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Abstract We introduce a new segmentation methodology that combines the struc-
tured output inference from deep belief networks and the delineation from level
set methods to produce accurate segmentation of anatomies from medical images.
Deep belief networks can be used in the implementation of accurate segmentation
models if large annotated training sets are available, but the limited availability of
such large datasets in medical image analysis problems motivates the development
of methods that can circumvent this demand. In this chapter, we propose the use
of level set methods containing several shape and appearance terms, where one of
the terms consists of the result from the deep belief network. This combination re-
duces the demand for large annotated training sets from the deep belief network
and at the same time increases the capacity of the level set method to model more
effectively the shape and appearance of the visual object of interest. We test our
methodology on the Medical Image Computing and Computer Assisted Interven-
tion (MICCAI) 2009 left ventricle segmentation challenge dataset and on Japanese
Society of Radiological Technology (JSRT) lung segmentation dataset, where our
approach achieves the most accurate results of the field using the semi-automated
methodology and state-of-the-art results for the fully automated challenge.
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1 Introduction

The segmentation of anatomies from medical images is an important stage in the
process of analysing the health of a particular organ. For instance, the segmentation
of the endocardium and epicardium from the left ventricle (LV) of the heart using
cardiac cine Magnetic Resonance (MR) [3, 4], as shown in Fig. 1-(a), is necessary
for the assessment of the cardiovascular system function and structure. The main
challenges in the LV segmentation from MR are related to the need to process the
various slices from the short axis view, where the area of the LV changes consid-
erably, and to be robust to trabeculations and papillary muscles. Another example
is the segmentation of the lung from digital chest X-ray (CXR) [5], as displayed in
Fig. 1-(b), which is needed for computing lung volume or estimating shape irregular-
ities [6] for screening and detecting pulmonary pathologies. The lung segmentation
problem is challenging due to the large shape and appearance variations of the lung,
and the presence clavicle bones and rib cage. One of the main challenges involved
in these medical image analysis segmentation problems is that the usefulness of a
system is related to the accuracy of its segmentation results, which is usually cor-
related to the size of the annotated training set available to build the segmentation
model. However, large annotated training sets are rarely available for medical im-
age analysis segmentation problems, so it is important to develop methods that can
circumvent this demand.

(a) Left ventricle segmentation from MR (b) Lung segmentation from CXR

Fig. 1 LV segmentation from cardiac cine MR imaging [4] (a), and lung segmentation from digital
chest X-ray [5] (b).

Currently the main approaches explored in medical image segmentation prob-
lems are the following: active contour models, machine learning models, and hybrid
active contour and machine learning models. One of most successful methodologies
explored in the field is the active contour models [7, 8] that is generally represented
by an optimisation that minimises an energy functional which varies the shape of a
contour using internal and external hand-crafted constraints. Internal constraints are
represented by terms that associate cost with contour bending, stretching or shrink-
ing, and the external constraints use the image data to move the contour towards (or
away from) certain features, such as edges. These constraints usually rely on shape
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or appearance models that require small training sets. The main challenges faced by
active contour models are their inability to model robustly the shape and appearance
variations presented by the visual object of interest.

Machine learning methods allow a more robust modelling of the shape and ap-
pearance of visual objects [9, 10], which generally translates into more accurate
segmentation results. However, the challenges presented in medical image applica-
tions in terms of segmentation accuracy requirements and large shape and appear-
ance variations of the visual object of interest imply that the models must have high
capacity, requiring a large and rich annotated training set. This means that the acqui-
sition of comprehensive annotated training sets is one of the main foci in the design
of machine learning models, which is a complicated task, particularly in medical
image analysis. More recent machine learning methodologies are based on models
with less capacity, which reduces the need for large and rich training sets, where
the idea lies in the combination of active contour models and Markov random fields
(MRF) [11, 12, 13]. However, the main issues of these approaches is that MRF mod-
els present large memory complexity, which limits the size of the input image (or
volume) to be segmented.

We propose a new methodology that combines an active contour model (dis-
tance regularised level sets) [14] with a machine learning approach (deep belief net-
work) [15]. Deep belief networks (DBN) are represented by a high capacity model
that needs large amounts of training data to be robust to the appearance and shape
variations of the object of interest, but the two-stage training (consisting of a pre-
training based on a large un-annotated training set, followed by a fine-tuning that
relies on a relatively small annotated training set) [15] reduces the need for anno-
tated training images. Nevertheless, medical image analysis datasets are generally
too small to produce robust DBN models, so its use as a shape term in a level set
method can compensate for its lack of robustness and at the same time can improve
the accuracy of the level set method. In addition, this combination does not present
the the large memory complexity faced by MRF models. We show the effectiveness
of our approach on two distinct datasets: the Medical Image Computing and Com-
puter Assisted Intervention (MICCAI) 2009 LV segmentation challenge dataset [4]
and the Japanese Society of Radiological Technology (JSRT) lung segmentation
dataset [16]. Our experiments show that our approach produces the best result in the
field when we rely on a semi-automated segmentation (i.e., with manual initialisa-
tion) for both datasets. Also, our fully automated approach produces a result that
is on par with the current state of the art on the MICCAI 2009 LV segmentation
challenge dataset.

2 Literature Review

The proposed segmentation methodology can be used in various medical image
analysis problems, but we focus on two applications that are introduced in this
section. The first application is the segmentation of the endocardial and epicardial
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borders of the LV from short axis cine MR images, and the second application is
the lung segmentation from CXR images. The LV segmentation (see Fig. 1-(a)) is
challenging due to the lack of gray level homogeneity in the imaging of the LV,
which happens because of blood flow, papillary muscles and trabeculations, and
the low resolution of the apical and basal images [3]. It is possible to to categorise
LV segmentation approaches with three properties: 1) segmentation method (re-
gion and edge based, pixel classification, deformable models, active appearance and
shape models), 2) prior information (none, weak, and strong), and 3) automated
localisation of the heart (time-based or object detection). According to Petitjean
et al.’s analysis [3] of the MICCAI 2009 challenge results [4], the highest accu-
racy is obtained from image-based methodologies [17, 18] based on thresholding
or dynamic programming applied to image segmentation results. However, these
methods usually require user interaction and show difficulties in segmenting the LV
in all cardiac phases. These drawbacks have been addressed by more sophisticated
methods [19, 20, 21], but their segmentation accuracy is not as high as the simpler
image-based methods above. Moreover, the use of techniques specific to the LV
segmentation problem [17, 18, 22] produces more accurate results when compared
to more general approaches [19, 23]. The main conclusion reached by Petitjean et
al.[3] is that Jolly’s methodology [21] is the most effective because it is fully au-
tomatic and offers the best compromise between accuracy and generalisation. The
most effective methodology in the MICCAI 2009 challenge for the semi-automated
case (i.e., that requires a user input in terms of the initialisation for the segmentation
contour) has been developed by Huang et al. [18].

The challenges in the lung segmentation problem (see Fig. 1-(b)) are related
to the presence of strong edges at the rib cage and clavicle, the lack of a consis-
tent lung shape among different cases, and the appearance of the lung apex. Cur-
rent techniques are based on methods that combine several methodologies, such as
landmark learning and active shape and appearance models [24, 25] or MRF and
non-rigid registration [5]. Although presenting state-of-the-art segmentation results,
these methods show some drawbacks: landmark learning is a hard problem that is
based on hand-crafted feature detector and extractor, active shape and appearance
models make strong assumptions about the distribution of landmarks, and MRF in-
ference has high memory complexity that limits the input image size.

