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segmentation using elastic regularization
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Abstract— This paper proposes a novel approach for the non-rigid
segmentation of deformable objects in image sequences, which is based
on one-shot segmentation that unifies rigid detection and non-rigid
segmentation using elastic regularization. The domain of application is
the segmentation of a visual object that temporally undergoes a rigid
transformation (e.g., affine transformation) and a non-rigid transformation
(i.e., contour deformation). The majority of segmentation approaches to
solve this problem are generally based on two steps that run in sequence:
a rigid detection, followed by a non-rigid segmentation. In this paper, we
propose a new approach, where both the rigid and non-rigid segmentation
are performed in a single shot using a sparse low-dimensional manifold
that represents the visual object deformations. Given the multi-modality
of these deformations, the manifold partitions the training data into
several patches, where each patch provides a segmentation proposal
during the inference process. These multiple segmentation proposals
are merged using the classification results produced by deep belief
networks (DBN) that compute the confidence on each segmentation
proposal. Thus, an ensemble of DBN classifiers is used for estimating
the final segmentation. Compared to current methods proposed in the
field, our proposed approach is advantageous in four aspects: (i) it
is a unified framework to produce rigid and non-rigid segmentations;
(ii) it uses an ensemble classification process, which can help the
segmentation robustness; (iii) it provides a significant reduction in terms
of the number of dimensions of the rigid and non-rigid segmentations
search spaces, compared to current approaches that divide these two
problems; and (iv) this lower dimensionality of the search space can
also reduce the need for large annotated training sets to be used
for estimating the DBN models. Experiments on the problem of left
ventricle endocardial segmentation from ultrasound images, and lip
segmentation from frontal facial images using the extended Cohn-Kanade
(CK+) database, demonstrate the potential of the methodology through
qualitative and quantitative evaluations, and the ability to reduce the
search and training complexities without a significant impact on the
segmentation accuracy

Keywords: Deep Learning, Data augmentation, Manifold learning,
Object Segmentation,

I. INTRODUCTION

Object segmentation is one of the most studied topics in machine
learning and computer vision. This task relies on the ability to
partition the image into sets of pixels that correspond either to
foreground or background. In this paper, object segmentation is
defined as the process of obtaining S 2D points in the image that
are located at the object contour (i.e., that separates the foreground
from the background). This process is however difficult to be robustly
accomplished due not only to the image conditions (e.g. poor reso-
lution or contrast), but also to the (non)-affine transformations plus
local deformations that the foreground object can suffer, which are
difficult to be modeled.

This segmentation problem has motivated the use of top-down
based methodologies, which decouple the above transformations to
simpler ones that are easier to be modeled. In general, two sequencial
steps characterize the methodologies for top-down segmentation
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of deformable objects using machine learning techniques [1]–[6].
The first step aims to perform a rigid detection, while the second
step is related to the non-rigid segmentation. The main motivation
behind this strategy is the reduction of the training and inference
complexities. For instance, for an object contour having S 2-D points,
and quantizing each of the 2×S dimensions into K samples, a naive
approach would lead to a complexity of O(K2S). The introduction
of an intermediate rigid detection allows for a drastic reduction of the
search and training complexities with the use of a low dimensional
rigid space with dimensionality t ∈ RR (with R << 2S and R
representing the dimensionality of the search space) that estimates the
translation, scale and rotation transformations of a mean contour. The
transformed mean contour obtained from the rigid detection is used to
initialize and constrain the non-rigid segmentation, which decreases
the original inference and training complexities of the methodology.
The inference complexity decrease is achieved from the reduced
dimensionality of the rigid space, which allows for a faster search
process, and from the non-rigid segmentation that is constrained by
the mean contour. Furthermore, the training complexity reduction
is obtained from the need of smaller training sets in the small
dimensional rigid problem and constrained non-rigid segmentation.

In this paper we argue that the segmentation of deformable visual
objects can be done in a single shot using a methodology that
is comparably accurate and more efficient than current approaches
based on the aforementioned two-step process (rigid and non-rigid
segmentation). In addition, because we focus on the reduction of
the dimensionality of the underlying search process, we also argue
that our proposed approach relies on relatively small training sets. In
order to support our argument, we propose a methodology, where the
search procedure is conducted on a sparse low-dimensional manifold
(learned with the training set annotations of the visual objects
contours), guided by the classification results computed from deep
belief networks. Also, we no longer sub-divide the segmentation pro-
cedure into the rigid detection and non-rigid delineation mentioned
above. Fig. 1 illustrates the difference between our proposal and the
typical non-rigid segmentation approaches found in the literature. The
development of our approach aims at the following goals: 1) increase
the efficiency of the search process given the small dimensionality of
the manifold (where the search takes place) and the fact that we solve
the segmentation problem directly (without sub-dividing it into rigid
and non-rigid detection); and 2) decrease the training complexity by
constraining the shape distribution on the manifold (thus reducing the
complexity of the trained models). Notice that this paper represents a
significant extension of the segmentation approaches proposed in [1]–
[5,7], where the rigid detection and non-rigid delineation (Fig. 1-
(b))1 are performed in a unified framework. Since we are proposing a
single stage segmentation process, the non-rigid delineation is directly
introduced in the learning phase.

