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ABSTRACT

Computer-aided diagnosis of digital chest X-ray (CXR)
images critically depends on the automated segmentation of
the lungs, which is a challenging problem due to the pres-
ence of strong edges at the rib cage and clavicle, the lack of
a consistent lung shape among different individuals, and the
appearance of the lung apex. From recently published results
in this area, hybrid methodologies based on a combination of
different techniques (e.g., pixel classification and deformable
models) are producing the most accurate lung segmentation
results. In this paper, we propose a new methodology for lung
segmentation in CXR using a hybrid method based on a com-
bination of distance regularized level set and deep structured
inference. This combination brings together the advantages
of deep learning methods (robust training with few annotated
samples and top-down segmentation with structured inference
and learning) and level set methods (use of shape and appear-
ance priors and efficient optimization techniques). Using the
publicly available Japanese Society of Radiological Technol-
ogy (JSRT) dataset, we show that our approach produces the
most accurate lung segmentation results in the field. In par-
ticular, depending on the initialization used, our methodol-
ogy produces an average accuracy on JSTR that varies from
94.8% to 98.5%.

Index Terms— Lung segmentation, Deep learning, Level
set methods

1. INTRODUCTION
The automated segmentation of lung boundaries from digital
chest X-ray (CXR) is one of the main stages in the computer-
aided diagnosis (CAD) of lung health [1]. Lung boundaries
can be used for computing lung volume or estimating shape
irregularities [2], but it is also used as one of the stages in sev-
eral CAD systems [6]. These CAD systems are particularly
important for screening and detecting pulmonary pathologies,
but with a major focus on tuberculosis, which is the second
leading cause of death from infectious disease worldwide [3].

This work was partially supported by the Australian Research Council’s
Discovery Projects funding scheme (project DP140102794). Tuan Anh Ngo
acknowledges the support of the 322 Program - Vietnam International Edu-
cation Development, Ministry of Education and Training (VIED-MOET).

Fig. 1. Left and right lungs segmentation.

The highest incidences of these diseases occur in places of
the world with inadequate health care infrastructure, so the
deployment of such CAD systems in these places is impor-
tant because they can help local clinicians in the screening
and diagnosis processes mentioned above [1]. However, the
automated segmentation of lung boundaries is a challenging
task because of the following reasons (see Fig. 1) [1]: 1) the
edges present at the rib cage and clavicle represent a challenge
for optimization methods that can get stuck at local minima;
2) the appearance inconsistencies caused by the clavicle bone
at the lung apex also represent an issue for most optimization
approaches for the same reason above; and 3) the lack of a
consistent lung shape among different individuals is a chal-
lenge for the use of shape priors.

There has been considerable effort applied in the devel-
opment of automated lung segmentation methods [13], and
the most successful approaches are usually based on hybrid
methods that combine several techniques, such as methods
that combine landmark learning with active shape and ap-
pearance models [11,12] or graph cuts with non-rigid regis-
tration [1]. Similarly, we propose a hybrid method based on
a recent methodology that we developed for the problem of
left ventricle segmentation from magnetic resonance image
(MRI) [8], which has recently achieved the best results in the
field. The extension of this methodology to this new problem
requires some modifications to the original algorithm, but it
is interesting to note that the core steps have remained almost
unaltered, showing that this algorithm can be potentially ap-
plied to other similar problems.



The method being proposed in this paper for segment-
ing lungs from CXR images is based on the combination
of distance regularized level set (DRLS) [7] and deep struc-
tured learning and inference using a deep belief network
(DBN) [5]. Essentially, we use the DRLS [7] optimization
with the usual shape and appearance terms, but with an ad-
ditional term based on the top-down segmentation produced
by a deep structured inference. This combination aims at
exploring the advantages of both approaches, which are the
efficient optimization and the prior shape and appearance
terms from DRLS, and the robust statistical segmentation
models produced by deep learning methods. We test our
approach using the Japanese Society of Radiological Tech-
nology (JSRT) dataset, and our results show that, depending
on the initialization used, our methodology can produce an
average accuracy on JSTR that varies from 94.8% to 98.5%,
which is significantly better than the current best approach in
the field [1] (that reported an accuracy of 95.4%).