Finally, it is important to note that image segmentation can be posed as a struc-
tured output learning and inference problem [26], where the classification is repre-
sented by a multi-dimensional binary vector. Traditionally, structured output mod-
els use a large margin learning formulation [27], but a natural way to represent a
structured learning is with a multi-layer perceptron, where the output layer consists
of a multi-dimensional binary vector denoting the segmentation [28]. The recent
renaissance of deep learning methods originated from the development of an effi-
cient learning algorithm for training DBN [15], which allowed the development of
structured inference and learning with DBN [29, 30, 31, 32]. Similarly, the method
proposed by Farabet et al. [30] parses a scene into several visual classes using convo-
lutional neural networks. Nevertheless, the papers above show that DBNs can work
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solidly in structured output problems only with the availability of large annotated
training sets that allows the modelling of a robust DBN.

3 Methodology

In order to explain the segmentation algorithm, let us assume that we have an anno-
tated dataset (Fig. 2), represented by D = {(v,c,y)i}|D |i=1, where v : Ω→R represents
an image of the visual object of interest (with Ω ⊆ R2 denoting the image lattice),
c : [0,1]→ Ω denotes the explicit contour representation of the segmentation, and
the binary segmentation map is represented by y : Ω → {0,1}, where 1 represents
the foreground (i.e., points inside the contour c) and 0 denotes the background (i.e.,
points outside the contour c). Below, we first explain the segmentation method based
on the distance regularised level set (DRLS), then we describe the DBN model and
the shape prior.

(a) Left ventricle images and annotation (b) Lung images and annotation

Fig. 2 Left ventricle images v with overlaid endocardial and epicardial segmentation contours c
and respective segmentation maps y in (a), and lung images with overlaid left and right segmenta-
tion contours and respective segmentation maps in (b).

The main segmentation algorithm is based on the distance regularised level set
(DRLS) method [14], where the energy functional is represented by:

E (φ ,φDBN,φPRIOR) = µRp(φ)+Eext(φ ,φDBN,φPRIOR), (1)

where φ : Ω → R represents the signed distance function, defined by

φ(x) =
{
−d(x,Ω out), if x ∈Ω in

+d(x,Ω in), if x ∈Ω out , (2)
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where Ω in = {x∈Ω |y(x)= 1}, Ω out = {x∈Ω |y(x)= 0}, and d(x,Ω)= infz∈Ω ‖x−
z‖2, assuming that y denotes the segmentation map. Also in (1), the distance regular-
isation Rp(φ) =

∫
Ω

0.5(|∇φ(x)|−1)2dx guarantees that |∇φ(x)| ≈ 1, which avoids
the re-initialisations during the segmentation process [14] (a common issue in level
set methods), and

Eext(φ ,φDBN,φPRIOR) = λL (φ)+αA (φ)+βS (φ ,φDBN)+γS (φ ,φPRIOR), (3)

with the length term L (φ) =
∫

Ω
gδ (φ(x))|∇φ(x)|dx (with δ (.) denoting the Dirac

delta function and g , 1
1+|∇Gσ ∗I| representing the edge indicator function), the

area A (φ) =
∫

Ω
gH(−φ(x))dx (with H(.) denoting the Heaviside step function),

and S (φ ,φκ) =
∫

Ω
(φ(x)−φκ(x))2dx (with κ ∈ {DBN, PRIOR}) representing the

shape term [33] that drives φ either towards the shape φDBN, which is the dis-
tance function inferred from the deep belief network (DBN) structured inference
described below, or the shape prior φPRIOR, estimated from the training set and also
described in more detail below. The gradient flow of the energy E (φ) is then defined
as follows:

∂φ

∂ t
=µdiv(dp(|∇φ |)∇φ)+λδ (φ)div(g

∇φ

|∇φ |
)+αgδ (φ)+

2β (φ(x)−φDBN(x))+2γ(φ(x)−φPRIOR(x)),
(4)

where div(.) denotes the divergence operator, and dp(.) denotes the derivative of the
function p(.) defined in (1).

The segmentation is obtained from the minimisation of the energy functional in
(1) from the steady solution of the gradient flow equation [14] ∂φ

∂ t = − ∂E
∂φ

, where

∂E /∂φ is the Gâteaux derivative of the functional E (φ) and ∂φ

∂ t is defined in (4).
The main idea of the DRLS [14] is then to iteratively follow the steepest descent
direction (4) until convergence, resulting in the final steady solution.

(a) Left ventricle DBN (b) Lungs DBN

Fig. 3 Deep belief network that produces the segmentation maps yDBN and respective signed dis-
tance function φDBN for the left ventricle structures (epicardium and endocardium) in (a) and left
and right lungs in (b).
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The structured inference from the DBN (Fig. 3) produces the following segmen-
tation map:

yDBN = argmax
y ∑

h1

...∑
hK

P(v,h1, ...,hK ,y;Θ), (5)

where v represents the input image, hk ∈ {0,1}|hk| represents the |hk| hidden nodes
of layer k∈ {1, ..,K} of the deep belief network, and Θ denotes the DBN parameters
(weights and biases). The probability term in (5) is computed as

P(v,h1, ...,hK ,y) = P(hK ,hK−1,y)

(
K−2

∏
k=1

P(hk+1|hk)

)
P(h1|v), (6)

where − logP(hK ,hK−1,y) ∝ ERBM(hK ,hK−1,y) with

ERBM(hK ,hK−1,y) =−b>K hK−a>K−1hK−1−a>y y− (hK)
>WKhK−1− (hK)

>Wyy
(7)

representing the energy function of a restricted Boltzmann machine (RBM) [15],
where bK ,aK−1,ay denote the bias vectors and WK ,Wy are the weight matrices.
Also in (6), we have

P(hk+1|hk) = ∏
j

P(hk+1( j) = 1|hk), (8)

with P(hk+1( j)= 1|hk)=σ(bk+1( j)+h>k Wk+1(:, j)), P(h1( j)= 1|vmφ
)=σ(b1( j)+

v>mφ
W1(:, j)

σ2 ) (we assume zero-mean Gaussian visible units for the DBN), where
σ(x) = 1

1+e−x , the operator ( j) returns the jth vector value, and (:, j) returns the
jth matrix column. The signed distance function φDBN is then computed with (2).
The DBN in (5) is trained in two stages. The first stage is based on the unsuper-
vised bottom-up training of each pair of layers, where the weights and biases of the
network are learned to build an auto-encoder for the values at the bottom layer, and
the second stage is based on a supervised training that uses the segmentation map
y as the training label [15]. The structured inference process consists of taking the
input image and performing bottom-up inferences, until reaching the top two layers,
which form an RBM, and then initialise the layer y = 0 and perform Gibbs sampling
on the layers hK , hK−1 and y until convergence [15]. The signed distance function
φDBN is then computed with (2) from yDBN.

