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Abstract

We present new achievements on the use of deep convolutional neural networks
(CNN) in the problem of pedestrian detection (PD). In this paper, we aim to address
the following questions: (i) Given non-deep state-of-the-art pedestrian detectors (e.g.
ACF, LDCF), is it possible to improve their top performances ?; (ii) is it possible to
apply a pre-trained deep model to these detectors to boost their performances in the
PD context ? In this paper, we address the aforementioned questions by cascading
CNN models (pre-trained on Imagenet) with state-of-the-art non-deep pedestrian
detectors. Furthermore, we also show that this strategy is extensible to different
segmentation maps (e.g. RGB, gradient, LUV) computed from the same pedestrian
bounding box (i.e. the proposal). We demonstrate that the proposed approach is
able to boost the detection performance of state-of-the-art non-deep pedestrian
detectors. We apply the proposed methodology to address the pedestrian detection
problem on the publicly available datasets INRIA and Caltech.

1 Introduction

Outstanding progress has been made in pedestrian detection (PD) in the last
decade and reaching state-of-the-art results is becoming harder to achieve.
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There exist many works in the PD field that testify the intensive study on
this subject [4–10]. One of the reasons is that pedestrians are among the most
important objects to be detected in images, and a large number of applica-
tions could benefit from this. For instance, in the fields of mobile robotics to
inform Human-Robot Interaction systems, or automotive providing input to
Advanced Driver Assistance Systems. The PD task is complex due to sev-
eral difficulties that arise in this context. For instance, the high variability
that characterizes the pedestrians projections on the camera image plane; the
appearance of a pedestrian on the image that is influenced by the person’s
pose; clothing; the atmospheric conditions that contribute to the illumination
changes; and the background clutter, all play a role in making PD a difficult
problem to be solved. Another difficulty inherent to this problem is occlusion,
which has received special attention in the community, giving rise to three
different types of metrics [11] that allow to quantify how occluded the pedes-
trian is: no occlusion, partial occlusion and reasonable (combination of partial
occlusion and no occlusion). This contributed to the standardization of the
evaluation methodologies and to provide a fair comparison among different
detectors. Also, the occlusion motivated the development of two main types
of detectors tailored to deal with this specific issue: piq the ones with prior
knowledge of the occlusion types [12,13] and piiq the ones that divide the
pedestrian into several parts and infer visibility [14,15].

The performance of conventional, handcrafted features has plateaued in recent
years, however, new developments in deep compositional architectures have
gained significant attention and have greatly advanced the performance of
the state-of-the-art concerning image classification, localization and detection.
Indeed, deep learning have brought successful results in several domains of
application, being an active research topic in computer vision community. One
of the advantages provided by deep learning models, and specifically by deep
convolutional neural networks (CNN) [16], is the high-level features produced
by the top layers of the model that allow to largely improve the classification
results, compared to performance produced by hand-crafted features (see [32]
for discussion). However, the training process for CNNs requires large amounts
of annotated samples to avoid overfitting. This issue has been tackled with
transfer learning, which retrains, via fine-tuning, publicly available models
(e.g. models that have been trained with large annotated databases [18]) using
smaller datasets [19]. This fine-tuning process has been adopted in several
works, since it has been shown to improve the generalization of the model (i.e.
regularization) compared to a model that is trained with randomly initialized
weights using only the small datasets [13,19]. This strategy has been applied
with success in other domains of application, such as in medical image analysis
[20].

Despite the popularity of pedestrian detection, only few works have applied
deep neural networks to this problem [21]. One of the first published works
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using convnets for PD is proposed in [7]. A similar research path is followed in
this paper. We use pre-trained models in order to determine if the fine-tuning
process improves the generalization of the model, compared to a model trained
with randomly initialized weights on small datasets. To accomplish this we use
the recently proposed VGG model (see [22]) 1 .

One of the popular approach for PD is based on a sliding window paradigm.
However, such procedure can easily become intractable. With CNNs becoming
more of a commodity in the computer vision field, a number of attempts have
been published to overcome the above difficulty. For instance, [23], [24] were
the best-performing methods at ILSVRC-2013, using a small receptive window
size and small stride of the first convolutional layer. We follow a different
strategy, pioneered by [25], where selective search identifies promising image
regions where to use more expensive features.

