
Flexible Spatial Configuration of
Local Image Features

Gustavo Carneiro and Allan D. Jepson, Member, IEEE Computer Society

Abstract—Local image features have been designed to be informative and repeatable under rigid transformations and illumination

deformations. Even though current state-of-the-art local image features present a high degree of repeatability, their local appearance

alone usually does not bring enough discriminative power to support a reliable matching, resulting in a relatively high number of

mismatches in the correspondence set formed during the data association procedure. As a result, geometric filters, commonly based

on global spatial configuration, have been used to reduce this number of mismatches. However, this approach presents a trade-off

between the effectiveness to reject mismatches and the robustness to nonrigid deformations. In this paper, we propose two geometric

filters, based on a semilocal spatial configuration of local features, that are designed to be robust to nonrigid deformations and to rigid

transformations, without compromising its efficacy to reject mismatches. We compare our methods to the Hough transform, which is an

efficient and effective mismatch rejection step based on the global spatial configuration of features. In these comparisons, our methods

are shown to be more effective in the task of rejecting mismatches for rigid transformations and nonrigid deformations at comparable

time complexity figures. Finally, we demonstrate how we can integrate these methods in a probabilistic recognition system such that

the final verification step uses not only the similarity between features but also their semilocal configuration.

Index Terms—Local image feature, feature clustering, visual object recognition, wide baseline matching, long-range matching.

Ç

1 INTRODUCTION

THE field of computer vision has experienced an increasing
interest in the use of local image features for the tasks of

object recognition [25], image matching [33], object discovery
and recognition [38], and so forth. When compared to image
representations based on a large spatial support [29], local
feature representations (based on a small spatial support)
trade a poorer distinctiveness for a better robustness to
brightness deformations and rigid transformations. There-
fore, the search for similar features between the local features
extracted from a test image and the features in the model
database typically returns a correspondence set with a high
percentage of mismatches. The rejection of mismatches from
this correspondence set is therefore one of the central issues in
local-feature-based methods for recognition.

The rejectionof mismatches is typically basedonthe spatial
configuration of the model features. The global spatial
configuration (for example, [16], [23], [25], [32], [39], and
[43]) assumes that all model features suffered a rigid
transformation. Usually, the more strict this assumption of
global transform is, the more effective the method is to reject
mismatches. As this assumption is relaxed, the method
becomes more robust to nonrigid deformations but allows
more mismatches in the correspondence set. A more flexible
scheme was introduced by Berg et al. [5], which alleviates this

problem by allowing some flexibility to the initial rigid model
through the use of thin plate splines, but the trade-off
mentioned above is still present. A method specifically
designedto be robust to nonrigid deformationswaspresented
by Ferrari et al. [17], where the authors propose an algorithm
consisting of several steps of expansion and contraction of the
correspondence set that slowly rejects mismatches and
increases the number of correct correspondences. The main
issue with the latter method is the high computational
complexity of the whole algorithm. A method for real-time
tracking of nonrigid surfaces is proposed by Pilet et al. [30],
where the method is based on deformable 2D meshes and the
use of robust estimators. This system produces impressive
nonrigid matching results at relatively high frame rates
(10 fps),but the mainproblemwith themethod is the difficulty
in matching highly deformable objects because of issues
involved in the minimizationof the surface energyterm.Here,
we propose two efficient methods to reject mismatches that
are designed to be robust to nonrigid deformations, but for
which the rejection of mismatches from the correspondence
set is less affected. Specifically, the following methods are
considered: 1) the introduction of an intermediate grouping
step using pairwise geometric relations [9] and 2) the
improvement of the distinctiveness of the local feature using
semilocalgeometric information [10]. We also proposea novel
probabilistic verification method based on feature similarity
and semilocal geometric relations. This verification method
can be combined with either mismatch rejection methods 1 or
2 above to increase the proportion of correct matches in the
correspondence set and also to verify the correctness of the
semilocal geometric configuration of the features.

We present a comparison between both mismatch
rejection methods and Hough clustering, which is a
common method to reject mismatches based on the global
spatial configuration. The results show that both methods
lead to correspondence sets with a higher proportion of
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correct matches than Hough clustering for both rigid
transformations and nonrigid deformations. We also show
that our methods present a comparable time complexity
when compared to Hough clustering for typical image
matching tasks. The probabilistic verification method that
uses semilocal geometric relations is shown to increase the
ratio of correct matches in the final correspondence set,
without increasing the total time complexity for rejecting
mismatches. Finally, we show how these methods can be
combined in a recognition system, where we show results
on wide baseline stereo and long-range matching problems.

2 LITERATURE REVIEW

Systems that exploit pairwise relations to reject mismatches
can be traced back to [3], [7], [24]. In [27], [45], pairwise
relations were used to disambiguate matches, but both papers
rely on a verification stage that is based on a global
transformation, which is not suitable to handle nonrigid
deformations. Yu et al. [44] exploit pairwise relations of parts,
but compared to our approach, their method can work with 5
to 10 parts only, whereas our method can handle hundreds of
parts. The use of graphs is exploited by Dickinson et al. [14],
[36], [37], where objects are represented as a hierarchical
graph and the matching process takes into account the graph
structure, the (semi) local features, and their global spatial
arrangements. Huet and Hancock [22] introduce an approach
where the features are based only on pairwise geometric
relations between lines in a structural representation of
objects and impressive recognition results are obtained,
showing that pairwise relations alone can represent a
powerful indexing feature. Even though the use of pairwise
relations is generally associated with mismatch rejection
methods, they can also be exploited in the verification stage,
as implemented by Agarwal and Roth [1].

The use of semilocal information to enhance the discrimi-
nating power of local features has also been exploited in the
literature. The most relevant work for our approach was
presented by Schmid and Mohr [34], [35], where a fixed
number of local features around a given feature are used to
determine its semilocal structure. Also, a method similar to
ours has been recently proposed by Mortensen et al. [28]. A
slightly different approach to eliminate mismatches is
proposed by Schaffalitzky and Zisserman [33], where a
neighborhood consensus, formed by a fixed number of
features, is imposed to reject mismatches. Semilocal con-
straints are also used by Tuytelaars and Van Gool [42], where
an iterative method rejects mismatches based on homogra-
phies between matches of semilocal features. Tell and
Carlsson [40] introduce a semilocal feature formed by a
group of ordered local features, which improves the dis-
criminating power of the feature, but even though an optimal
algorithm is used to avoid all possible combinations of
neighboring local features, the method is still prohibitively
complex. Parts and a union of parts are exploited by Huang
et al. [12], where the parts are described as polynomial
surfaces. This approach represents both semilocal and global
features, since the union of parts can represent the whole
object, but articulated objects are not handled properly, given
that the relations are assumed to be fixed between the parts.
The use of pairwise relations to form a feature vector is also
successfully used by Belongie et al. [4], where the authors
propose the semilocal feature shape context. The method

proposed by Amit and Geman [2] learns groups of a fixed
number of local features (thus forming semilocal features) for
recognition. Finally, Chum et al. [13] show that the use of
three point correspondences (or regions) within a RAndom
SAmple Consensus (RANSAC) loop to estimate the F matrix
speeds up the estimation of the epipolar geometry and allows
for a higher robustness to mismatches.