The shape prior (Fig. 4) is computed with the mean of the manual annotations
{yi}i∈T , where T ⊂ D denotes the training set, as follows: ȳ(x) = 1

|T | ∑
|T |
i=1 yi(x),

where x ∈ Ω . Assuming that each element of the mean map ȳ is between 0 and 1,
the shape prior is computed as

yPRIOR(x) =
{

1, if ȳ(x)> 0.5
0, if ȳ(x)≤ 0.5 . (9)

The signed distance function φPRIOR is then computed with (2) from yPRIOR.
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Fig. 4 Shape priors yPRIOR (computed from ȳ using (9)) for endocardium, epicardium and lungs.

The segmentation using the combination of DRLS, DBN and shape prior is ex-
plained in Alg. 1, which iteratively runs DRLS until convergence using the seg-
mentation results from the DBN and from the shape prior as two of its optimisation
terms. Notice that the initial segmentation φ0 can be manually provided, which re-
sults in a semi-automated segmentation, or automatically produced, generating a
fully automated segmentation method.

Algorithm 1 Combined DRLS and DBN Segmentation
1: INPUT: test image v, shape prior yPRIOR and initial segmentation φ0
2: Compute signed distance function φPRIOR from map yPRIOR with (2)
3: Infer yDBN from v using (5)
4: Compute signed distance function φDBN from map yDBN with (2)
5: for t = 1:T do
6: Run DRLS using φt−1,φDBN,φPRIOR to produce φt
7: end for
8: Segmentation is the zero level set C = {x ∈Ω |φT (x) = 0}

3.1 Left Ventricle Segmentation

In this section, we present our fully automated left ventricle segmentation method.
A cardiac cine MR sequence consists of K volumes {Vi}K

i=1, each representing a
particular cardiac phase, where each volume comprises a set of N images {v j}N

j=1,
also known as volume slices, obtained using the short axis view (Fig. 5). We as-
sume to have annotation only at the end diastolic (ED) and end systolic (ES) cardiac
phases (i.e., only two out of the K phases available) for all N images in these two vol-
umes. In each of these annotated images, the explicit endocardial and epicardial con-
tour representations are denoted by cENDO and cEPI, respectively, and the segmen-
tation maps are denoted by yENDO and yEPI. The set of annotated sequences is repre-
sented by D = {(v,cENDO,cEPI,yENDO,yEPI, i,q)s}s∈{1,...,S},i∈{1,...,Ns},q∈{ED,ES}, where
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Fig. 5 Visualisation of an image on the short axis view, where RV and LV stand for right and left
ventricles, respectively, and the red contour represents the endocardium contour and green denotes
the epicardium.

Fig. 6 All steps for the left ventricle segmentation - Fig. 7 depicts each step in more detail.

s denotes the sequence index (each sequence represents one patient), i denotes the
index to an image within the sequence s, and q represents the cardiac phase (Fig. 2).
Note that our methodology runs the segmentation process slice by slice in each of
the ED and ES volumes, using the steps displayed in Fig. 6.

3.2 Endocardium Segmentation

For segmenting the endocardium, it is first necessary to detect a region of interest
(ROI) that fully contains the left ventricle. This ROI detection uses the structured
inference computed from a DBN, which outputs an image region that is used in the
estimation of the initial endocardium segmentation φ0 (see Alg. 1 and Fig. 7-(a)).
The endocardium segmentation follows Alg. 1 and is represented in Fig. 7-(b). We
explain the details of the endocardial segmentation below.
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(a) ROI Detection and Initial Endocardium Segmentation

(b) Endocardium Segmentation

(c) Initial Epicardium Segmentation

(d) Epicardium Segmentation

Fig. 7 Models of the ROI detection and initial endocardium segmentation (a), final endocardium
segmentation (b), initial epicardium segmentation (c) and final epicardium segmentation (d).

3.2.1 ROI DBN Detection and Initial Endocardium Segmentation

For the ROI detection, we use the DBN model introduced in (5), with parameters
ΘROI, that produces the segmentation map yROI : Ω → [0,1]. The training set com-
prises images v and their respective ROI segmentation maps that are automatically
built from the manual endocardial border delineations cENDO by producing a seg-
mentation map with 0’s everywhere except at a square of 1’s with size MROI×MROI,
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centred at the centre of gravity of the annotation cENDO (see training samples in
Fig. 8-(b)).

(a) ROI DBN & Otsu’s segmentation (b) Training samples

Fig. 8 ROI DBN Model and Otsu’s segmentation (a) and training samples for the ROI DBN (b).

After estimating the ROI segmentation map yROI, a rough endocardial border
delineation is estimated by first applying the following function:

(vROI,mROI) = fR(yROI,v,MROI), (10)

where mROI is the centre of gravity of yROI computed as mROI =
∫

Ω
xh(yROI)dx,

with h(yROI) =
H(y∗ROI)∫

Ω H(y∗ROI)dx and H(.) denoting the Heaviside step function, and vROI

is a sub-image of size MROI×MROI extracted with vROI = v(mROI±MROI/2). Then,
Otsu’s thresholding [34] is run on the sub-image vROI, where the convex hull of the
connected component linked to the centre MROI/2 is returned as the rough endocar-
dial border delineation with yOTSU = fO(vROI), as displayed in Fig. 8-(a). Recall that
Otsu’s thresholding [34] is a segmentation method that binarizes a gray-level image
using a threshold estimated to minimise the intra-class variance of the grey values,
where the classes are defined by the pixel values above and below this threshold.
This segmentation is used to form the initial signed distance function (Alg. 1), as
follows:

φ0 = fφ (yOTSU,mROI,MROI,v), (11)

where we first create a temporary binary map ŷ : Ω →{0,1} with a map of the size
of v containing only zeros, as in ŷ = 0size(v) (the function size(i) returns the size
of the image), then we fill this map with the result from yOTSU centred at mROI,
with ŷ(mROI±MROI/2) = yOTSU(MROI/2±MROI/2). Finally, the signed distance
function φ0 is computed from ŷ with (2).

3.2.2 Endocardium Segmentation Combining DRLS and DBN

Given the initial segmentation φ0 defined in (11), we run a slightly modified version
of the segmentation method in Alg. 1. The main difference is the introduction of
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an outer loop between lines 3 and 7, inclusive, which changes the sub-image of v
that will be used as the input for the ENDO DBN, where the change is related to
the sub-image centre given by the centre of gravity of φt−1, computed with mφt−1 =∫

Ω
xh(φt−1(x))dx with h(φt−1) =

H(−φt−1)∫
Ω H(−φt−1)dx (see Fig. 7-(b)). Also the segmenta-

tion in line 6 of Alg. 1 has inputs φt−1, φENDO-DBN,q and φENDO-PRIOR,q (below, we
provide details on these last two functions), with t ∈ {1,2, ...,T} and q ∈ {ED,ES},
where the shape terms, from (3), are denoted by S (φ ,φκ) =

∫
Ω
(φ(x)− φκ(x+

mφt−1))
2dx (with κ ∈ {(ENDO-DBN,q),(ENDO-PRIOR,q)}, and q ∈ {ED,ES}).