In this paper, our main objective is to answer the question: ”Can a deep CNN
model improve the performance of non-deep PD detectors?”. More concisely, in
this paper we propose to cascade non-deep state-of-the-art detectors, namely,
ACF [10], LDCF [26] and Spatial pooling + [27] (including also the classic
Viola and Jones (VJ) [3]) with a deep CNN model. We show that such a scheme
improves the performance of the base non-deep detectors and generalizes well
to different feature maps. Figure 1 illustrates the proposed methodology.

Fig. 1. Illustration of proposed methodology. The switch means that we only select
one non-deep pedestrian detector to generate the proposals.

1.1 Related Work

Although pedestrian detection is being addressed in a considerable amount of
works, the application of deep neural networks to this problem has only been
tackled very recently 2 . Indeed, the success of CNNs is witnessed in several

1 Details are also available in http://www.robots.ox.ac.uk/~vgg/research/

very_deep/.
2 Being the majority of the recent works published in CVPR 2015 and ICCV 2015.
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works, but in other context of applications. For instance, feature matching is
addressed in [28], where it is shown that features learned via convolutional
neural networks outperforms SIFT on descriptor matching context. Stereo
matching is another topic where CNNs show improved performance [29], com-
pared to previous approaches. Another context of application is that of scene
recognition. Although, large datasets (e.g. ImageNet) are available for object
recognition, this is not true in the scene recognition context. One of the first
works in this field is proposed in [30], testifying that deep features are ef-
ficiently learned in a scene-centric database (called Places) with over seven
million labeled pictures of scene. In [31] it is proposed a hybrid architecture
to perform pose estimation. It is shown that in a monocular image settings,
the use of the CNN (jointly used with MRF) is successfully applied to the
problem of articulated human pose estimation.

Object detection and classification (using Imagenet) have also received atten-
tion in several works. In [18] the large-scale data collection process of ILSVRC
is described; datasets such as ILSVRC-2010 and ILSVRC-2012 are used in [17];
SPP-nets [33] and ”inception” [34] are proposed in the same context of appli-
cation. A review is available in [35], where an in depth analysis of ten object
proposal methods is available along with four baselines regarding ground truth
annotation recall (on Pascal VOC 2007 and ImageNet 2013).

Another related topic of research is detection proposals for object recognition.
In [25] it is proposed a scheme for generating possible object locations. Object
bounding box proposals using edges [36] is shown to be effective in terms
of computational efficiency. Another class of relevant works is presented in
[37], in which several choices of features (i.e. HOG,HOF,CSS) and classifiers (i.e.
linear SVM) are explored to optimize sliding window based approaches.

Methods based on decision trees (but not using convnets) have been applied
with success in PD task. In [38], a collection of the main approaches for PD
detection are put together. From this study, decision forest based methods
emerge to provide among the best results. By using different combinations of
features, we are able to obtain distinct methodologies in this context.

Square channel features are addressed in [8], where it is proposed the Roerei

detector using HOG+colour only, moving away from the classic HOG+SVM which
has been one of the benchmark methods in the field. Informed Haar-like Fea-
tures [9] obtain high performance, where the pedestrian shapes are modeled
using three rectangles geared towards different body parts. Based on this ob-
servation, compact Haar-like features are proposed. However, these (manual)
features are specially designed for the pedestrian detection task. In [27] spa-
tial pooling is used, where three visual descriptors are investigated, such as
HOG, LPB and CSS. Regionlets [39] is also another method known in this class of
approaches, integrating various types of features from competing local regions.
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Despite the unquestionable value of the above works, only a few, however,
have applied deep learning to the task of pedestrian detection, which is the
focus of this paper.

1.2 Contributions

This paper presents the following contributions. First, we aim at using very
deep learning based approaches to face the problem of PD. Along this goal,
we experimentally conduct results with pre-trained vs. randomly initialized
models for the same architecture. Second, we propose to alleviate the compu-
tational burden that comes from a sliding window exhaustive search, through
a selective search approach that significantly improves the computational ef-
ficiency. To accomplish this we cascade several state-of-the-art non-deep PD
detectors with a deep CNN model. We conduct experiments, to show that such
cascade strategy boosts the performance of the non-deep detectors. Finally,
we generalize the methodology for several different feature maps. This allows
to ascertain the accuracy of an individual feature map, being able to figure out
what are the most effective/suitable channel map features for the pedestrian
detection task.