The novelty of our approaches lies in the use of the
semilocal configuration of features for rejecting mismatches
and verifying hypotheses, which means that we never rely on
the global configuration of local features. Both mismatch
rejection methods proposed here build the semilocal config-
uration by using all of the image features (as opposed to a
fixed number of features) in a tunable neighborhood (the size of
this neighborhood is a user-defined parameter). Moreover,
the feature and semilocal similarity functions are combined in
the verification step by using probabilistic measures, thus
avoiding the hard task of determining a reasonable similarity
function involving these rather distinct similarity functions.
Also, our methods are capable of handling correspondence
sets containing thousands of pairings efficiently. Finally,
similarly to [45], our approach weights the importance of a
semilocal geometrical correspondence by its scale-invariant
pairwise distance, meaning that nearby features are more
likely to preserve such similarities than far away features.

3 LOCAL IMAGE FEATURES

A local feature is represented by a geometric characteriza-
tion of an image region plus a descriptor of the image
function (photometry) of this region. More specifically, a
local feature vector is described as f l ¼ ½ml;xl; �l; �l;vl�,
where ml is the model identification, xl is the spatial
position of the feature, �l represents the dominant orienta-
tion at position xl, �l denotes the feature scale, and vl is the
vector with the photometric values. The database of the
model features extracted from a model image Im is then
denoted as Om ¼ OðIm;�oÞ ¼ ff ljxl 2 IðIm;�oÞg, where
�o ¼ ð2

k
4Þ, with k ¼ 0; . . . ; 12 representing the set of scales

at which the image Im was processed and the set of interest
points IðIm;�oÞ is defined as the set of positions in image
Im selected at each scale in �o as interest points. Specifically,
in this work, we study the local phase feature [8] and the
scale-invariant feature transform (SIFT) feature [25]. The
local phase feature is computed from the responses of the
second derivative of a Gaussian and its Hilbert transform
[19], which form a local complex representation that can be
denoted by amplitude and phase. The interest points for the
local phase feature are based on the multiscale Harris
corner points [20], where the points presenting phase
singularities [18] are filtered out [8]. The SIFT features [25]
are computed using histograms of gradient values at
several scales and the interest points are locations at the
maxima and minima of a difference of Gaussian (DOG)
function applied in scale space. Note that other types of
local image features containing appearance and geometric
information could also have been used in this work.

3.1 Correspondence Set

A correspondence set represents a data association between
the set of model features Om and a set of features Ot
extracted from test image It. This set is denoted by
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Nmt¼ fðf l;~flÞj~fl 2 Ot; f l 2 Kð~fl;Om; �N Þ; sfðf l;~flÞ > �sg; ð1Þ

where the similarity function sfð:Þ 2 ½0; 1� represents the
similarity between two features (sfð:Þ � 1 means high
similarity) and Kð:Þ is the set of the top-�N correspondences
between the test image feature ~fl 2 Ot and the database of
model features Om in terms of the similarity function.

4 METHODS TO REJECT MISMATCHES

In this section, we present our methods to reject mismatches
from a correspondence set, where the key idea exploited is
the use of semilocal constraints. In Section 4.1, we describe

the grouping method based on pairwise relations between
local image features and, in Section 4.2, we introduce our
semilocal image feature.

4.1 Grouping Based on Pairwise Relations

One way of rejecting mismatches from the correspondence
set is through a grouping stage. Typical grouping ap-

proaches for local features (for example, the Hough trans-
form [25] and RANSAC [41]) rely on the global spatial
configuration of features. Generally, these methods have
become popular due to their efficiency and reasonably good
performance for rejecting mismatches. However, a common

property present in these approaches is the trade-off
between the efficacy to reject mismatches and the robust-
ness to large deviations from the chosen class of transfor-
mations. Since the class of transformations is usually
globally rigid (for example, similarity or affine), any type
of nonrigid deformation would cause these methods to

reject correct matches and to break large sets of appropriate
matches into several small-sized groups.

We propose a new grouping approach that aims at fixing
these problems, with a time complexity comparable to the
methods based on the global spatial configuration. Specifi-

cally, our grouping algorithm is designed to be robust to a
broader class of deformations, which aims at reducing the
number of groups, where each group has a higher percentage
of correct matches and a higher number of correspondences.
Our approach involves a connected component analysis

(CCA) on an affinity matrix based on the pairwise relations.

4.1.1 Pairwise Relations

The pairwise geometric relations are composed of three

measures between pairs of model features f l; fo 2 Om:

scale distance heading

Sðf l ;f oÞ¼
ð�l��oÞffiffiffiffiffiffiffiffi
�2
l
þ�2

o

p Dðf l ;f oÞ¼
kxl�xokffiffiffiffiffiffiffiffi
�2
l
þ�2

o

p Hðf l ;foÞ¼��ð�l�#loÞ; ð2Þ

where �k is the scale of image feature fk, xk is the image
position of fk;��ð:Þ 2 ð��;þ�� denotes the principal angle,

�k is the main orientation of feature fk for k ¼ l; o, and
#lo ¼ tan�1ðxl � xoÞ. The heading measurement considers
the main orientation �l of feature vector f l relative to the
displacement between xl and xo.

We can build the same pairwise relations between test

image features ~fl;~fo 2 Ot such that ðf l;~flÞ; ðfo;~foÞ 2 Nmt (1),
thus forming Sð~fl;~foÞ, Dð~fl;~foÞ, and Hð~fl;~foÞ. The pairwise
semilocal spatial similarity is then based on

scale �SloðNmtÞ ¼ Sðf l; foÞ � Sð~fl;~foÞ
distance �DloðNmtÞ ¼ Dðf l; f oÞ � Dð~fl;~foÞ
heading �HloðNmtÞ ¼ Hðf l; foÞ � Hð~fl;~foÞ:

ð3Þ

We define the similarity weight of the connection between
~fl;~fo 2 Ot in the test image based on the connection of their
respective correspondences in the model f l; fo 2 Om as
follows:

Aðl; oÞ ¼

�mlmo
�lo;gg �DloðNmtÞ;�HloðNmtÞ;�SloðNmtÞ½ �T ; ��

� �
;
ð4Þ

where ml is the model index of feature f l matched to
deformed feature ~fl and, similarly, for mo, and �ml;mo

¼ 1 if
ml ¼ mo and 0 otherwise. Also, the pairwise weight �lo;g is
defined as

�lo;g ¼ e
�0:5

D2ðf l ;foÞ
�2
�;g ;

where ��;g ¼ DM

Lpair
, with Lpair being a tuning variable, and DM

is the maximum model diameter in pixels. Finally, gð:Þ is the
zero-mean unnormalized Gaussian function defined as
gðv; �Þ ¼ e�vT��1v=2, where the covariance matrix �� is
a 3� 3 diagonal matrix with distance, scale, and heading
variances, namely, �2

d, �
2
h, and �2

s , respectively, such that �2
h

and �2
s are predefined constants, and �2

d ¼ minð�dist;
maxðpdistDðf l; foÞ; 0:1ÞÞ depends on the scaled original dis-
tance between model features f l; f o 2 Om (that is, points that
are far from each other in the model have a proportionally
larger standard error for their relative distances).