This segmentation algorithm results in the signed distance function φ ∗ENDO,q, from
which we can compute the estimated endocardial contour from its zero level set
{x ∈ Ω |φ ∗ENDO,q(x) = 0} and endocardial binary segmentation map y∗ENDO,q =

H(−φ ∗ENDO,q).
The ENDO DBN used at this stage is the same as the one depicted in Fig. 3-

(a), where the input image is a sub-image of v of size MENDO ×MENDO cen-
tred at position mφt−1 , where this sub-image is represented by vENDO. We have
two distinct DBNs, one to segment images for q = ES phase and another for
q = ED phase of the cardiac cycle, where the training set is formed by sam-
ples {(vENDO,yENDO, i,q)s}s∈{1,...,S},i∈{1,...,Ns},q∈{ED,ES} extracted from the original
training set with fR(.), defined in (10). The segmentation from ENDO DBN pro-
duces yENDO-DBN,q from input vENDO using (5). The segmentation yENDO-DBN,q can
then be used to compute the signed distance function φENDO-DBN,q with (2). Finally,
the ENDO shape prior, represented by yENDO-PRIOR,q, is computed as defined in
(9) using the binary segmentation maps {(yENDO, i,q)s}s∈{1,...,S},i∈{1,...,Ns},q∈{ED,ES}.
Similarly, yENDO-PRIOR,q is used to calculate the signed distance function φENDO-PRIOR,q
with (2).

3.3 Epicardium Segmentation

The epicardium segmentation also follows two steps, comprising an initial segmen-
tation, which produces a square region containing the epicardium and an initial esti-
mation of its border, similarly to the approach in Sec. 3.2.1 (Fig. 7-(c)). The second
step involves an optimisation with DRLS [14], similar to the one presented above in
Sec. 3.2.2 (Fig. 7-(d)).

3.3.1 Initial Epicardium Segmentation

The epicardium segmentation process is initialised with a rough delineation based
on the endocardium detection (see Figure 7-(c)). Specifically, after the endocardium
segmentation is finalized, we estimate the borders of the epicardium segmenta-
tion by first running the Canny edge detector [35] that outputs the edges within
the sub-image vEPI-initial of size MEPI ×MEPI centred at position mEPI-initial,q =
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∫
Ω

xh(φ ∗ENDO,q(x))dx with h(φ ∗ENDO,q) =
H(−φ∗ENDO,q)∫

Ω H(−φ∗ENDO,q)dx . The edges lying in the

region where H(−φ ∗ENDO,q) equals to one (this region represents blood pool found
by the endocardium segmentation) are erased and then, by ”shooting” 20 rays (18
degrees apart from each other) from the centre mEPI-initial,q and recording the in-
tersection position between each ray and the first edge it crosses, we form a set
of points that are likely to belong to the endocardial border. At this stage, since
it is expected that the endocardial border will be relatively close to the epicardial
border, we only record the points that are within a limited range from the origi-
nal endocardial border (specifically, we expect the epicardial border to be within
1.05 and 1.1 of the length of the ray from mEPI-initial to the endocardial border;
otherwise no point is recorded - these numbers are estimated from the 95% confi-
dence interval of the distance between the endocardium and epicardium annotations
from the training set). Finally, by fitting an ellipse to these points and running a
small number of iterations of the original DRLS [14] (which is the model in (1)-(3)
with β = γ = 0), we form the initial epicardium segmentation that is represented
by a map yEPI-initial, which is then used to form the initial signed distance function
φ0 = fφ (yEPI-initial,mEPI-initial,MEPI,v), as defined in (2).

3.3.2 Epicardium Segmentation Combining DRLS and DBN

Using the initial epicardium segmentation φ0 from Sec. 3.3.1 above, we run the seg-
mentation method in Alg. 1 with the same modification explained in Sec. 3.2.2 (i.e.,
the outer loop between lines 3 and 7 that changes the sub-image of v used in the input
for the EPI DBN according to the centre of gravity mφt−1 of φt−1). The segmenta-
tion in line 6 of Alg. 1 has inputs φt−1, φEPI-DBN,q and φEPI-PRIOR,q (please see details
below on these last two functions), with t ∈ {1,2, ...,T} and q ∈ {ED,ES}, where
the shape terms, from (3), are denoted by S (φ ,φκ) =

∫
Ω
(φ(x)−φκ(x+mφt−1))

2dx
(with κ ∈ {(EPI-DBN,q),(EPI-PRIOR,q)}, and q ∈ {ED,ES}). This segmentation
algorithm results in the signed distance function φ ∗EPI,q, from which we can compute
the estimated epicardial contour from its zero level set {x ∈ Ω |φ ∗EPI,q(x) = 0} and
epicardial binary segmentation map y∗EPI,q = H(−φ ∗EPI,q).

The EPI DBN is the same as the one displayed in Fig. 3-(a), where the in-
put image is represented by vEPI, centred at mφt−1 and of size MEPI ×MEPI. We
can estimate the parameters of two DBNs for q ∈ {ED,ES} with the following
training set {(vEPI,yEPI, i,q)s}s∈{1,...,S},i∈{1,...,Ns},q∈{ED,ES} extracted from the orig-
inal training set with fR(.), defined in (10). The inference process is the same
as the one defined in (5), resulting in yEPI-DBN,q, which is used to compute the
signed distance function φEPI-DBN,q with (2). Finally, the EPI shape prior, de-
noted by yEPI-PRIOR,q, is computed from (9) using the binary segmentation maps
{(yEPI, i,q)s}s∈{1,...,S},i∈{1,...,Ns},q∈{ED,ES}. Similarly, yEPI-PRIOR,q is used to calculate
the signed distance function φEPI-PRIOR,q with (2).
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3.4 Lung Segmentation

In this section, we present our semi-automated lung segmentation method. The
annotated chest radiograph database (Fig. 2) is represented by D = {(v,c,y,q)i}|D |i=1,
where v represents an image, c denotes the explicit contour representation, y the
respective binary segmentation map, and q ∈ {left lung,right lung}.

The segmentation Algorithm 1 takes a manually provided initial segmenta-
tion φ0 and, in each iteration, uses the functions φt−1, φDBN,q and φPRIOR,q, with
t ∈ {1,2, ...,T} and q ∈ {left lung,right lung}, and the final steady solution of this
optimisation is represented by φ ∗q , from which we can compute the estimated con-
tour from the zero level set {x ∈ Ω |φ ∗q (x) = 0} and the binary segmentation map
y∗q = H(−φ ∗q ). The DBN is the one shown in Fig. 3-(b), where the resulting seg-
mentation yDBN of both lungs is divided into two separate signed distance func-
tions: φDBN,right lung for the right lung and φDBN,left lung for the left lung, where this
separation is done via connected component analysis.

4 Experiments

4.1 Data Sets and Evaluation Measures

The proposed endocardium and epicardium segmentation method is assessed
with the dataset and the evaluation introduced in the MICCAI 2009 LV segmen-
tation challenge [4]. This dataset contains 45 cardiac short axis (SAX) cine-MR,
which are divided into three sets (online, testing and training sets) of 15 sequences,
with each sequence containing four ischemic heart failures, four non-ischemic heart
failures, four LV hypertrophies and three normal cases. Each of those sequences
has been acquired during a 10-15 second breath-holds, with a temporal resolution
of 20 cardiac phases over the heart cycle, starting from the ED cardiac phase, and
containing six to 12 SAX images obtained from the atrioventricular ring to the apex
(thickness=8mm, gap=8mm, FOV=320mm× 320mm, matrix= 256× 256). Expert
annotations are provided for endocardial contours in all slices at ED and ES cardiac
phases, and for epicardial contours only at ED cardiac phase. The evaluation used
to assess the algorithms submitted to the MICCAI 2009 LV segmentation challenge
is based on the following three measures: 1) percentage of ”good” contours, 2) the
average Dice metric (ADM) of the ”good” contours, and 3) average perpendicular
distance (APD) of the ”good” contours. A segmentation is classified as good if APD
< 5mm. During the MICCAI 2009 LV Segmentation Challenge [4], the organisers
first released the training and test sets, where the training set contained the manual
annotation, but the test set did not include the manual annotation. The online dataset
only became available a few days before the challenge day, so that the participants
could submit their segmentation results for assessment. The challenge organisers
reported all segmentation results for all datasets that were available from the par-
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ticipants. Currently all three data sets with their respective expert annotations are
publicly available. Given that most of the results from the challenge participants are
available for the training and test sets, we decided to use the training set to estimate
all DBN parameters, the online set for validating some DBN parameters (e.g., num-
ber of layers and number of nodes per layer), and the test set exclusively for testing
(since this is the set which has the majority of results from the participants).