2 Methodology

Let us consider a pedestrian dataset D � txpiq,mpiq,ypiquNi�1 where x denotes
the original RGB CNN input bounding box, i.e. x : Ω Ñ Rp 3 and Ω denoting
the image lattice; m is the feature map computed from x. In this paper,
we resort to use common features that most state-of-the-art methodologies
also use. More specifically we use m � tmRGB,mGm,mGx,mYUV,mLUVu. The
above notation stands for different feature maps obtained from x as follows:
RGB color space, Gradient magnitude (Gm), Gradient in x (Gx), YUV color
space and LUV color space. Finally, y P Y � t0, 1u denotes the class (label)
indicating if x contains (or not) the pedestrian; i indexes the ith pedestrian
bounding box used for training. Fig. 2 illustrates some of the feature maps
used. Also, we have available a dataset for pre-training the CNN, i.e. rD �
tprxqpnq, pryqpnqun, with rx : Ω Ñ Rp and ry P Y � t0, 1uC (where C is the
number of classes in the pre-trained model, in this case 1000).

Deep Convolutional Neural Networks: A CNN model consists of a net-
work containing several processing stages. Each stage comprises two different
layers: piq a convolutional layer with an activation non-linear function, and

3 p is three for RGB, Gx, YUV and LUV, and is one for Gm.

5



Fig. 2. Illustration of some of the feature maps used: (a) RGB, (b) Gx, (c) YUV.

piiq a non-linear subsampling layer. In piq the convolution filters are applied
to the image, whereas in piiq a reduction in the input image size is performed.
These two stages are followed by several fully connected layers and a multi-
nomial logistic regression layer [17]. Fig. 3 illustrates the architecture of our
approach. The convolution layers compute the output at location j from the
input location i using the filter Wk and bias bk at the kth stage using:

xkpjq � σ
� ¸
iPΩpjq

xk�1piq � Wkpi, jq � bkpjq
	

(1)

where σp.q is a non-linear function, e.g. the logistic or rectification linear unit;
the operator � represents the convolution, and Ωpjq are the input region ad-
dresses. The non-linear subsampling layers are defined by xkpjq �Ó pxk�1pjqq,
where Ó p.q is the pooling function that subsamples the values from the data
input region Ωpjq. The fully connected layers consist of the convolution in
(1) using a separate filter for each output location, and the whole input from
the previous layer. The regression layers compute the probability of the ith
class using the features xL from the Lth layer with the softmax function
ypiq � expxL

°
j expxL

. The inference process is accomplished in a feedforward fash-

ion, and the training stage is carried out with stochastic gradient descent to
minimize the cross entropy loss over the training set via back propagation (see
[17] for details).

Let us denote the following set of CNN parameters as rΘ � rrθcnv, rθfc, rθlrs. Each

element in rΘ is a set of parameters representing: the convolutional and non-
linear subsampling layers (rθcnv), the fully connected layers (rθfc), and multino-

mial logistic regression layer (rθlr). Thus, the process of pre-training a CNN can

be formalized as ry� � fprx, rΘq. The above pre-training process ry�, is defined

as training M1 stages using rθcnv, followed by M2 fully connected layers, usingrθfc, and by one multinomial logistic regression layer that minimizes the cross-
entropy loss function rθlr, over the data set rD (see Fig. 3 for an illustration
of the proposal). This pre-trained model can be further used by taking the
first M1 �M2 layers to initialize the training of a new model [19], in a process
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that is known as fine tuning. This fine tuning is crucial to achieve the best
classification results in a transfer learning context. Using the above strategy,
we take the set of parameters trθcnv, rθfcu and introduce a new multinomial lo-
gistic regression layer θlr, and fine tune the CNN model by minimizing the
cross-entropy loss function using the training set D. The process described
above will produce the following models for each pedestrian bounding box:
y�

RGB � fpx,ΘRGBq y�
Gm � fpx,ΘGmq, y�

Gx � fpx,ΘGxq, y�
YUV � fpx,ΘYUVq

and y�
LUV � fpx,ΘLUVq.

Fig. 3. The proposed methodology uses several CNN models, one for each feature
map.

3 Experimental setup

This section discusses results obtained with the proposed methodology in IN-
RIA and Caltech datasets. Since, the detection quality depends on the effect
of positive and negative training sets, a detailed description is provided on
how these two sets are built: in Sec. 3.1 we describe how the positives and
negative training sets are generated in the INRIA dataset, whereas in Sec. 3.2
we describe how this procedure in conducted in the case of Caltech dataset.