4.1.2 Grouping Algorithm

Given the correspondences Nmt (1) between the database of
model features Om and the set of test image features Ot, we
proceed as follows:

1. Build the affinity matrix based on the pairwise
similarity measuresAðl; oÞ (see (4) and Step 1 in Fig. 1).

2. Perform a CCA. The strategy here is to select a weak
threshold �CCA and connect every pair of points l and
o for which Aðl; oÞ � �CCA, thus forming G connected
clusters represented by the submatrix Ag. We have
then the subgroup of correspondences LgðNmtÞ �
Nmt composed of the features grouped in Ag. Note
that a specific cluster of correspondences can only
belong to a single model Om due to the term �ml;mo

in
(4) (see Step 2 in Fig. 1).

The complexity of this grouping algorithm is OðjNmtj2Þ,
where jNmtj denotes the size of the correspondence set.
Thus, a good strategy to keep the complexity of this
algorithm manageable is to set �s at a high value and �N at a
low value in (1) so that jNmtj is reasonably small.

4.2 Semilocal Image Features

An intuitive method to improve the disambiguating power of
local features is to group them in some predefined manner
and use these groups as indexes to the model database [14].
Although several cues for clustering visual features have
been proposed in [6], [24], we only exploit local feature
proximity in this work. More specifically, we propose a
method to verify the correctness of a given correspondence by
using a variation of the shape context descriptor [4].
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4.2.1 Variation of Shape Context

The shape context feature proposed in [4] is based on a log-
polar space histogram, as shown in Fig. 2. Although shown to
be useful in some recognition tasks, this image feature
presents a few weaknesses in terms of robustness, which

needed to be addressed in order to improve the discriminat-
ing power of typical local features. Assuming that we are
augmenting the feature f l and that f o is a neighboring feature,

the modifications made to the original shape context are listed
as follows:

1. The robustness to nonrigid deformations is improved
by weighting a vote in a specific histogram bin by

wðf l; foÞ ¼ e
�0:5D2ðf l ;foÞ

L2 ; ð5Þ

where Dðf l; foÞ is defined in (2), and L ¼ DM

Lsc
, with

Lsc being a tuning variable, and DM is the maximum

model diameter in pixels (in Fig. 2, darker cells in the

histogram represent higher weight).
2. In order to reduce the boundary effects in the

histogram, each neighboring feature votes for the
two closest bins in each dimension (see in Fig. 2 that
each vote spans four bins).

3. We make the shape context robust to rotation
changes by rotating the histogram axis according
to the main orientation of the feature.

4. The distance measures are scaled as in (2) in order to
make them robust to scale changes.

The shape context similarity is computed using the

X 2ðhðf lÞ; hð~flÞÞ test statistic defined in [4] as follows:

shðhðf lÞ; hð~flÞÞ ¼ 1� X2ðhðf lÞ; hð~flÞÞ

¼ 1� 1

2

XK
k¼1

½hkðf lÞ � hkð~flÞ�2

hkðf lÞ þ hkð~flÞ
2 ½0; 1�; ð6Þ

where hðf lÞ and hð~flÞ are theK-bin normalized histograms of
features f l and~fl, respectively. Therefore, given an initial set of
correspondences Nmt (1) built using a feature similarity
function sfð:Þ, we select the features belonging to a common
model that also have shape context similarity above some
value �c. This forms G groups LgðNmtÞ ¼ fðf l;~flÞjðf l;~flÞ 2
Nmt; shðhðf lÞ; hð~flÞÞ > �cg, where 8ðf l;~flÞ; ðfo;~foÞ 2 LgðNmtÞ,
ml ¼ mo (that is, feature correspondences belonging to the
same groupLgðNmtÞmust belong to the same model). Hence,SG
g¼1 LgðNmtÞ � Nmt. Note that this system is able to detect

only one instance per model stored in the database, so the
maximum number of groups formed equals the number of
models stored in the database.

The performance improvement of this new semilocal
feature is assessed using the quantitative evaluation, as
described in Appendix A, which can be found at http://
computer.org/tpami/archives.htm. For these comparisons,
we use the local phase features where the similarity function
is denoted by (see [8] for details)

sfðf l;~flÞ ¼
jvl � ~v	l j

1þ jvljj~vlj
; ð7Þ

where vk is a complex-valued vector, v	k represents its
complex conjugate for k ¼ l, l, and � denotes dot product.
We also use SIFT [25], where the similarity function is
sfðf l;~flÞ ¼ 1

kvl�~vlk . Finally, Lsc ¼ 100 in (5).

We generate the receiver operating characteristic (ROC)
curves by varying the feature similarity threshold �s and then
evaluating the true positive (TP) and false positive (FP) by
using the threshold values �c 2 f0; 0:65; 0:75; 0:8; 0:9g for the
shape context similarity function such that shðhðf lÞ; hð~flÞÞ >
�c (see (6)). Notice that when �c ¼ 0, we are not using the shape
context.

Fig. 3 shows the TP rates for an FP rate of 0.1 percent for the
image deformations d 2 DF described in Appendix B, which
can be found at http://computer.org/tpami/archives.htm.
Note that the size of the error bars in the graphs is large due
to a combination of two things: 1) a small number of
descriptors present in some of the test images (especially for
the SIFT descriptor) and 2) a large number of cases where the
TP rate is zero for an FP rate ¼ 0:1 percent. The correct
matches and mismatches that are rejected from the corre-
spondence set as �c increases (with FP ¼ 0:1 percent) are
shown in Fig. 4. The correct match rejection is computed as

Ninð0Þ �Ninð�cÞ
Ninð0Þ

;
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Fig. 1. Grouping based on pairwise relations. The data association
consists of the matching model and test features based solely on the
similarity of their feature values (see Section 3.1). Step 1 builds the
pairwise similarity matrix, as described in Section 4.1.1 and Step 2
comprises the clustering algorithm based on CCA, as defined in
Section 4.1.2. Notice that correspondences 1-5 are semilocally
connected, whereas correspondence 6 is not. Therefore, two clusters
are formed.