The proposed lung segmentation method is assessed with the Japanese Society
of Radiological Technology (JSRT) dataset [16], which contains 247 chest radio-
graphs with manual segmentations of lung fields, heart and clavicles [25]. Out of
these 247 chest radiographs, 154 contain lung nodules (100 malignant, 54 benign)
and 93 have no nodules, and each sample is represented by 12-bit gray scale im-
age with size 2048× 2048 pixels and 0.175mm pixel resolution. This database is
randomly split into three sets: training (84 images), validation (40 images), and test
(123 images), and the assessment is based on following three measures: Jaccard
Similarity Coefficient (Ω ), Dice Coefficient (DSC), and Average Contour Distance
(ACD) [5].

4.2 Experimental Setup

For the endocardium and epicardium segmentation, the training set is used to
model the ROI DBN, ENDO DBN and EPI DBN network (weights and biases), the
shape priors and for estimating the weights of the DRLS method (i.e., µ,λ ,α,β ,γ
in (1) and (3)); while the online set is used for the model selection of the DBNs (i.e.,
the estimation of the number of hidden layers and the number of nodes per layer for
the DBNs). For this model selection, we use the online set to estimate the number of
hidden layers (from two to four hidden layers), and the number of nodes per hidden
layer (from 100 to 2000 nodes per layer in intervals of 100 nodes). For the ROI
DBN, the estimated model is as follows: 2 hidden layers with 1300 nodes in the first
layer and 1500 in the second, and the input and segmentation layers with 40× 40
nodes (i.e., the image is resized from 256×256 to 40×40 using standard blurring
and downsampling techniques). For the ENDO DBN trained for the ED cycle, we
reach the following model: 2 hidden layers with 1000 nodes in the first layer and
1000 in the second, and the input and segmentation layers with size 40×40 nodes
(again, image is resized from MENDO×MENDO to 40× 40). The ENDO DBN for
the ES cycle has the following configuration: 2 hidden layers with 700 nodes in
the first layer and 1000 in the second, and the input and segmentation layers with
size 40× 40. The EPI DBN for the ED cycle has the following configuration: 2
hidden layers with 1000 nodes in the first layer and 1000 in the second, and the input
and segmentation layers with size 40× 40 nodes (image resized from MEPI×MEPI
to 40× 40). For training all DBN models, we augment he training set, where we
generate additional training images by translating the original training image (and
its annotation) within a range of ±10 pixels. More specifically, we have 105 ED
images and 75 ES annotated training images (from the 15 training volumes), and in
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addition to the original training image, we generate 40 additional images with the
translations mentioned above. Therefore, in total we have 105x41=4305 annotated
images for training the ED endocardial DBN and epicardial DBN, and 75x41=3075
annotated images for training the ES endocardial DBN. The segmentation accuracy
on training saturates with this augmented training data (i.e., adding more translated
training images no longer improves the training results). The level set weights in
(1) estimated with the training set for the endocardium segmentation are ∆ t = 2
(time step in the level set formulation), µ = 0.24

∆ t = 0.12,λ = 4,α = −2,β = 0.02,
and γ = 0.001; and for the epicardium segmentation, we have ∆ t = 2,µ = 0.24

∆ t =
0.12,λ = 4,α =−4,β = 0.015, and γ = 0.001. The size of the sub-windows are set
as MROI,MENDO,MEPI = 100 (note that we found that the segmentation results are
stable if MROI,MENDO,MEPI ∈ [80,120]).

For the lung segmentation, we use the training set for estimating the DBN and
DRLS parameters and the validation set for the DBN model selection (similarly as
for the ROI, ENDO and EPI DBN detailed above). This model selection estimated
the following configuration for the DBN: two hidden layers, where each hidden
layer has 1000 nodes and the input and segmentation layers have 1600 nodes. The
initial guess φ0 in Alg. 1 is manually produced, so we show how the performance of
our approach is affected by initial guesses of different accuracies, which are gener-
ated by random perturbations from the manual annotation. We denote the different
initial guesses by the index k ∈ {1,2,3}, where k = 1 indicates the highest precision
and k = 3 means the lowest precision initial guess. The estimation of the level set
parameters is performed separately for each type of initial guess, and we achieve
the following result: ∆ t = 2, µ = 0.24

∆ t = 0.12,λ = 2,α =−3,β = 0,γ = 0.0005 for
k = 1; µ = 0.12,λ = 2,α = −10,β = 0,γ = 0.003 for k = 2; and µ = 0.12,λ =
2,α =−15,β = 0,γ = 0.007 for k = 3.

Note that for the level set weights in (1), we follow the recommendation by Li et
al. [14] in defining the values for ∆ t, and µ (the recommendations are ∆ t > 1 and
µ < 0.25

∆ t ), and for the inference procedure, the number of level set (DRLS) iterations
is T = 10 (note that the segmentation results are stable if T ∈ [5,20]).

4.3 Results of Each Stage of the Proposed Methodology

The role of each stage of the proposed endocardium segmentation is presented in
Table 1. The ”Initial endocardium segmentation” shows the result produced by the
zero level set of φ0 in (11) (i.e., the result from the ROI detection, followed by the
initial endocardium segmentation). The ”ENDO DBN alone” displays the accuracy
results of the endocardium segmentation produced by the ENDO DBN (Sec. 3.2.2)
alone. The ”Model without DBN/shape prior” represents the energy functional in
(3) with β = γ = 0, which effectively represents our model without the influence
of the ENDO PRIOR and the ENDO DBN. Similarly the ”Model without DBN”
denotes the case where the functional in (3) has β = 0 (i.e., with no influence from
ENDO DBN) and the ”Model without shape prior” has γ = 0 (no influence from
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ENDO PRIOR). Finally, the ”Proposed model” displays the result with all steps
described in Sec. 3.2, and ”Proposed model (semi)” represents our model using a
manual initialisation instead of the automated initialisation described in Sec. 3.2.1.
This manual initialisation consists of a circle, where the centre is the manual anno-
tation centre of gravity and the radius is the minimum distance between the manual
annotation and this centre. The proposed epicardium segmentation is assessed in
Table 2, which shows the result of the ”initial epicardium segmentation” explained
in Sec. 3.3.1, and the result of the segmentation produced by the complete model
described in Sec. 3.3.2 (labelled as ”Proposed model”). We also show the result of
the semi-automated epicardium segmentation with manual initialisation (defined in
the same way as the manual initialisation above for the endocardium segmentation),
labelled as ”Proposed model (semi)”. Note that we do not show all steps in Table 2
because the results are similar to the initial epicardium segmentation.