3.1 CNN training for INRIA dataset

The experiments are performed on the full INRIA dataset [4], comprising 614
positive and 1218 negative images for training, and 288 images for testing.
The methodology used to obtain the training and validation sets is as follows.
We use a positive training set, Pos � 1237 samples 4 extracted from the
614 positive images using the original ground truth bounding boxes. Then,
we perform data augmentation comprising: piq an additional set of 1237 by

4 By samples we mean a bounding box or window of width� height pixel size.
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performing a horizontal flipping over the set Pos, obtaining a set of Pp1q
os � 2474

samples, and piiq performing random deformations (comprising translations
and scaling) in the interval R �s0, 5r pixels over the set Pp1q

os , obtaining a
new set of Pp2q

os � 4948 samples. The deformations consist in performing cubic
interpolation between randomly chosen starting and end values for the width
and height of the image (i.e. obtained from a uniform distribution on the
interval R).

To obtain the negative sample set Neg, we run the non-fully-trained LDCF
detector. By non-fully-trained, we mean that, the LDCF detector was taken
after the first training stage as in [1], being only trained with a segment of
the total number of images. This is applied on the 1218 negative full images,
obtaining a set of Neg � 12552 samples. An upper-bound of 18 negative can-
didate samples per image for negative detection is used.

Such procedure (i.e. using the training proposals of the detector as in [21]),
provides a richer set of negatives than the standard method of randomly ex-
tracting windows. The latter approach, provides both informative (e.g. resem-
bling pedestrians) and non-informative (e.g. sky or blank patches) negatives.
However, the number of non-informative samples is quite large, and from the
experiments conducted, they have a negative impact in the performance. Fig.
4, illustrates the negatives selection mechanism: the two leftmost negative
samples (in figures (a) and (b)) result from randomly extracting patches from
the image and the two rightmost negative samples (in figures (a) and (b))
result from running the non-fully-trained LDCF detector. The above proce-
dure amounts to obtain a total of 17500 samples, from which 15751 are taken
for training (90%) and 1749 for validation (10%). Here the proposals have a
100 � 41 size.

3.2 CNN training for Caltech dataset

This section describes the training data collection process in the Caltech
dataset. To obtain the negatives we take every 30th frame in the Caltech
dataset. As previously, we apply the non-fully-trained LDCF detector over
the selected negative images and collect negative samples based on the follow-
ing rules: (i) a training proposal is considered to be a negative example if it
does not exceed an Intersection-over-Union (IoU) of 0.1, that is, if IoU   0.1;
(ii) for the consistency of the experiments we maintain the negative selection
mechanism used in the INRIA dataset, i.e., resorting to the non-fully-trained
LDCF detector; and (iii) we define an upper bound of five windows per im-
age. Under these conditions, we obtain Neg � 17540 samples. To obtain the
positives, we use a sampling in which we consider every 3rd frame in the se-
quence of the Caltech dataset. We take the initial set of Pos � 16376 samples,
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extracted from the images using the original ground truth bounding boxes.
From this set, we take 1000 samples forming an auxiliar set Pp1q

os � 1000 sam-
ples, and perform a horizontal flipping over Pp1q

os , obtaining an additional set
Pp2q

os � 1000 samples. Finally, from Pp1q
os and Pp2q

os , we perform a random de-
formation in the range of R �s0, 5r pixels (as in the INRIA dataset). This
amounts to obtain, Pp3q

os � 1000, and Pp4q
os � 1000, respectively. To summarize,

we have the final set of positives Pos � 16376 � 3000 (i.e., additional samples
obtained from Ppiq

os , with i P t2, 3, 4u). Here the proposals have a 50 � 20 size.

The training data obtained as detailed in Sec. 3.1, Sec. 3.2 will be used for all
the detectors to provide a fair comparison of the results.

3.3 Testing phase

For testing purposes, we follow the evaluation protocol as in [11] that uses, as
performance metric, the log average miss rate over nine points in the range of
10�2 to 100 False Positives Per Image (FPPI). The evaluation for the Caltech
dataset is done according to the reasonable setting [11].