Fig. 2. Shape context of local feature f 1. As in [4], we also use five bins

for log(distance) and 12 bins for relative orientation. Note that we modify

the original shape context method, as explained in Section 4.2.1.



where Ninð�cÞ is the number of correct matches (see the
computation of the TP rate above) for a given �c, whereas
the mismatches rejection is calculated as

ðNtotð0Þ �Ninð0ÞÞ � ðNtotð�cÞ �Ninð�cÞÞ
ðNtotð0Þ �Ninð0ÞÞ

;

where Ntotð�cÞ is the total number of features in the
correspondence set for a given �c. From these curves, it is
clear that the use of shape context rejects many mismatches
while keeping most of the correct matches in the correspon-
dence set. It is interesting to notice in Figs. 3 and 4 that the use
of shape context is more effective to remove mismatches in
the correspondence sets of SIFT features than in the sets of
local phase features. A possible reason for this is the
combination of a relatively smaller number of SIFT features
detected in an image and the robustness of the interest point
detector DOG to the image deformations studied. It can also
be seen in Fig. 3 that the local phase feature alone performs
better than SIFT. This happens not only because the local
phase information is robust to geometric transformations and
brightness variations [18] but also because the relatively
higher number of local phase descriptors per image (com-
pared to the number of SIFT descriptors) increases the
chances of a successful match in the deformed test image.

Similar to the pairwise clustering, the time complexity to
build the semilocal feature is OðjNmtj2Þ, where jNmtj

denotes the size of the correspondence set. Again, a good
strategy to keep the complexity of this algorithm manage-
able is to set �s at a relatively high value and �N at a low
value in (1) so that jNmtj is reasonably low.

4.3 Performance Evaluation

A comparison between our mismatch rejection methods
described above and the generalized the Hough transform is
provided next. The reason for comparing our methods
against the Hough transform resides in its attractive proper-
ties, which include 1) low time complexity, 2) reasonably high
accuracy, and 3) wide availability and acceptance. We intend
to show that our methods prune the initial correspondence set
more accurately than the Hough transform, generating
groups with a higher rate of correct matches in terms of not
only nonrigid but also rigid transformations. We also
illustrate that the efficiency of our method is comparable to
the one presented by the Hough transform for typical
matching problems.

In the experiments below, we used the phase-based local
feature for the model representation, with the feature
similarity defined by (7). For the pairwise clustering scheme,
we assumed the following values for the constants in (4): the
standard deviation of heading, scale, and distance are,
respectively, �2

h ¼ 0:2, �2
s ¼ 0:2, �2

d ¼ minð�dist;maxðpdistD
ðf l; f oÞ; 0:1ÞÞ, with �dist ¼ 2 and pdist ¼ 0:2, and Lpair ¼ 5 for
the computation of pairwise weight (4). In order to generate
the graphs below, we vary the parameter �CCA ¼ k=10 for
k ¼ f1; 2; � � � ; 9g, which is the threshold for the CCA algo-
rithm described in Section 4.1. For the semilocal feature, the
parameter Lsc ¼ 100 is used in the computation of (5). We
vary the threshold for the shape context similarity between
corresponding features in order to generate the graphs by
using �c ¼ k=10 for k ¼ f4; 4:5; 5; . . . ; 9g. Therefore, this
mismatch rejection method discards any correspondence
ðf l;~flÞ 2 N t that shðhðf lÞ; hð~flÞÞ < �c (see (6)).

The Hough clustering algorithm builds a transform space
(for example, similarity or affine), and using each element of
Nmt in (1) as a point in this space, it finds groups of points that
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Fig. 3. The TP rate curves in terms of the image deformations d 2 DF are obtained by holding the FP rate at 0.1 percent in the ROC curves
generated by the evaluation experiment in Appendix A, which can be found at http://computer.org/tpami/archives.htm. Black curves are the phase
local feature [8] without shape context (solid), with shape context such that �c ¼ 0:65 (dashed), and �c ¼ 0:8 (dotted). The gray curve shows the
performance of SIFT [25] without shape context (solid), with shape context such that �c ¼ 0:65 (dashed), and �c ¼ 0:8 (dotted). Note that the error
bars are omitted for the dashed and dotted curves for clarity but are of roughly the same size as the ones that we show.

Fig. 4. Correct match and mismatch rejection ratios for our local phase
feature and SIFT [25] by using shape context to reject mismatches.



move coherently according to the transformation being
modeled. For the experiments in this section, we use a space
of similarity transform in the Hough clustering algorithm
with the following bin sizes for translation: {0.3, 0.15, 0.05}
times DM (that is, the maximum model diameter). For
rotation, the bin sizes studied are {30, 15, 5} degrees. The bin
sizes above are varied in order to produce the results for the
experiments in the next section. We did not vary the scale bin
sizes since the examples considered do not present much
variability in terms of scale. Instead, the histogram for scale
changes has the following fixed bin values: [0.125, 0.25, 0.5, 1,
2, 4, 8, 16]. Finally, each hypothesis is hashed into the two
closest bins in each dimension in order to reduce the
boundary effects. Also, in order to avoid a high number of
groups, we run a nonmaximum suppression when searching
for the local maxima in this space. Note that the complexity of
the Hough transform is simply the number of bins in this
transformation space.

4.3.1 Rigid Transformation

In order to show the effectiveness of our approaches with
respect to rigid transformation, we consider the wide baseline
matching problem. Using the set provided by each mismatch
rejection method, we compute the F matrix as presented in
[21] by using RANSAC [41]. We are interested in computing
the proportion of inliers, given the size of this set. An inlier is
considered to be a feature that lies within four pixels
(approximately, the spatial resolution of the local features
used) of the epipolar lines computed from the F matrix. For
this experiment, we used two sequences available from
Oxford’s Visual Geometry Group’s Web page, namely,
Wadham and Merton College sequences (see Figs. 19 and
20). In Fig. 5, we present the graphs of each matching. Note
that the proportion of inliers for the correspondence sets of

the same size is, for the cases studied, always higher for our
methods than for Hough. These results show that for the
correspondence sets containing on the order of 1,000 matches,
there are around 90 percent to 95 percent of inliers. This
means that the point prediction estimates might be affected
by the remaining 5 percent to 10 percent mismatches. In
Section 5, we propose a method to eliminate the remaining
mismatches. Fig. 6 shows the robustness of each mismatch
rejection method to high percentages of mismatches present
in the initial correspondence set (the variation of the
correspondence set size is obtained by varying the threshold
in (1)). Notice that the semilocal feature presents the best
robustness, since its performance is relatively stable even
with the presence of a high percentage of mismatches,
whereas both the pairwise clustering and Hough start
presenting an unstable behavior when the initial proportion
of correct matches falls below 15 percent.

For the experiments in this section, the number of
operations carried out by the pairwise grouping and the
semilocal feature algorithms is about 106, which is propor-
tional to jNmtj2. Moreover, the number of operations of
the Hough transform varies between 105 and 107, depend-
ing on the number of bins used in the transformation space.