The usefulness of the proposed approach is demonstrated in the
segmentation of non-rigid objects. To accomplish this, we apply our

1Note that [3] also uses a sparse low-dimensional manifold, but only for
the rigid detection and still sub-divides the problem into rigid detection and
non-rigid delineation.
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a) proposed approach

b) typical non-rigid segmentation approach [1]–[6]

Fig. 1: Proposed segmentation approach for deformable visual objects
(e.g., lips) that merges the rigid and non-rigid segmentation tasks (a),
compared to the more common 2-step segmentation (b).

approach on the segmentation of the left ventricle (LV) of the heart
from ultrasound images and on the segmentation of lip boundary from
video sequences. Both datasets contain object contours that undergo
a non-rigid deformation through time. It is experimentally shown that
the proposed approach has a significant smaller search and training
complexities exhibiting competitive segmentation accuracy results
with respect to other related approaches proposed in the literature.

II. RELATED WORK

Image segmentation is an important and challenging stage to be
accomplished in image analysis systems, where the obtained segmen-
tation is usually used as an intermediate result to support an ensuing
classification process. Basically, the segmentation can be viewed as
a partition process in which the regions of interest in the image are
separated from the background, where these two entities collectively
cover the entire image. The great interest in this segmentation
problem has allowed the development of a wide range of works over
the years. In this section we provide an overview of existing method-
ologies, classifying them as active contours, deformable templates,
database-guided (DB-guided), saliency object segmentation, multi-
atlas and hybrid models. The first segmentation methods were rooted
in the seminal work proposed in [8] called snakes or deformable
models. This technique gave rise to a large number of works known in
the literature as active contours based approaches [8]–[19]. Although
some approaches introduce some knowledge based constraints, [18]
the main shortcoming of deformable models is that the priors (e.g.,
strong edges, smooth contours) used in the segmentation process are

usually not enough to reliably represent the range of appearance and
geometric deformations suffered by the visual object of interest. The
development of level-set methods [16] (another variant of the active
contours) improved the performance of active contours with respect
to imaging conditions and visual object topology. Nevertheless, active
contours are based on non-convex energy formulations that strongly
depend on good initial conditions, which are generally provided
manually.

In an attempt to circumvent the above difficulties, template based
approaches have been proposed. Deformable templates [20]–[25]
introduce the use of more specific prior models regarding the shape
and appearance of the object. This strategy has the goal of deforming
this prior model to match the test image. Similarly to the problem of
non-convex optimisation in level sets, this approach also needs a good
initialization for the segmentation process. The literature testifies that
the level-sets and deformable template models are among the most
successful techniques applied in non-rigid segmentation problems, but
the strong prior knowledge (often designed by hand or learned using
a small training set) defined in the optimization function remains a
challenge that is not entirely fulfilled. As a result, the effectiveness
of such approaches is limited by the validity of those prior models,
which are unlikely to capture all possible shape and appearance
variations present in the imaging of the visual object [26].

The above methodologies gave room to the development of more
sophisticated database-guided or machine learning methods for object
segmentation. These techniques explore the use of large and rich
annotated data sets that allows to improve the performance of the
active contour and template based methods, producing the current
state of the art segmentation accuracy results in the field. A typical
example of the above class of approaches is the active shape model
(ASM) introduced in [27,28]. ASM is an example of a machine
learning algorithm that estimates a statistical model of the object
shape using an annotated training set. Active appearance models
(AAM) [27,29,30] improves over ASM, by using both shape (as in
ASM) and texture models. The optimization of the above models is
based on a cost energy function containing two terms, representing
the shape and appearance, also learned using a manually annotated
training set. These models are generative, since it is possible to
generate synthetic images and shapes with ASM and AAM. Discrim-
inative classifiers also constitute a valuable methodology for object
segmentation [31]–[37]. Other class of machine learning algorithms
are based on graphical models, such as Markov random fields (MRF)
[38,39] and Conditional random fields (CRF) [40]–[45], which rely
on structured output classification models.