To show the benefits of the approach, with respect to the base detectors, we
apply the CNN over their test proposals (see Fig. 1). More specifically, we run
the following detectors over the INRIA test set: ACF and LDCF detectors 5 .
Then, we compute the feature maps (see Section 2) over the ACF and LDCF
test proposals (of size 100 � 41 pixels) and we run the CNN. The number of
ground truth bounding box annotations is 589.

The same procedure is also applied to the Caltech dataset, but adding the
Spatial pooling + detector. Also, the previously used ACF detector is re-
placed by the ACF Caltech +, denoted by ACF+ [26]. The proposals have size
of 50� 20 pixels. We measure the performance on the reasonable setting, i.e.,
no occlusion or partial occlusion in pedestrians with more than 50 pixels of
height. The number of ground truth bounding box annotations is 1014.

Original network model: we use the VGG Very Deep 16 architecture (VGG-
VD16) 6 , that corresponds to the configuration D in [22]. The architecture
consists of a CNN that takes a 224�224�3 input image and contains: 13 con-
volutional layers, five non-linear sub-sampling operations (i.e., max-pooling),
three fully connected layers and a final multinomial logistic regression layer.
More specifically, all max-pooling layers sub-sample a 2�2 input window by a

5 We do not run the detector Spatial pooling + since no optical flow information
is available in the INRIA dataset
6 See additional details in http://www.robots.ox.ac.uk/~vgg/research/very_

deep/
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(a) (b)

Fig. 4. Leftmost position in (a) and (b): Two negative windows randomly extracted
from full INRIA images. Rightmost position in (a) and (b): Two negative windows
obtained by running the non-fully-trained LDCF detector in full INRIA images.

factor of 2 and the convolutional and fully connected layers have the Rectified
Linear Unit (ReLU) as the activation function. Moreover, all convolutional
layers from 1 to 13 have a receptive field of size 3 � 3, but different number
of filters (or channels). In fact, layers 1 and 2 have 64 filters (each), followed
by max-pooling; layers 3 and 4 contain 128 filters (each), followed by max-
pooling; layers 5, 6 and 7 have 256 filters (each), followed by max-pooling;
layers from 8 to 13 have 512 filters (each), followed by max-pooling after lay-
ers 10 and 13; layers 14 and 15 have 4096 filters (each), and layer 16 has
1000 filters corresponding to the ILSVRC [18] classes, followed by the soft-
max. This model is pre-trained with Imagenet [18] (1K visual classes, 1.2M
training, 50K validation and 100K test images).

Network changes: In order to reduce the computational demands of the
VGG-VD16 model, the original CNN input size of 224� 224� 3 was reduced
to 64 � 64 � 3. However, this input size does not allow to perform inference
after the first fully connected layer, unless the size of the weights is changed. 7

Furthermore, for the PD task, we need to replace the layer 16 and the soft-
max, with a new layer and soft-max adapted for only two classes (pedestrian
or non-pedestrian). Consequently, the parameters of the three fully connected
layers were randomly initialized from a Gaussian distribution with zero mean
and variance equal to 0.01, allowing to perform the mentioned changes. Af-
terwards, we fine-tune the modified network using all feature maps (see Fig.
2) obtained from the pedestrian dataset (as depicted in Fig. 3). The use of
the proposed pre-training can be seen as a regularization approach, which
can be compared to other forms of regularization, such as data augmentation,
obtained by artificially augmenting the training set with random geometric
transformations. Finally, the minibatch size is 100, the number of epochs is
10, the learning rate is set to 0.001, and momentum is 0.9. No special attention
was made to fine-tune the above hyperparameters.

Section 4 performs a comparison between the baseline performance of these

7 We conducted additional experiments in which an alternative was to adequately
change the stride of some of the previous layers. This however, results in more
expensive and time consuming computations.
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detectors and with the application of the very deep VGG network.

4 Results

This section shows the results, where we first perform a comparison between
the randomly initialised and the pre-trained networks. In this comparison
stage, we also study different modes of initializing the CNN model, namely
random initialization and Xavier Improved initialization [40]. This is done
for one feature map (i.e. RGB). Second, we experimentally show that, deep
architectures are useful since they improve the performance of all of the tested
state-of-the-art pedestrian detectors. Furthermore, this can be generalized for
several and quite different feature maps. Finally, we perform a comparison
with state-of-the-art applied in the PD task, and show that our technique
exhibits very competitive results in the field.