4.3.2 Nonrigid Deformation

Two comparisons are presented in Figs. 7 and 8, where, for
the pairwise clustering and the Hough transform, only the
group that clustered the highest number of features is
shown in each case. Note that, for the case of the semilocal
feature, only one group per correspondence set can be
formed, and this is the group shown in the experiments.
Fig. 7 shows the results of our mismatch rejection methods
proposed here and of the Hough transform, where the
model is an object composed of a string built with soda cans.
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Fig. 5. Quantitative comparisons between our mismatch rejection methods and Hough transform for rigid transformations. The comparisons show

the proportion of correct matches from the correspondence sets of varying size provided by each of the mismatch rejection methods.

Fig. 6. Quantitative comparisons that show the proportion of correct matches as a function of the percentage of inliers present in the initial

correspondence set built from the feature similarity search.



For each method, two results are shown. In the first row, the
parameters of each method are set to be extremely tolerant
to mismatches, whereas the second row depicts the case
where each method produces the largest correspondence set
without any visually detectable mismatch. Notice that the
Hough transform only matches a piece of the object that
suffered a deformation close to a rigid transformation when
its parameters are set to be robust to mismatches, whereas
our methods tend to be more robust to nonrigid deforma-
tions even when they are very resistant to mismatches.

Finally, in the experiments above, the number of opera-
tions carried out by the pairwise grouping and the semilocal
feature algorithms is around 106, whereas that of the Hough
transform varies between 105 and 107.

4.3.3 Discussion

Although both methods are shown to be effective at reducing
the mismatches in correspondence sets, each one has
advantages and disadvantages. The grouping based on
pairwise relations shows a slightly higher robustness to
nonrigid deformations, but it needs neighboring model
points to be neighbors in the test image, which means that a
large gap of neighboring matches in the correspondence set
can potentially break the initial group into subgroups. One
advantage of the semilocal method is its high robustness to
mismatches in the correspondence sets, as depicted in Fig. 6.
Another advantage of the semilocal feature is in terms of
efficiency, where the computation of the shape feature can be

performed in parallel to that of the local feature after the
location and orientation of the interest points are determined,
but the fact that it can form only one group per model may
represent a problem in recognition tasks involving the
detection of several instances of a model in a test image.

5 GEOMETRIC PREDICTIONS

The mismatch rejection methods presented in Sections 4.1
and 4.2 can be made arbitrarily robust to mismatches by
varying the thresholds �CCA in (4) and �c in (6). Generally, it
is desirable to be tolerant at this stage and let the next stages
in the system do the fine-tuning by rejecting mismatches
that remained in the correspondence set. The main reason
for letting the system accept a few mismatches at this first
stage is to make it less prone to false negatives. Moreover,
once we a have a correspondence set relatively free of
mismatches, the system has to determine whether this set
represents an instance of a model. Therefore, the geometric
predictions that we present now have two objectives:
1) further reject mismatches from the correspondence sets
and 2) provide a measure of the likelihood of model
presence in the correspondence set.

Consider again the set of correspondences Nmt defined
in (1) between the model features Om and the test image
features Ot. The idea is to predict ~xk, ~�k, and ~�k for each test
image feature ~fk 2 Ot that has a correspondence in Nmt and
compare those predicted values with the actual values of
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Fig. 7. Comparison between our mismatch rejection methods and Hough clustering for nonrigid deformation. The lines represent the feature

correspondences that were grouped together by the respective method between the test image on the bottom and the model image on the top. The

first row shows the results where the parameters of each method were set to be extremely tolerant to mismatches, whereas the second row shows

the results where the parameters were set such that the group formed had the highest number of correspondences without any visible mismatch.

Fig. 8. Second comparison between our mismatch rejection algorithms and the Hough transform. Please refer to the caption of Fig. 7 for details.



the feature ~fk. This comparison is then used to measure the

likelihood of the presence of ~fk assuming the model

presence. In general, note that the following relations are

true if the correspondence is correct:

~nTloð~xl � ~xoÞ � kxl � xok; where ~nlo ¼
~xl � ~xo

k~xl � ~xok
;

~�l � ~#lo � �l � #lo;
~�l � ~�o

~�o
� �l � �o

�o
:

ð8Þ

Let us consider the position prediction first. Assuming

that the observed position ~xl is affected by an additive

Gaussian noise, we have

�lo;p~nTlo~xl ¼ �lo;pkxl � xok þ �lo;p~nTlo~xo þ �lo;prDðf l; foÞ ð9Þ

for all ðf o;~foÞ 2 Nmt � ðf l;~flÞ, where rDð:Þ is a Gaussian

noise with zero mean and variance �2
Dðf l; f oÞ, which is

defined later in Section 6.2. Here,

�lo;p ¼ e
�0:5

Dðf l ;foÞ
�2
�;p

is the pairwise weight, meaning that the neighboring points

to f l within a range of roughly ��;p pixels have a higher

weight in predicting the position of the test feature ~fl than

neighboring points that are farther away. We set the value of

��;p as a fraction of the model diameter in pixels. Equation (9)

can be rewritten as

�KT ~xl ¼ �bþ�rD; ð10Þ

where K 2 <2�N�1 is a matrix with the vectors ~nlo 2 <2�1 in

its columns, with N being the number of correspondences

in Nmt, � 2 <N�1�N�1 is a diagonal matrix with the values

�lo;p for all o 6¼ l, b 2 <N�1�1 with b ¼ kxl � xok þ nTlo~xo for

all o 6¼ l, and rD 2 <N�1�1 is the vector with the Gaussian

noise mentioned above. From (10), we have

~xl ¼ BbþBrD; ð11Þ

where B ¼ ðK�KT Þ�1K�. Note that we do not know the

specific values of rDð:Þ but only their distribution, so we

approximate the position ~xl by the following prediction

(see Fig. 9):

~x	l ¼ E½~xl� ¼ Bb: ð12Þ

In order to compute the similarity between the observed
position ~xl and its prediction ~x	l , we have to compute the
position covariance as follows:

�Dð~flÞ ¼ E½ð~xl � E½~xl�Þð~xl � E½~xl�ÞT �
¼ E½BrDrTDBT � ¼ Bdiagð�2

Dðf l; f oÞÞBT ;
ð13Þ

where �2
Dðf l; foÞ is assumed to be independent for all o 6¼ l.

Finally, the similarity between ~xl and ~x	l is computed as
Gð~xl � ~x	l ; �Dð~flÞÞ, where Gð:Þ is the normalized zero-mean
Gaussian function.

Following the same reasoning, the similarity between ~�l

and ~�	l is defined as Gð~�l � ~�	l ;�2
Hð~flÞÞ, with Gð:Þ being, again,

the normalized zero-mean Gaussian function, and

�2
Hð~flÞ ¼

1P
o 6¼l �lo;p

 !2 X
o 6¼l

�2
lo;p�

2
Hðf l; f oÞ

 !
;

where �2
Hðf l; foÞ is defined as in Section 6.2. Finally, the

similarity between ~�l and ~�	l is computed as Gð~�l � ~�	l ;�2
Sð~flÞÞ,

withGð:Þ being the normalized zero-mean Gaussian function,
and

�2
Sð~flÞ ¼

1P
o 6¼l �lo;p

 !2 X
o 6¼l

�2
lo;p�

2
Sðf l; foÞ

 !
;

where �2
Sðf l; f oÞ is also defined as in Section 6.2.