Table 3 shows the results of our proposed methodology for lung segmentation
with the different types of initial guesses. In this table, we also show the results
when γ = 0, which is denoted by ”Model without DBN” (this shows the influence
of the DBN in the proposed methodology); and we also show the results for the
initial guess, represented by ”Initial guess only”.

Table 1 Quantitative experiments on the MICCAI 2009 challenge database [4] showing the influ-
ence of each step of the proposed methodology for the endocardium segmentation. Each cell is
formatted as ”mean (standard deviation) [min value - max value]”.

Method ”Good” Percentage Endocardium ADM Endocardium APD

Test set (15 sequences)

Proposed model (semi) 100(0)[100−100] 0.91(0.03)[0.83−0.95] 1.79(0.36)[1.28−2.75]

Proposed model 95.91(5.28)[84.62−100] 0.88(0.03)[0.82−0.93] 2.34(0.46)[1.62−3.24]

Model without shape prior 95.71(6.96)[78.95−100] 0.88(0.03)[0.83−0.93] 2.34(0.45)[1.67−3.14]

Model without DBN 85.89(18.00)[36.84−100] 0.84(0.04)[0.77−0.92] 2.77(0.58)[1.73−3.74]

Model without DBN/shape prior 84.49(18.31)[36.84−100] 0.84(0.04)[0.78−0.92] 2.78(0.58)[1.72−3.81]

ENDO DBN alone 18.31(19.46)[0−100] 0.87(0.02)[0.84−0.89] 3.81(0.64)[2.97−4.88]

Initial endocardium segmentation 85.18(15.83)[47.37−100] 0.85(0.04)[0.79−0.92] 2.81(0.47)[2.07−3.58]

Training set (15 sequences)

Proposed model (semi) 100(0)[100−100] 0.91(0.03)[0.85−0.95] 1.63(0.40)[1.29−2.70]

Proposed model 97.22(3.16)[91.67−100] 0.88(0.05)[0.76−0.95] 2.13(0.46)[1.27−2.73]

Model without shape prior 97.42(4.63)[83.33−100] 0.88(0.04)[0.76−0.95] 2.14(0.43)[1.28−2.63]

Model without DBN 89.42(11.83)[61.11−100] 0.85(0.06)[0.71−0.93] 2.61(0.66)[1.74−3.65]

Model without DBN/shape prior 88.11(13.84)[50.00−100] 0.84(0.06)[0.70−0.93] 2.57(0.62)[1.72−3.53]

ENDO DBN alone 48.09(38.42)[0−100] 0.86(0.05)[0.73−0.90] 3.23(0.44)[2.70−4.05]

Initial endocardium segmentation 89.61(11.57)[55.56−100] 0.85(0.06)[0.71−0.93] 2.71(0.57)[1.78−3.49]
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Table 2 Quantitative experiments on the MICCAI 2009 challenge database [4] compared different
versions of the proposed methodology for the epicardium segmentation. Each cell is formatted
as ”mean (standard deviation) [min value - max value]”.

Method ”Good” Percentage Epicardium ADM Epicardium APD

Test set (15 sequences)

Proposed model (semi) 100(0)[100−100] 0.94(0.01)[0.92−0.97] 1.73(0.28)[1.16−2.17]

Proposed model 94.65(6.18)[85.71−100] 0.93(0.02)[0.88−0.96] 2.08(0.60)[1.27−3.74]

Initial epicardium segmentation 94.65(6.18)[85.71−100] 0.93(0.02)[0.88−0.96] 2.19(0.58)[1.32−3.68]

Training set (15 sequences)

Proposed model (semi) 100.00(0.00)[100−100] 0.94(0.01)[0.91−0.96] 1.64(0.34)[1.17−2.47]

Proposed model 98.52(5.74)[77.78−100] 0.93(0.02)[0.89−0.96] 1.99(0.46)[1.35−3.13]

Initial epicardium segmentation 96.83(6.92)[77.78−100 0.93(0.02)[0.89−0.95] 1.99(0.40)[1.46−3.14]

Table 3 Quantitative experiments on the JSRT database [16] showing the performance of the pro-
posed lung segmentation method as a function of the initial guess used, where each cell is format-
ted as ”mean (standard deviation) [min value - max value]”.

Initial guess Method Ω DSC ACD

Proposed model 0.985(0.003)[0.972−0.991] 0.992(0.002)[0.986−0.996] 1.075(0.065)[0.825−1.267]

k = 1 Model without DBN 0.984(0.003)[0.969−0.990] 0.992(0.002)[0.984−0.995] 1.376(0.221)[1.234−6.184]

Initial guess only 0.955(0.006)[0.919−0.968] 0.977(0.003)[0.958−0.984] 1.392(0.006)[1.372−1.404]

Proposed model 0.973(0.007)[0.944−0.985] 0.986(0.004)[0.971−0.993] 1.120(0.165)[0.628−1.916]

k = 2 Model without DBN 0.946(0.007)[0.910−0.961] 0.972(0.004)[0.953−0.980] 2.408(0.232)[0.021−7.232]

Initial guess only 0.912(0.013)[0.844−0.935] 0.954(0.007)[0.916−0.967] 2.519(0.041)[2.369−2.621]

Proposed model 0.948(0.012)[0.893−0.970] 0.973(0.006)[0.943−0.985] 1.852(0.286)[1.120−3.708]

k = 3 Model without DBN 0.866(0.018)[0.790−0.900] 0.928(0.010)[0.883−0.947] 4.695(0.276)[3.792−9.112]

Initial guess only 0.828(0.024)[0.712−0.873] 0.906(0.014)[0.832−0.932] 4.936(0.105)[4.391−5.200]

4.4 Comparison with the State of the Art

Tables 4 and 5 shows a comparison between our methodology (labelled ”Proposed
model”) and the state of the art for the endocardium segmentation problem, while
Tables 6 and 7 displays a similar comparison for the epicardium segmentation
problem for different subsets of the MICCAI 2009 challenge databases [4]. Most
of the approaches on that table are based on active contour models [22, 18, 36, 21,
17, 37], machine learning models [19, 23], or a combination of both models [38].
Furthermore, Tables 4-7 also show a semi-automated version of our method (la-
belled ”Proposed model (semi)”) using the same initial guess described above in
Sec. 4.3. Fig. 4.4 shows a few endocardium and epicardium segmentation results
produced by our approach for challenging cases, such as with images from apical
and basal slice images and presenting papillary muscles and trabeculations.

Table 8 compares the results of our proposed lung segmentation method with
the ones produced by the current state of the art on the JSRT database. The most
competitive methods in that table [5, 25] are based on hybrid methods based on
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Table 4 Quantitative experiments on the training and test sets of the MICCAI 2009 challenge
databases [4] comparing the performance of our proposed approach with the state of the art on the
endocardium segmentation problem. Notice that the methods are classified into fully or semi-
automated. The cell formatting is the same as in Tab. 1, but note that ’?’ means that the result is
not available in the literature. The top performance for each measure and dataset is highlighted.

