanding the BB by 20%. For the closed
path approach, the seed point was set at the centre of the ROI.

Table 1: Mass segmentation on Mammograms: Intra-sensor
results. Results are the mean of the Dice metric (the higher
the better).

Original Improved
Database Closed Path Closed Path SSVM CRF
INBreast 0.88 0.89 0.90 0.90

BCDR-D01 0.84 0.87 0.88 0.89
BCDR-F02 0.72 0.77 0.83 0.82

DDSM-BCRP 0.52 0.87 0.90 0.90

Table 2: Mass segmentation on Mammograms: Cross-sensor
results. Results are the mean of the Dice metric (in brackets
is the decrease from the intra-sensor performance).

Train Test Improved
Database Database Closed Path SSVM CRF

BCDR-D01 INBreast 0.89 (0.00) 0.82 (0.08) 0.81 (0.09)
BCDR-F02 INBreast 0.83 (0.06) 0.88 (0.02) 0.87 (0.03)

DDSM-BCRP INBreast 0.83 (0.06) 0.87 (0.03) 0.87 (0.03)
INBreast BCDR-D01 0.87 (0.00) 0.82 (0.06) 0.81 (0.08)

BCDR-F02 BCDR-D01 0.84 (0.03) 0.80 (0.08) 0.79 (0.10)
DDSM-BCRP BCDR-D01 0.84 (0.03) 0.84 (0.04) 0.83 (0.05)

INBreast BCDR-F02 0.75 (0.02) 0.77 (0.06) 0.80 (0.02)
BCDR-D01 BCDR-F02 0.75 (0.02) 0.77 (0.06) 0.76 (0.06)

DDSM-BCRP BCDR-F02 0.77 (0.00) 0.81 (0.02) 0.81 (0.01)
INBreast DDSM-BCRP 0.65 (0.22) 0.77 (0.12) 0.81 (0.09)

BCDR-D01 DDSM-BCRP 0.65 (0.22) 0.83 (0.07) 0.81 (0.09)
BCDR-F02 DDSM-BCRP 0.87 (0.00) 0.85 (0.05) 0.83 (0.07)

For the intra-sensor setting evaluation, half of the masses
in a database were selected for training and the other half
for testing. In the cross-sensor experiment, all masses in the
source database were used in training, and all masses in the
target database were used for testing.

4.2. Results

Results are presented in Table 1 and Table 2. A first clear con-
clusion is the improvement of the closed path method. While
the original method [4] performs well in INBreast, its perfor-
mance decreases significantly in the other databases, specially
in DDSM and BCDR-F02. The improved version has a much
more robust behaviour, showing a drop in performance only
in the BCDR-F02 database.

The worst performances are obtained when transferring
from INBreast to DDSM and from BCDR-D01 to BCDR-
F02. One of the reasons behind this performance drop lies
in the annotation differences between those databases.

The limitations of the DDSM database in terms of the



(a) INBreast. (b) BCDR D01. (c) BCDR F02. (d) DDSM.

Fig. 2: Examples of masses and corresponding manual annotations.

manual annotations of the masses are well-known. Instead
of following the boundary of the mass, the annotation is of-
ten just a blob, typically completely containing the mass, but
also a lot of non-mass tissue (see Fig. 2d). The training in
this database sets more weight to the shape prior in the mod-
els, reinforcing the low relation of the manual boundary with
the true boundary of the mass. A similar behavior is ob-
served in the BCDR subsets, but less pronounced. The an-
notations in the BCDR database are much more accurate than
in DDSM, as shown in Fig. 2b and Fig. 2c. Additionally, the
results improve from the film based to the digital mammogra-
phy, which suggests that the higher data quality of the digital
mammograms pays off in the segmentation task. Finally, the
fine-detailed segmentation of the (digital) INBreast database
yields the best automatic segmentation model.

A comparison of the automatic segmentation methods al-
lows us to conclude that the deep learning based methods
present better performance in roughly two thirds of the ex-
perimental evaluations, showing superior performance. Nev-
ertheless, the performance loss in the cross-sensor scenario
was smaller for the closed path method.

5. DISCUSSION AND CONCLUSIONS

This paper discusses and compares three methods for mass
segmentation in mammograms, for the yet unexplored cross-
sensor setting. The first model uses tailored features and
computes the boundary as the optimal closed path in a graph
model. The second and third models are based on deep learn-
ing features, combined with CRF and SSVM for parameter
estimation. The results shown a good performance in general,
specifically in the intrasensor scenario. Although the perfor-
mance remained appreciable, in some cross sensor cases the
performance loss was more than 10%.

There are two clear differences between the selected
databases: full field digital vs. digitized film (which is a
resolution and dynamic range issue) and accurate vs. blobby
segmentations (which is a contour length/complexity issue).
If we accept that the manual segmentations in both BCDR
databases are of similar quality, the performance loss when
transferring between both BCDR datasets is essentially due
to the differences between the film and digital data. When

transferring to the DDSM is results are due not only to the
differences in the data but also to the annotations. The
higher losses in the latter scenario suggest that the resolu-
tion/dynamic range issue is “manageable” once we come to a
consensus on how clinicians should annotate mass lesions.

Do we need more training data or better models? For mass
segmentation, the answer seems to be yes to both questions.
We need more datasets, better annotated datasets (some of
the annotations are enough to develop detection algorithms
but not segmentation methods) and better models. Based on
our analysis, we conjecture that the greatest gains in mass
segmentation performance will happen when these needs are
addressed.
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