Therefore, the similarity between the predicted and
observed positions, main orientation, and scale is computed
in just one step as follows:

pðf l;~flÞ ¼ Gð½~xl; ~�l; ~�l� � ½~x	l ; ~�	l ; ~�	l �; �tÞ; ð14Þ

where Gð:Þ is the normalized Gaussian function with zero
mean, and �t ¼ diagð�Dð~flÞ; �2

Hð~flÞ; �2
Sð~flÞÞ.

The likelihood of the correspondence between f l and ~fl,
represented by pð:Þ in (14), is used for two goals. The first is to
form the final set of correspondences by thresholding pð:Þ
and forming the set ~LgðNmtÞ ¼ fðf l;~flÞjðf l;~flÞ 2 LgðNmtÞ;
pðf l;~flÞ > �pg.1 The second goal is to use the value provided
by pð:Þ to determine the likelihood of the correspondence
between f l and ~fl. The time complexity of this algorithm is,
like the mismatch rejection methods above, OðjNmtj2Þ, so it
does not deteriorate the complexity of the system.

5.1 Performance Evaluation

In this section, we demonstrate the efficacy of the geometric
prediction algorithm for the task of rejecting the remaining
mismatches left by the mismatch rejection methods pre-
sented in Section 4.

The geometric prediction has two parameters to set. The
first is the weight that a feature f o has in predicting the
position, orientation, and scale of a feature f l. We use

�lo;p ¼ e
�0:5D2ðf l ;foÞ

�2
�;p ;

where we set ��;p ¼ DM

10 . The other parameter is the correct
match threshold �p, which is set at 10�16.
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1. Notice that we intentionally gave the same name for the sets of
hypotheses to be verified ~LgðNmtÞ built from both mismatch rejection
methods (that is, semilocal features and grouping based on pairwise
relations).

Fig. 9. Example of position prediction. Given the set of model features

ff lgl2f1;2;3;4g, suppose we want to estimate the position of test image

feature ~f4. The probable location of the feature (represented by a dotted

ellipsoid) is based on a Gaussian distribution computed using the

position of the correspondences in the test and model images and the

pairwise variances �2
Dðf l; f oÞ estimated in the learning stage.



5.1.1 Rigid Deformation

The experimental setup introduced in Section 4.3.1 is used
here, and we show the results in the final correspondence
set after the geometric prediction rejected the remaining
outliers from the groups formed by both mismatch rejection
methods. Fig. 10 shows the inlier percentage versus the
correspondence set size for the respective graphs in Fig. 5.
Note that the main difference is that the inlier percentage
rarely falls below 90 percent to 95 percent even for large
correspondence sets. Also, Fig. 11 illustrates the consistent
robustness of the geometric prediction combined with the
mismatch rejection methods to extremely high percentage
of mismatches in the initial correspondence set. Even in
cases with less than 10 percent of initial correct matches,
both methods return a final correspondence set with
generally more than 90 percent of inliers.

5.1.2 Nonrigid Deformation

We extend the experiment presented in Section 4.3.2, where
the geometric prediction is used to reject the mismatches
from the groups built by both mismatch rejection methods.
Fig. 12 shows the results from the geometric prediction on
the groups in Fig. 7, whereas Fig. 13 presents the final
correspondence sets in Fig. 8.

6 PROBABILISTIC FORMULATION FOR VERIFICATION

In this section, we introduce the probabilistic formulation
for the hypothesis verification stage, which is based on [31],
but we make somewhat less restrictive assumptions that
may improve the verification performance.

The problem of constructing a probabilistic method for the
verification of hypotheses has been intensively studied lately.
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Fig. 10. Percentage of correct matches versus the correspondence set after geometric prediction. This graph represents an extension of the graphs
in Fig. 5, but here, the geometric prediction filters out mismatches from the group formed by the respective mismatch rejection method. Note that the
vertical scale is slightly different from that in Fig. 5.

Fig. 11. Quantitative comparisons that show the proportion of correct matches as a function of the percentage of inliers present in the initial
correspondence set. This graph represents an extension of the graphs in Fig. 6, but here, the geometric prediction filters out mismatches from the
group formed by the respective mismatch rejection method.

Fig. 12. Correspondence set after the geometric prediction method has filtered out the mismatches present in the groups in Fig. 7.



Similar probabilistic verification methods to recognize lim-
itedcategoriesofobjectsarepresentedin[1], [2], [15], [16], [43],
where the systems generally work with a small set of parts
(substantially fewer than 100 parts). It is worth noting that
among the papers cited before, only the work described in [1]
uses a flexible spatial coherence based on pairwise relations
for the verification. Systems more closely related to ours are
described in [26], [31], [34]. Lowe [26] relies on a probabilistic
verification that takes into account the global shape of the
model and the information about the distinctiveness of the
model as a whole. Schmid [34] describes a probabilistic
verification that uses semilocal coherence, where a learning
approach to estimate the feature appearance variation is
described. However, it is likely that this system suffers from
the presence of mismatches in large hypothesis sets.

In order to assess the hypothesis that a particular object is
present in a test image, we propose a probabilistic formula-
tion framework that involves the feature correspondences
and the semilocal spatial configuration similarities. Assum-
ing that Om represents the hypothesis that an instance of the
model m is present in the test image, E is a set of
correspondences, and T represents the global geometric
configuration of features (that is, their position x, scale �, and
main orientation �). We define the posterior P ðOmjE; T Þ as
(using the Bayes rule):

P ðOmjE; T Þ ¼
P ðEjT;OmÞP ðT jOmÞP ðOmÞP
O¼Om;:Om P ðEjT;OÞP ðT jOÞP ðOÞ

: ð15Þ

In [31], three assumptions are made:

1. P ðE; T Þ ¼ P ðEÞP ðT Þ, that is, the correspondences are
independent of their global geometrical configuration;

2. P ðT jOmÞ ¼ P ðT Þ, which means that the global
configuration is conditionally independent of the
hypothesized model; and

3. P ðEjT;OmÞ
P ðEÞ ¼

Q
i
P ðeijT;OmÞ

P ðeiÞ , where eis are the individual
elements of set E.

On the other hand, we have two assumptions:

1. P ðT jOmÞ ¼ P ðT j:OmÞ ¼ P ðT Þ, or the global geome-
trical configuration can be assumed to be condition-
ally independent of the hypothesized model.

2. P ðEjT;OmÞ ¼
Q

i P ðeijT;OmÞ.
Our first assumption above is necessary to remove the
global spatial configuration of features from the posterior
calculation, which is straightforward from the mismatch
rejection methods proposed. Even though we know that our

second assumption is unrealistic, it is necessary, since the
estimation of the joint probability P ðEjT;OmÞwould require
an extremely large number of training cases.