4.1 Initialization of the very Deep CNN

To perform a comparison between random initialization and pre-trained mod-
els, we start by performing a random initialization of the deep CNN. More
specifically, we adopt the methodology as in [20,32], that is, random weights
drawn from Gaussian distributions with fixed standard deviation. However, we
experienced that such initialization does not help the deep CNN to converge,
drastically hampering its performance. Thus, we confirm what is already re-
ported in [22,40], i.e., such initialization strategy can stall learning due to the
instability of gradient in deep nets (in our case 13 conv layers). However, al-
ternatives are available in the literature. Glorot and Bengio [41] proposed the
so called Xavier initialization in the attempt to overpass the above mentioned
difficulty. However, we follow the robust initialization method as proposed in
[40], that particulary considers the rectifiers nonlinearities - Parametric Rec-
tified Linear Unit (PReLU). Recall, that the Xavier initialization is based on
the linearity assumption, which is not valid in ReLU (as in our case) and
PReLU. This methodology helps the convergence of very deep models, be-
ing possible to train it from scratch. We denote this initialization as Xavier
improved initialization.

Table 1 shows a comparison of the two modes for the network initialization
for the RGB feature map.
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Table 1
Log average miss rate % using two modes for the initialization (see text). Results are
shown for the detectors, using the RGB feature map, and for both data sequences.

Random Init. Xavier Improved VGG Pre-training

ACF LDCF SP+ ACF LDCF SP+

INRIA 21.14% 21.83% - 15.13% 12.45% -

Caltech 31.21% 30.15% 23.77% 23.34% 21.66% 16.66%

Table 2
Log average miss rate % for the proposals generated by several detectors on the
INRIA and Caltech datasets, and the CNN post-processing, using different feature
maps to perform the fine-tuning.

Dataset Detector Proposals RGB GM Gx YUV LUV

ACF 16.83 15.13 15.74 14.82 15.94 14.99

INRIA LDCF 13.89 12.45 13.33 12.61 12.78 12.66

SP+ - - - - - -

VJ 72.48 63.47 62.20 64.04 64.17 63.84

ACF+ 29.54 23.34 27.63 27.24 26.31 25.68

Caltech LDCF 25.19 21.66 24.59 24.67 24.31 23.24

SP+ 21.48 16.66 20.43 20.04 19.87 18.71

VJ 94.73 86.50 89.97 91.73 89.74 88.81

4.2 Improving the pedestrian detectors

We now consider the results with the pre-trained VGG model (VGG-VD16)
as detailed in Sec. 4.1, that provided the best results as shown in Table 1.
Table 2, summarizes the performance of all the detectors considered in this
paper, for several feature maps and for both of the datasets. The column pro-
posals corresponds to the baseline performance of the detectors, the remaining
columns correspond to the improvement of having the cascade of the detector
with the very deep CNN model. 8

Figure 5 shows the results for the INRIA dataset, displaying a comparison
with state-of-the art pedestrian (non-deep) detectors and our approach that
cascades the ACF and LDCF with a very deep CNN. Recall that for this
dataset the optical flow is not available, not being possible to use the Spatial

pooling +. The results of the cascade are shown in black bold. It is shown

8 The results were obtained with either 256 or 512 as the third dimension in the
first fully connected layer.
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the best performances for these detectors. A log average miss rate of 14.82% is
achieved for the ACF detector using the Gx feature map, and a log average miss
rate of 12.45% is achieved for the LDCF detector using the RGB feature map.
Notice that the CNN can always improve the performance of any non-deep
detector. Recall that the worst detector (Viola and Jones) cannot deteriorate
the cascade (i.e. VJ + CNN) performance.

Figure 6 shows the results for the Caltech dataset. Again, it is shown the
performances cascading the three detectors with the very deep CNN. The top
performance is reached 16.66%, cascading the Spatial pooling + and VGG.

Figure 7 shows a comparison with the state-of-the art methodologies for the
Caltech dataset. Here, the results of non-deep detectors are shown, as well as
the deep methodologies that were proposed very recently. Our proposal has
the third best result.

We have computed the obtained running time figures for both datasets. Table
3, shows the computational effort for both the datasets considering the cas-
cade of the non-deep detectors with the CNN. These training and testing are
measured using Matconvnet training [42] on a 2.50 GHz Intel Core i7-4710 HQ
with 12 GB, a 64 bit architecture and graphics cards NVIDIA GeForce GTX
850M (main memory) and Intel HD Graphics 4600 (secondary memory).