2. METHODOLOGY

In this section, assume that the annotated chest radiograph
database is represented by D = {(I, c, q)i}|D|i=1, where I :
Ω → R represents an image (with Ω ⊆ R2 denoting the im-
age lattice), q ∈ {left lung,right lung} and c : [0, 1] → Ω de-
notes the explicit contour representation of the segmentation.
Also assume that the implicit contour representation is the
zero level set of a signed distance function φ : Ω → R, and
the lung segmentation map is represented by y : Ω→ {0, 1},
where 1 represents the foreground (i.e., left or right lung) and
0 denotes the background. Below, we first explain the DRLS
method, then we describe the DBN segmentation model, and
finally explain the combined inference algorithm.

The main optimization method for producing the segmen-
tation is based on the DRLS formulation [7], where the energy
functional is represented by:

E(φ, φDBN,q) = µRp(φ) + Eext(φ, φDBN,q), (1)

with the distance regularization Rp(φ) =
∫

Ω
0.5(|∇φ| −

1)2dx (this guarantees that |∇φ| ≈ 1), and

Eext(φ, φDBN,q) = λL(φ) + αA(φ) + γS(φ, φDBN,q), (2)

where the length term L(φ) =
∫

Ω
gδ(φ)|∇φ|dx (with δ(.)

denoting the Dirac delta function and g = 1
1+|∇Gσ∗I| rep-

resenting the edge indicator function), the area A(φ) =∫
Ω
gH(−φ)dx (with H(.) denoting the Heaviside step func-

tion), and S(φ, φDBN,q) =
∫

Ω
(φ− φDBN,q)

2dx represents the
shape term that drives the φ towards the shape φDBN,q , which
is the distance function inferred from the deep belief network
(DBN) structured inference described below (see Fig. 2-(a)).
The minimization of the energy functional in (1) is achieved
by finding the steady solution of the gradient flow equation
∂φ
∂t = −∂E∂φ [7].

(a) DBN model (b) Training samples

Fig. 2. DBN Model (a) and training samples for the DBN (b).

The DBN structured inference produces the following
segmentation map (Fig, 2-(a)):

y∗DBN,q = arg max
y

∑
h1

...
∑
hK

P (v,h1, ...,hK ,y; Θq), (3)

where hk ∈ {0, 1}|hk| represents the |hk| hidden nodes of
layer k ∈ {1, ..,K} of the deep belief network, v is a vector
representation of the input image I , and Θq denotes the DBN
parameters (weights and biases). The probability term in (3)
is computed as

P (v,h1, ...,hK ,y) =P (hK ,hK−1,y)(
K−2∏
k=1

P (hk+1|hk)

)
P (h1|v),

(4)

where − logP (hK ,hK−1,y) ∝ ERBM(hK ,hK−1,y) with

ERBM(hK ,hK−1,y) =− b>KhK − a>K−1hK−1 − a>y y−
(hK)>WKhK−1 − (hK)>Wyy

(5)

representing the energy function of a restricted Boltzmann
machine (RBM) [5], where bK ,aK−1,ay denote the bias
vectors and WK ,Wy are the weight matrices. Also in (4),
we have

P (hk+1|hk) =
∏
j

P (hk+1(j) = 1|hk), (6)

with P (hk+1(j) = 1|hk) = σ(bk+1(j) + h>kWk+1(:, j)),

P (h1(j) = 1|v) = σ(b1(j) + v>W1(:,j)
σ2 ) 1, where σ(x) =

1
1+e−x , the operator (j) returns the jth vector value, and (:, j)

returns the jth matrix column.
The DBN in (3) is trained with a dataset containing train-

ing image I and respective segmentation map y, as shown in
Fig. 2-(b). The training process is based on the unsupervised
bottom-up training of each pair of layers, where the weights

1That is, we assume zero-mean Gaussian visible units for the DBN.



and biases of the network are learned to build an auto-encoder
for the values at the bottom layer, and a top RBM is trained
with the segmentation map y [5]. The structured inference
process consists of taking the input image and performing
bottom-up inferences, until reaching the top two layers, which
form an RBM, and then initialize the layer y = 0 and perform
Gibbs sampling on the layers hK and hK−1, y until conver-
gence [5].