Method ”Good” Percentage Endocardium ADM Endocardium APD

Test set (15 sequences)

Semi Automated

Proposed model (semi) 100(0)[100−100] 0.91(0.03)[0.83−0.95] 1.79(0.36)[1.28−2.75]

[31] 96.58(9.58)[63.15−100] 0.89(0.03)[0.83−0.93] 2.22(0.46)[1.69−3.30]

[18] ? 0.89(0.04)[?−?] 2.10(0.44)[?−?]

Fully Automated

Proposed model 95.91(5.28)[84.62−100] 0.88(0.03)[0.82−0.93] 2.34(0.46)[1.62−3.24]

[21] 94.33(9.93)[62.00−100] 0.88(0.03)[0.84−0.94] 2.44(0.62)[1.36−3.68]

[23] 86.47(11.00)[68.4−100] 0.89(0.03)[0.82−0.94] 2.29(0.57)[1.67−3.93]

[17] 72.45(19.52)[42.11−100] 0.89(0.03)[0.84−0.94] 2.07(0.61)[1.32−3.77]

[37] ? 0.86(0.04)[?−?] ?

[19] ? 0.81(?)[?−?] ?

Training set (15 sequences)

Semi Automated

Proposed model (semi) 100(0)[100−100] 0.91(0.03)[0.85−0.95] 1.63(0.40)[1.29−2.70]

[31] 98.45(3.11)[91.66−100] 0.90(0.03)[0.84−0.94] 1.96(0.35)[1.43−2.55]

[18] ? 0.90(0.04)[?−?] 2.03(0.34)[?−?]

Fully Automated

Proposed model 97.22(3.16)[91.67−100] 0.88(0.05)[0.76−0.95] 2.13(0.46)[1.27−2.73]

[21] 96.93(7.59)[72−100] 0.88(0.06)[0.75−0.95] 2.09(0.53)[1.35−3.23]

a) Results of endocardium segmentation on the test set

b) Results of epicardium segmentation on the test set

Fig. 9 Epicardium and endocardium segmentation results with challenging cases, such as images
from apical and basal slice images and presenting papillary muscles and trabeculations. The red
contour denotes the automated detection, and green shows the manual annotation. For more results,
please see the supplementary material.
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Table 5 Quantitative experiments on the online and full sets of the MICCAI 2009 challenge
databases [4] comparing the performance of our proposed approach with the state of the art on the
endocardium segmentation problem. Notice that the methods are classified into fully or semi-
automated. The cell formatting is the same as in Tab. 1, but note that ’?’ means that the result is
not available in the literature. The top performance for each measure and dataset is highlighted.

Method ”Good” Percentage Endocardium ADM Endocardium APD

Online set (15 sequences)

Semi Automated

Proposed model (semi) 100(0)[100−100] 0.91(0.03)[0.85−0.96] 1.78(0.49)[1.17−3.15]

[31] 98.71(3.66)[86.66−100] 0.90(0.04)[0.83−0.95] 2.04(0.35)[1.53−2.67]

Fully Automated

Proposed model 90.54(14.40)[46.67−100] 0.89(0.03)[0.82−0.94] 2.17(0.46)[1.62−3.46]

Full set (45 sequences)

Semi Automated

Proposed model (semi) 100(0)[100−100] 0.91(0.03)[0.83−0.96] 1.73(0.31)[1.17−3.15]

[31] 97.91(6.18)[63.15−100] 0.90(0.03)[0.83−0.95] 2.08(0.40)[1.43−3.30]

[22] 91.00(8.00)[61−100] 0.89(0.04)[0.80−0.96] 1.94(0.42)[1.47−3.03]

Fully Automated

Proposed model 94.55(9.31)[46.67−100] 0.88(0.04)[0.76−0.95] 2.22(0.46)[01.27−3.46]

[22] 80.00(16.00)[29−100] 0.86(0.05)[0.72−0.94] 2.44(0.56)[1.31−4.20]

[38] 91.06(9.42)[?−?] 0.89(0.03)[?−?] 2.24(0.40)[?−?]

[36] 79.20(19.00)[?−?] 0.89(0.04)[?−?] 2.16(0.46)[?−?]

Table 6 Quantitative experiments on the training and test sets of the MICCAI 2009 challenge
databases [4] comparing the performance of our proposed approach with the state of the art on
the epicardium segmentation problem. Notice that the methods are classified into fully or semi-
automated. The cell formatting is the same as in Tab. 1, but note that ’?’ means that the result is
not available in the literature. The top performance for each measure and dataset is highlighted.

Method ”Good” Percentage Epicardium ADM Epicardium APD

Test set (15 sequences)

Semi Automated

Proposed model (semi) 100(0)[100−100] 0.94(0.01)[0.92−0.97] 1.73(0.28)[1.16−2.17]

[18] ? 0.94(0.01)[?−?] 1.95(0.34)[?−?]

Fully Automated

Proposed model 94.65(6.18)[85.71−100] 0.93(0.02)[0.88−0.96] 2.08(0.60)[1.27−3.74]

[21] 95.60(6.90)[80.00−100] 0.93(0.02)[0.90−0.96] 2.05(0.59)[1.28−3.29]

[23] 94.20(7.00)[80.00−100] 0.93(0.01)[0.90−0.96] 2.28(0.39)[1.57−2.98]

[17] 81.11(13.95)[57.14−100] 0.94(0.02)[0.90−0.97] 1.91(0.63)[1.06−3.26]

Training set (15 sequences)

Semi Automated

Proposed model (semi) 100.00(0.00)[100−100] 0.94(0.01)[0.91−0.96] 1.64(0.34)[1.17−2.47]

[18] ? 0.93(0.02)[?−?] 2.28(0.42)[?−?]

Fully Automated

Proposed model 98.52(5.74)[77.78−100] 0.93(0.02)[0.88−0.96] 1.99(0.46)[1.35−3.13]

[21] 99.07(3.61)[86.00−100] 0.93(0.01)[0.91−0.95] 1.88(0.40)[1.20−2.55]
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Table 7 Quantitative experiments on the online and full sets of the MICCAI 2009 challenge
databases [4] comparing the performance of our proposed approach with the state of the art on
the epicardium segmentation problem. Notice that the methods are classified into fully or semi-
automated. The cell formatting is the same as in Tab. 1, but note that ’?’ means that the result is
not available in the literature. The top performance for each measure and dataset is highlighted.

Method ”Good” Percentage Epicardium ADM Epicardium APD

Online set (15 sequences)

Semi Automated

Proposed model (semi) 100.00(0.00)[100−100] 0.94(0.02)[0.88−0.96] 1.90(0.53)[1.22−3.16]

Fully Automated

Proposed model 84.32(23.45)[12.50−100] 0.93(0.03)[0.84−0.95] 2.05(0.61)[1.39−3.63]

Full set (45 sequences)

Semi Automated

Proposed model (semi) 100(0)[100−100] 0.94(0.02)[0.88−0.97] 1.76(0.40)[1.16−3.16]

[22] 91.00(10.00)[70−100] 0.92(0.02)[0.84−0.95] 2.38(0.57)[1.28−3.79]

Fully Automated

Proposed model 92.49(15.31)[12.50−100] 0.93(0.02)[0.84−0.96] 2.04(0.55)[1.27−3.70]

[22] 71.00(26.00)[0−100] 0.91(0.03)[0.81−0.96] 2.80(0.71)[1.37−4.88]

[38] 91.21(8.52)[?−?] 0.94(0.02)[?−?] 2.21(0.45)[?−?]