The training time, refers to the time spent training the CNN model (not the
non-deep full detector). The test time concerns the time spent to forward the
proposals through the CNN model. Recall that, the test time depends on the
number of proposals generated by the non-deep detector. Thus, for the INRIA
dataset, the number of proposals for the four detectors are the following:
Prop ACF � 1835, Prop LDCF � 940, and Prop VJ � 12323. For the Caltech
data set the number of proposals are: Prop ACF � 114K, Prop LDCF � 54K,
Prop SP+ � 228K, and Prop VJ � 190867. This justifies the larger test time
spent for the ACF, VJ and SP+ detectors.

4.3 Analysis of the obtained results

In this section we analyse the obtained results and the improvement intro-
duced by the application of the CNN over the proposals. More specifically, we
experimentally show that the CNN is able to:

 Significantly reduce the number of False Positives (FP)
 Slightly reduces the number of True Positives (TP)

The ideal scenario would be to decrease the number of FP, while maintaining
the TP.
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Table 3
Running time figures for the two initialization modes, obtained for both datasets
and corresponding miss rate (MR), using the RGB feature map.

Dataset Rand. Init. Xavier Improved Pre-trained VGG-VD16

MR LDCF+VGG proposals = 21.83% MR LDCF+VGG proposals = 12.45%

MR ACF+VGG proposals = 21.14% MR ACF+VGG proposals = 15.13%

INRIA train time = 5.1 hrs. train time = 5.1 hrs.

LDCF test time = 40.1 sec. LDCF test time = 33.0 sec.

ACF test time = 63.9 sec. ACF test time = 67.3 sec.

MR LDCF+VGG proposals = 30.15% MR LDCF+VGG proposals = 21.66%

MR ACF+ +VGG proposals = 31.21% MR ACF+ +VGG proposals = 23.34%

MR SP+ +VGG proposals = 23.77% MR SP+ +VGG proposals = 16.66%

Caltech train time = 12.17 hrs. train time = 11.4 hrs.

LDCF test time = 30.86 min. LDCF test time = 34.6 min.

ACF+ test time = 1.37 hrs. ACF+ test time = 1.5 hrs

SP+ test time = 3.11 hrs. SP+ test time = 3 hrs.

We conducted experiments on both INRIA and Caltech datasets to obtain the
number of FP and TP, before and after the application of the CNN. Tables 4,
5, 6 and 7, present the mentioned metrics for each of the four methods: VJ,
ACF, LDCF and SP+, respectively.

In general, the number of false positives is significantly reduced after the ap-
plication of the CNN framework in the initial non-deep detectors proposals.
This shows that our classification refinement strategy for the proposals is ef-
fective. As a negative side effect, the true positives number tend to decrease.
However, these changes are substantially less significant to the methods over-
all performance when compared with the false positives reduction achieved by
the CNN framework.

For instance, in the SP++RGB case (our best result for the Caltech dataset),
the false positives after the application of the CNN represent only approxi-
mately 5% of its original value (i.e., more than a tenfold FP reduction), while
the true positives still constitute approximately 95% of its original value. The
impact experienced by the method’s performance (using the usual metrics [11])
is positive, leading to an improvement of 4.82 percentage points, comparing
to the base SP+ detector (as shown in the Table 2).
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Table 4
Number of True Positives (TP) and False Positives (FP) for the proposals generated
by the Viola and Jones (VJ) detector on the INRIA and Caltech datasets, and the
CNN post-processing, using different feature maps to perform the fine-tuning.

Dataset Metrics VJ Proposals RGB GM Gx YUV LUV

INRIA TP 464 450 427 438 443 452

FP 11859 939 631 816 773 809

Caltech TP 212 202 194 178 183 191

FP 17108 902 2622 3778 1894 1517

Table 5
Number of True Positives (TP) and False Positives (FP) for the proposals generated
by the ACF (ACF+) detector on the INRIA and Caltech datasets, and the CNN
post-processing, using different feature maps to perform the fine-tuning.

Dataset Metrics ACF Proposals RGB GM Gx YUV LUV

INRIA TP 551 546 533 542 540 546

FP 1284 249 197 237 242 284

Caltech TP 952 900 889 866 889 899

FP 111087 7742 28596 16187 17234 12840

Table 6
Number of True Positives (TP) and False Positives (FP) for the proposals generated
by the LDCF detector on the INRIA and Caltech datasets, and the CNN post-
processing, using different feature maps to perform the fine-tuning.