The combination of DRLS and DBN is explained in the
Alg. 1, where essentially, we iteratively run the DRLS
method until convergence using the segmentation result from
the DBN as one of the optimization terms.

Algorithm 1 Combined Level Set and DBN Segmentation
• INPUT: test image I and initial segmentation φ0

• Infer y∗
DBN,q from I using (3) for q ∈ {left lung,right lung}

• Compute distance function φDBN,q from map y∗
DBN,q (Fig. 2-(a))

for t = 1:T do
• Run DRLS using φt−1, φDBN,q to produce φt

end for
• Segmentation is the zero level set C = {x ∈ Ω|φT (x) = 0}

3. EXPERIMENTS

The evaluation of the accuracy of our methodology uses the
publicly available Japanese Society of Radiological Tech-
nology (JSRT) dataset [10], which contains manual segmen-
tations of lung fields, heart and clavicles [12]. The JSRT
database contains 247 chest radiographs, where 154 contain
lung nodules (100 malignant, 54 benign) and 93 have no
nodules, and each sample is represented by 12-bit gray scale
image with size 2048 × 2048 pixels and 0.175mm pixel
resolution. This database is randomly split into three sets:
training (84 images), validation (40 images) , and test (123
images), and the assessment is based on following three mea-
sures: Jaccard Similarity Coefficient (Ω), Dice’s Coefficient
(DSC), and Average Contour Distance (ACD) [1]. We use the
training set for the estimation of the DBN and DRLS param-
eters and the validation set for the DBN model selection (e.g.
select the number of layers and number of nodes per layer in
the network). The model selection estimated the following
configuration for DBN: each hidden layer has 1000 nodes,
with the input and segmentation layers with 1600 nodes. The
initial guess φ0 in Alg. 1 used by our approach is not auto-
matically produced, so we show how the performance of our
approach is affected by initial guesses of different accuracies,
which are generated by random perturbations from the man-
ual annotation. We denote the different initial guesses by the
index k ∈ {1, 2, 3}, where k = 1 indicates the highest preci-
sion and k = 3 means the lowest precision initial guess. The
estimation of the level set parameters is performed separately
for each type of initial guess, and we achieve the following
result: µ = 0.12, λ = 2, α = −3, γ = 0.0005 for k = 1;
µ = 0.12, λ = 2, α = −10, γ = 0.003 for k = 2; and

Fig. 3. Lung segmentation results with initial guess k = 2.
The green contour shows expert annotation and the red illus-
trates the final result.

µ = 0.12, λ = 2, α = −15, γ = 0.007 for k = 3.

3.1. Results
Table 1 shows the results of our proposed methodology for
lung segmentation with the different types of initial guesses.
In this table, we also show the results when γ = 0, which is
denoted by ”Model without DBN” (this shows the influence
of the DBN in the proposed methodology); and we also show
the results for the initial guess, represented by ”Initial guess
only”. Table 2 compares our results with the ones produced
by the current state of the art on the JSRT database. Finally,
Fig. 3.1 shows a few lung segmentation results using initial
guess k = 2 on images of the test set. Using a standard com-
puter (Intel(R) Core(TM) i5-2500k 3.30GHz CPU with 8GB
RAM), and processing an input image with size 256×256 pix-
els, our method runs on average in 20.68 sec/image, which is
comparable to the result by Candemir et al. [1], who report a
running time of between 20 and 25 sec/image using the same
input resolution and similar computer configuration.

4. DISCUSSIONS AND CONCLUSIONS
The results show that our proposed method using the initial
guesses k ∈ {1, 2} produces the best results in the field and
comparable running times to the current state of the art. The
main step that is missing from our approach is an automated
initial guess, and we plan to address this issue by using the
initial guess proposed by Candemir et al. [1]. We also plan to
extend this method to other lung segmentation databases [1]
and other segmentation problems (i.e., other anatomies) from
different imaging techniques.
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