6.1 Probabilistic Correspondences Based on
Feature Similarity

Using the image deformations in Appendix B and the
database of random features in Appendix A, which can be
found at http://computer.org/tpami/archives.htm it is
possible to determine three properties of each model feature
f l 2 Om (refer to [11] for more details): 1) the probability
distribution of feature similarities, given a correct correspon-
dence Ponðsfð:Þ; f lÞ, 2) the probability distribution of feature
similarities, given a false correspondence Poffðsfð:Þ; f lÞ, and
3) the probability of feature detection Pdetðf lÞ. Using these
properties, we compute the probabilistic correspondence, as
explained later in Section 6.3.

6.2 Probabilistic Correspondences Based on
Semilocal Geometry

The likelihood terms P ðeijT;OmÞ and P ðeijT;:OmÞ of each
correspondence ei in E also involve feature value and
semilocal geometric similarity. Since we assume that the
pairwise relations are affected by a zero-mean Gaussian
noise (see Section 5), only the variance of each pairwise
relation in the model needs to be learned. Ideally, these
variances should be estimated from real images of the same
object, but that would require strong supervision in order to
determine the locations of each model feature in each
training image. Instead, we resorted to a simpler training
procedure, where we use a single training image and
artificially deform it (see deformations in Appendix B) so
that the exact position of each model feature can be
computed precisely. Let Om represent the model features
from model image Im and ~Om;d be the features detected
from the deformed version of image Im, namely, ~Im;d, using
a deformation d 2 DF . The correspondence set between
these two sets is given by

Nm;d ¼ fðf l;~flÞj~fl 2 Om;d; k~xl �MðdÞxl � bðdÞk
< �; f l 2 Kð~fl;Om; �N Þg;

where K, defined in (1), is the top-�N correspondences
(here, �N ¼ 1), � was fixed at 	d4 ¼ 2:0 pixels (as measured in
the image ~Im;d), xl is the position of feature f l, ~xl is the
position of feature ~fl, and the transformation parameters
MðdÞ and bðdÞ are obtained from the deformation d 2 DF .
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Fig. 13. Correspondence set after the geometric prediction algorithm has filtered out the remaining mismatches present in the groups in Fig. 8.



Assuming that the uncertainties of the pairwise relations
are normally distributed, we have

�2
Sðf l; foÞ ¼ varðf�SloðNm;dÞgd2DF Þ;

�2
Dðf l; foÞ ¼ varðf�DloðNm;dÞgd2DF Þ; and

�2
Hðf l; foÞ ¼ varðf�HloðNm;dÞgd2DF Þ

ð16Þ

for all deformations d 2 DF , where var is the sample
variance of the values in the set, and the pairwise relations
between an object and its deformed version are provided by
�SloðNm;dÞ, �DloðNm;dÞ, and �HloðNm;dÞ (see (3)). There-
fore, for the term P ðeijT;OmÞ, the idea is to use the
geometric predictions defined in Section 5 to determine the
likelihood of the correspondence ei, and for P ðeijT;:OmÞ,
we simply assume a uniform distribution of the geometric
configuration error.

6.3 Final Verification

Given a model Om, learned using the algorithm described
above (see the block diagram in Fig. 14a), the model
presence in a test image It is determined as follows (see
the block diagram in Fig. 14b). First, build the set of local
features Ot from It, then search for similar local features in
the database of models, thus forming the Nmt (1). Note
that each test image feature is matched to �N model
features and that it is possible that a model feature is
matched to more than one test feature. We handle this
kind of multiple correspondences originating from one
feature in the model image by representing them as
separate entities in the correspondence set. Given these
correspondences, the mismatch rejection step forms a set
of G clusters f ~LgðN tÞgGg¼1 (see Sections 4.1 and 4.2.1). Each
cluster is a hypothesis that a particular object is present in
the image, so our goal is to determine if any of the clusters
~LgðN tÞ actually represents an instance of the object Om.

Let us first define the set of pairings for all model features
f l 2 Om from group ~LgðN tÞ, as

Eg ¼
~LgðN tÞ

[
fðf l; ;Þjf l 2 Om;:9~fl 2 Ot s:t: ðf l;~flÞ 2 ~LgðN tÞg:

Therefore, we compute the posterior (15) as follows:

1. P ðOmÞ is the prior expectation of the model presence
and P ð:OmÞ ¼ 1� P ðOmÞ (here, we assume that
P ðOmÞ ¼ 0:001).

2. P ðEgjT;OmÞ �
Q
ðf l ;~flÞ2Eg P ððf l;~flÞjT;OmÞ, where we

have two cases:

a. P ððf l; ;Þ 2 EgjT;OmÞ�ð1� PdetðxlÞÞþPdetðxlÞPon

ðsf�s; f lÞ, where �s is the threshold in (1), and
Pdetðf lÞ and Ponð:Þ are defined in Section 6.1.
The intuition is that if the model feature is not
matched to a test feature, then either it was not
detected (first term of the sum) or it was
detected but not included in the correspon-
dence set (second term).

b. P ð ð f l;~fl Þ 2 EgjT; OmÞ � Pdetðf lÞPonðsf ðf l;~flÞ; f lÞ
pðf l;~flÞ, where pð:Þ is defined in (14). Here, we
consider that for ðf l;~flÞ 2 Eg, the feature has to
be detected in the test image (first term of the
multiplication), with a certain similarity value
(second term) and geometric configuration
(third term).

3. P ðEgjT;:OmÞ¼
Q
ðf l ;~flÞ2Eg P ððf l;~flÞjT;:OmÞ, where we

have two cases:

a. P ððf l; ;Þ2EgjT;:OmÞ � ð1� 0:032Þ þ 0:032ðPoff

ðsf < �s; f lÞÞ, where the number 0.032 represents
the average number of interest points per test
image divided by the size of the image (see [8]),
and Poffð:Þ is defined in Section 6.1. Similar to the
case above, the likelihood of having an un-
matched model feature, assuming that the
model is not present, is approximated by the
probability of general detection failure (first
term) plus the likelihood of detection times the
likelihood of not including the match in Eg.

b. P ððf l;~flÞ 2 EgjT;:OmÞ � ð0:032ÞPoffðsfð~fl; f lÞ; f lÞ
1

sizeðIÞ
1
8

1
2� . In the last term, we assume a uniform

distribution of position, main orientation, and

scale, given a background feature. The intuition is

that the likelihood of matching a model to a test

feature in this case is related to the general feature

detection, a high similarity to FP matches, and an

arbitrary geometric configuration.

Finally, we accept a hypothesis if P ðOmjEg; T Þ is above a
probability value, the number of correctly predicted matches
(using (14)) is above a threshold, and the maximum distance
between the test image features is bigger than a threshold; that
is, assuming that ~xl and ~xo are the positions of test image
features ~fl and ~fo, respectively, with ðf l;~flÞ; ðfo;~foÞ 2 Eg, we
require

max
8l;o

kxl � xokffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
l þ �2

o

q
0
B@

1
CA > �D
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Fig. 14. Block diagrams of the learning and recognition procedures. (a) Block diagram of learning. (b) Block diagram of recognition.