Dataset Metrics LDCF Proposals RGB GM Gx YUV LUV

INRIA TP 554 550 543 549 549 552

FP 386 127 104 119 122 140

Caltech TP 947 894 896 874 889 891

FP 51460 3712 14020 8847 8473 6528

Table 7
Number of True Positives (TP) and False Positives (FP) for the proposals generated
by the Spatial Pooling+ (SP+) detector on the INRIA and Caltech datasets, and
the CNN post-processing, using different feature maps to perform the fine-tuning.

Dataset Metrics SP+ Proposals RGB GM Gx YUV LUV

INRIA TP - - - - - -

FP - - - - - -

Caltech TP 985 939 932 913 917 926

FP 223968 11576 58092 34775 34605 22257
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Fig. 5. Results in INRIA dataset. Improvement over the state-of-the-art non-deep
detectors, cascading the ACF and LDCF with very deep CNN. The best result
(shown in black bold) is 12.45% log average Miss Rate, achieved for the RGB feature
map, cascading the LDCF with VGG-VD16.

5 Discussion and Conclusions

A novel methodology for pedestrian detection based on very deep convolu-
tional learning is presented. The main outcome is that, it is experimentally
observed that an improvement over the top non-deep state-of-the-art detectors
for the task of PD is achieved. This is accomplished by cascading state-of-the-
art non-deep detectors with a deep compositional architecture. This architec-
ture not only allows fast test times but also actually improves the performance
of the base detectors.

Detailing now the experiments conducted in this paper, one of the first issues
to be tackled is that of initializing the architecture. It was experimentally
demonstrated, that the initialization of the very deep architecture plays a
relevant role in the performance. Although, we have used a robust initialization
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Fig. 6. Results in Caltech dataset with reasonable setting. Improvement over the
state-of-the-art non-deep detectors cascading the ACF, LDCF and SP+ with very
deep CNN. The best result (shown in black bold) is 16.66% log average miss rate,
achieved for the RGB feature map, cascading the SP+ with VGG-VD16. Here we
have included a cascaded deep detector (SCF + AlexNet - 23.32%) since it is similar
to our approach.

that allows for a deep CNN to be trained from scratch , better results are
achieved using the pre-trained models. Table 1 shows this issue for the RGB
feature map. Concerning the adopted cascade approach, we also concluded
that the improvement of the detectors is observed for both of the datasets, and
also, that these results can be generalized varying the feature map computed
from the bounding box. Table 2 testifies precisely this fact for different feature
maps. Figures 5 and 6 show a comparison with other well known non-deep
detectors used for PD. We note that, the (ACF,VGG), (LDCF,VGG) and (Spatial
pooling +, VGG) exhibit top performances for both of the datasets.

Although, not being the main goal of this paper, we also compared the per-
formance with deep methodologies recently proposed. Figure 7 shows these
results, where we plot our best result obtained cascading Spatial pooling
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Fig. 7. Comparison with state-of-the-art approaches.

+ and VGG-VD16 architecture. It is seen that our methodology is in the top-
three best methods in the literature for the Caltech reasonable dataset. The
best approaches are [43,44] that were very recently proposed.

Although our approach is highly competitive, there is still room for improve-
ment. Possible extensions of the methodology should be studied. For instance,
and since, there is an improvement for various different feature maps, one ap-
proach could be to fuse in a principled way the individual responses of these
feature maps. Other alternative could be to select more heterogeneous input
channels (such as pedestrian body parts, or different views of the pedestrians),
including distinct detectors for proposals and integrating a multiscale scheme
in the network. Moreover, we could further demonstrate the generality of our
methodology in improving any non-deep pedestrian detector. Therefore, we
could apply the proposed framework to other top-performing non-deep detec-
tors in the literature, for example, Checkerboards and Checkerboards+ [2].
Finally, our approach can benefit from recent results in deep learning, namely,
novel ideas in deep-state-of-the-art pedestrian detectors could be adapted to
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improve our architecture. For example, the shift handling procedure, using
fully convolutional neural networks, employed in the Deep Parts method [43]
could be used to further enhance our approach. We could also change the
network model (e.g. to the GoogLeNet as in [43]), and extract and combine
features from the last CNN layers to perform the classification.
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