[36] 83.90(16.80)[?−?] 0.93(0.02)[?−?] 2.22(0.43)[?−?]

Table 8 Quantitative experiments on the JSRT database [16] comparing our results with the state
of the art on the same database, sorted from best (top) to worst (bottom). The symbol ’?’ indicates
that the result is not available.

Method Ω DSC ACD

Proposed model, k = 1 0.985(0.003)[0.972−0.991] 0.992(0.002)[0.986−0.996] 1.075(0.065)[0.825−1.267]

Proposed model, k = 2 0.973(0.007)[0.944−0.985] 0.986(0.004)[0.971−0.993] 1.120(0.165)[0.628−1.916]

[5] 0.954(0.015)[?−?] 0.967(0.008)[?−?] 1.321(0.316)[?−?]

[25] 0.949(0.020)[0.818−0.978] ?(?)[?−?] 1.62(0.66)[0.95−7.72]

Proposed model, k = 3 0.948(0.012)[0.893−0.970] 0.973(0.006)[0.943−0.985] 1.852(0.286)[1.120−3.708]

[25] 0.945(0.022)[0.823−0.972] ?(?)[?−?] 1.61(0.80)[0.83−8.34]

[39] 0.940(0.053)[?−?] ?(?)[?−?] 2.46(2.06)[?−?]

[25] 0.938(0.027)[0.823−0.968] ?(?)[?−?] 3.25(2.65)[0.93−15.59]

[25] 0.934(0.037)[0.706−0.968] ?(?)[?−?] 2.08(1.40)[0.91−11.57]

[40] 0.930(?)[?−?] ?(?)[?−?] ?(?)[?−?]

[25] 0.922(0.029)[0.718−0.961] ?(?))[?−?] 2.39(1.07)[1.15−12.09]

[41] 0.907(0.033)[?−?] ?(?)[?−?] ?(?)[?−?]

MRF and appearance/shape active models. Finally, Fig. 4.4 shows a few lung seg-
mentation results using initial guess k = 2 on images of the test set.
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Fig. 10 Lung segmentation results with initial guess k = 2. The green contour shows expert anno-
tation and the red illustrates the final result.

5 Discussion and Conclusions

Table 1 clearly shows the importance of each stage of our proposed methodology for
the endocardium segmentation problem. In particular, the initial endocardium seg-
mentation is similar to the result from DRLS method [14] when the ENDO PRIOR
and ENDO DBN terms are not used (row ”Model without DBN/shape prior”). The
introduction of shape prior (see row ”Model without DBN”) provides a slightly im-
provement to the initial segmentation, but it is not a significant change; therefore
we could removed it from the framework in order to obtain small gains in terms
of efficiency (if needed). The largest gain in terms of accuracy comes from the in-
troduction of ENDO DBN (see row ”Model without shape prior”), but note that
ENDO DBN alone is not competitive, which implies that the results produced by
ENDO DBN complements well the results from DRLS. The presence of all terms
together, shows that our ”Proposed model” produces better segmentation results
than the DRLS and DBN methods. Also, notice the relative small differences be-
tween the training and testing segmentation results, which indicates good generali-
sation capabilities of our method (even with the relatively small training set of the
MICCAI 2009 challenge database [4]). Finally, by using a manual initialisation, we
obtain the best segmentation results in the field.

For the epicardium segmentation problem, Table 2 shows that the initial seg-
mentation produces a result that is close to the final segmentation produced by our
proposed model. This means that the EPI DBN provides a improvement that is not
quite significant. Also note that the use of manual initialisation shows the best result
in the field, similarly to the endocardium segmentation. Finally, one can question
the need for two separate DBN models (i.e., ENDO and EPI DBNs) given their ap-
pearance similarities. The main reason for the use of these two models lies in the
empirical evidence that they produce more accurate segmentation results, as shown
in Tab. 4-5, where the rows labelled by Proposed model (semi) show the results
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with the two separate DBNs, while the rows labelled by [31] display results using a
single classifier.

The comparison with the state of the art for the problem of endocardium segmen-
tation (Tables 4-5) and the epicardium segmentation (Tables 6-7) shows that the pro-
posed approach has the best results for the semi-automated segmentation problem.
When considering the fully automated segmentation, the results from the proposed
method is comparable to the ones by [21], which is regarded as the current state of
the art by a recent review paper by Petitjean et al. [3]. In regards to the ”Good” per-
centage measure, our approach shows better results than the other methods; whilst
in terms of ADM and ADP, our approach shows comparable results. When consid-
ering the epicardium segmentation, the results of our method are comparable to the
one by Jolly’s approach [21], but better than all others. It is important to note that
although some approaches are more accurate in terms of APD or ADM [17], they
also present low values for ”Good” percentage, which means that these methods
also produce a large number of segmentations with APD larger than 5mm, but the
few ones that survive the ”Good” percentage test are reasonably accurate. We also
note the relatively worse performance of the fully automated approach compared to
semi-automated segmentation (not only for our proposed method, but other methods
in the literature), which implies that there is still an opportunity to improve further
the accuracy of the initial endocardium and epicardium segmentations. In terms of
running time, the system developed based on the proposed methodology runs on av-
erage in 175±35 seconds for the endocardium segmentation and 119±20 seconds
for the epicardium segmentation using a non-optimised Matlab program running
on a standard computer (Intel(R) Core(TM) i5-2500k 3.30GHz CPU with 8GB
RAM), which is slower or comparable to other approaches that run between one
minute [22, 21, 23] and three minutes [38, 17].

For the lung segmentation problem, Table 3 shows that the proposed model al-
ways improve over the initial guess, but this improvement is more obvious with
poorer initial guesses (see results of ”Initial guess only” and ”Proposed mode” for
k = 3). Another important observation is that the DRLS always improve over the ini-
tial guess, and the introduction of the DBN model improves the initial DRLS result.
An obvious question is the reason for the absence of the shape prior model, and the
reason is that we did not notice any empirical improvement. The comparison with
the state of the art in Table 8 shows that with the manual initial guesses k ∈ {1,2},
our proposed approach produces the best results in the field. Additionally, using a
similar Matlab code running on the same computer introduced above, our method
runs on average in 20.68 seconds/image, which is comparable to the result by Can-
demir et al. [5], who report a running time of between 20 and 25 seconds/image
using the same input resolution and similar computer configuration.

There are several points that can be explored in order to improve the results
above. For the endocardium and epicardium segmentation, we can run the method
over the whole volume and use a 3-D shape model to constrain the search process.
We can also use a motion model to constrain the segmentation process. More com-
plex DBN models can be trained when new training sets become available. Finally,
we can decrease the running time of our approach by parallelising the segmentation
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processes since the segmentation of each slice is done independently of all others
(roughly this means that we can in principle make our approach 10 times faster).
For the lung segmentation, we plan to introduce an automated initial guess with a
method similar to the one proposed by Candemir et al. [5]. Furthermore, we plan to
extend this method to other segmentation problems.

In this chapter we have presented a methodology that combines level set method
and structured output deep belief network models. We show the functionality of the
proposed approach in two different problems: the segmentation of endocardium and
epicardium from cine MR and the segmentation of lungs from chest radiographs.
In both problems we show extensive experiments that show the functionality of our
approach, and they also show that our approach produces the current state-of-the-art
segmentation results.
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