(this is done to avoid a large number of features all in a
small area of the image).

7 EXPERIMENTS

In this section, we show the qualitative and quantitative

performance of our recognition algorithm by using the phase-

based feature [8], both mismatch rejection methods, and the

probabilistic verification. The following tasks are considered:

1) wide baseline stereo matching and 2) long-range motion

matching. The main difference between the wide baseline

stereo and the long-range motion experiments is that the

former always involves the computation of the epipolar

geometry, given a pair of images presenting a significant

3D rigid transformation, whereas the latter concerns match-

ing pairs of images that might have suffered not only 3D rigid

but also nonrigid deformations.

7.1 Recognition Parameters

Referring to the block diagram in Fig. 14b, the search for

similar features (see (1)) in the model database involves two

parameters: 1) the phase correlation threshold (here,

�s ¼ 0:75) and 2) the maximum number of nearest neighbors

ð�N ¼ 1Þ. The following step is the mismatch rejection based

on either the pairwise clustering or the semilocal feature. The

parameters used for the mismatch rejection methods are the

same as described in Section 4.3, where �CCA ¼ 0:2 for the

pairwise grouping method (see (4)), and �c ¼ 0:5 for the

semilocal feature (see (6)). The acceptance of a hypothesis is

evaluated in the verification step, which depends upon the

posterior P ðOmjEg; T Þ > 0:5, the maximum distance between

test image features being at least 20 percent of the maximum

model diameter in pixels, and the number of correctly

predicted matches being at least 3 percent of the total number

of features of the model. The parameters above are found to

provide a good balance between robustness to image

deformations and to FPs, and they are kept fixed throughout

the experiments.

7.2 Long-Range Motion Results

The long-range motion application is likely to be the most

appropriate application for the system presented in this

work. In fact, any task that involves the recognition and rough

localization of textured objects that suffered severe 3D rigid

and nonrigid deformations (including articulation) is well

suited for this system. In this section, the model (see Fig. 15) is

always represented by only one view of the object, and the

system tries to find it throughout the sequence. We also

provide a comparison using the Hough transform as a

baseline method for eliminating mismatches in combination

with the verification stage based on geometric prediction.

The sequences of the Torso, Hedvig, Kevin, and Dudek

models (see samples in Fig. 16) are quite challenging due to

the presence of nonrigid deformations, brightness, 3D rigid

transformations, and partial occlusion. Fig. 16 shows the

verification results using either the pairwise grouping or the

semilocal feature methods to reject mismatches. Although

we only show the most severely deformed samples in each

sequence, it is interesting to see the quantitative perfor-

mance of this system in each sequence, as shown in Table 1.

We do not show the number of true negatives, since that

number would be related to all possible data associations

between the set of model and test features, which is equal to

jOmjjOtj, where both jOmj and jOtj are in the order of 103.

Also, in this table, we show the performance of the system

using the Hough transform to reject mismatches followed

by the geometric prediction in the verification stage.

The snake-of-cans model in Fig. 17 represents another

challenging set of images that shows the articulated object

in several different poses. Illumination changes are also

present due to the highlights in the metal cans. Notice that

both methods are quite robust in terms of articulate

deformations. In contrast, the Hough transform provides

poorer performance in these cases.

Finally, Fig. 18 shows the most challenging cases (in

terms of nonrigid deformation) from the database of images

designed by Ferrari et al. [17]. In general, the pairwise

grouping and local features are more robust to nonrigid

deformations than the Hough transform and consequently

tend to include more correct matches in the final corre-

spondence set. The runtime for the tasks of searching for

correspondences, mismatch rejection, and verification var-

ies between 5 and 10 seconds in nonoptimized Matlab code

for all the cases presented in this section.

7.3 Wide Baseline Stereo Results

A wide baseline stereo problem involves two images, where

a significant 3D rigid transformation took place between

them, and the goal is to reliably compute their epipolar

geometry. In order to robustly compute this epipolar

geometry, we need a reasonably large number of matches

situated on different planes of the scene. Using the same

experimental setup introduced in Section 4.3.1, we focus on

the computation of the F matrix and also on the number of

trials t necessary to make the probability of choosing at least

one outlier in every trial of the RANSAC algorithm smaller
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Fig. 15. Models used for long-range motion. All the models are represented only by the features inside the contour around the object of interest.



than 5 percent. We assume that the percentage of inliers is

pcrtmtc ¼ in
inþout , where in is the number of inliers in the set

and out the number of outliers, and that the matrix F has

7 degrees of freedom. Using eight point correspondences to

estimate F, the probability of finding at least one mismatch

in a randomly selected subset of eight correspondences

from the initial set is perror ¼ 1� p8
crtmtc. As a result, the

number of trials t to make the probability of choosing at

least one outlier in every trial of the RANSAC algorithm

smaller than 5 percent is defined as pterror 
 0:05, so t can be

determined by t 
 d log2ð0:05Þ
log2ðperrorÞ

e.
Figs. 19 and 20 show the wide baseline stereo pairs for the

Merton and Wadham sequences. Notice that both outlier

rejection methods return a correspondence set with a high

percentage of inliers, which is between 93 percent and

99 percent. This large proportion of true correspondences is

likely to reduce the complexity of the algorithm to compute

the F matrix. The average runtime for the tasks of searching

for correspondences, mismatch rejection, and verification is

around 10 seconds in nonoptimized Matlab code.

8 CONCLUSIONS

The use of spatial configuration of local features aims at

reducing the number of mismatches in the correspondence

set. This is desirable in order to decrease the complexity of the

verification stage and to reduce the likelihood of FPs and false
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TABLE 1
Performance of the Recognition Algorithm in Each Sequence

Fig. 16. Matchings for the Torso, Hedvig, Kevin, and Dudek models. The first and third columns show the verification results using pairwise grouping
for rejecting mismatches and the second and fourth columns use the phase-based semilocal features. White lines are the correspondences between
model and test images after verification. (a) Torso sequence. (b) Hedvig sequence. (c) Kevin sequence. (d) Dubek sequence.



negatives. We proposed two methods to reject mismatches

based on semilocal spatial information and another method

to reject mismatches and to verify hypotheses based on the

prediction of the geometric information of local features. We

presented comparisons between our methods and the Hough

clustering, which is a common mismatch rejection method

based on the global spatial configuration of features, and the

results show that our approaches are more robust to rigid

transformations and nonrigid deformations. Also, our mis-

match rejection methods are shown to have a time complexity

roughly similar to that of the Hough transform. We also

propose a new probabilistic verification that takes into

account the semilocal spatial configuration of each feature

and the feature similarity. Results on long-range matching

and wide baseline stereo matching show the efficacy of the

proposed method.
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Fig. 17. Matchings for the snake-of-cans model.

Fig. 18. Matchings for the Michelle model [17].
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