Salient object segmentation constitutes another class of methods,
where the segmentation is done by minimizing a cost associated
with a graph. The main motivation for graph-based methods is
the reduction of the dimensionality of the segmentation, and the
use of a max-flow [46], [47] or minimum cuts algorithms [48].
In [46], an interactive segmentation is proposed where the user has to
indicate certain pixels as part of the object or background (i.e., hard
constraints). The segmentation problem is achieved by combining
these hard constraints with soft constraints, which are defined based
on boundary and region properties. In [47] the saliency and objectness
are obtained from the input image using two methods: the objectness
computed from bounding boxes [49] and the saliency obtained with
a saliency tree [50]. The input image is segmented into a set of
superpixels using SLIC [51], which builds the graph. In [48] a region-
based algorithm is proposed where the object saliency detection is
viewed as a regression problem. The goal is to learn a regressor
(with random forest) that maps the regional feature vector (i.e. color
and texture) to a saliency score. All these works [46], [48], [47]
rely on handcrafted features, e.g., edge weights graph are based on
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the color histograms differences between superpixels [47], or image
edges [48], and node weights rely on intensity histograms [46]. A
comprehensive survey of salient object detection can be found in [52].
All the works above, however, do not take in consideration the
parametric description of the contour as we do, in particular, the non-
rigid deformation that the object may undergo through time. Another
issue that is not addressed by the works above is how to design a deep
learning segmentation method that require small training datasets and
have low training complexity, an important aspect that we emphasise
in this paper.

Atlas-guided segmentation is a different way of performing object
segmentation. The reasoning behind this class of approaches is that
the visual object can be assumed to be consistent regarding its shape,
appearance and localization. This assumption allows the use of a
reference object model as a template. The segmentation process
proceeds by registering the template using a non-rigid transformation
model [53,54]. As suggested in [55], four classes of methods haven
been developed in this context: (i) individual atlas images (IND),
[56]; (ii) most similar atlas image from a database (SIM), where the
registration process can be either performed by mutual information
[57,58] or normalized mutual information [59]; (iii) average shape
atlas (AVG) based on the computation of the average model of a set
atlases, which is then registered to the test image; and (iv) multiple
atlases (MUL), where the test image is registered to each member of
a set of atlas templates and the final segmentation is achieved with
a fusion strategy [60].

Regarding the class of approaches that use several atlases (AVG
and MUL), it has been demonstrated that the fusion of multiple
segmentations [61] can improve the segmentation accuracy. This
improvement has been shown in [55], where different techniques for
atlas selection and fusion are discussed. In an attempt to improve
the reliance on a single segmentation, [62] proposed STAPLE, in
which the classifiers are weighted using the expectation-maximization
(EM) algorithm. It has also been shown that MUL based approaches
are useful in the context of brain segmentation in MRI. The study
presented in [63] replaces the use of a single atlas by a family of
templates. In [64] the LEAP framework for multi-atlas is proposed,
where the initial atlases may represent a subset of target images. The
goal is then to propagate a small number of atlases through a large set
of MRI brain containing a significant amount of variability among
the anatomical structures. Another contribution that uses manifold
learning as a tool for atlas selection has been presented in [65], where
three different manifold learning techniques are assessed to select the
best atlases and to combine in the multi-atlas segmentation context.

Other class of methodologies are the hybrid models, where ma-
chine learning and deformable contours are combined in some fash-
ion: combining deformable contour models with MRF (e.g. [38,66]),
or CRF with level sets [42]. The combination of SVM and CRF
has also been explored in [37,44]. More recently, deep learning has
been combined with levels sets [67], and deep convolution and deep
belief networks have been shown to be useful as potential functions
in structured output prediction [68].

More recently, deep learning has been intensively explored for the
problem of image segmentation with the development of the region
based convolutional neural network (R-CNN) [69], and its extensions:
fast-CNN [70] and faster-CNN [71]. Basically, the goal of R-CNN
is to take in an input image, and correctly localise objects in the
image with bounding boxes. This is achieved following a three-
stage process: (i) generate of a set of proposals using bounding
boxes, (ii) run the images in the bounding boxes through a pre-
trained AlexNet with a SVM classifier and (iii) perform a linear
regression model to output tighter coordinates for the bounding
boxes. Even though the R-CNN was successful, it could be quite

slow given the large number of proposals per image. To alleviate
this shortcoming, alternatives have rapidly become available in the
literature. For instance, Fast R-CNN uses RoIPool (Region of Interest
Pooling) in order to share the computation across proposals. Although
clearly advantageous from a computational viewpoint, the proposals
are still created using selective search, which is a fairly slow process.
To address the above mentioned bottleneck, Faster-CNN has been
proposed, where the region proposal step is almost cost free. The
insight is that region proposals depended on features of the image
that were already calculated with the forward pass of the CNN. This
is achieved by simply adding a fully convolutional network on top of
the features of the CNN creating what is known in the literature as
the “Region Proposal Network”. Contrary to the previous approaches
where the segmentation is achieved via bounding boxes (in a two
stage process), the Fully Convolutional Network (FCN), based on
CNNs [72] is trained end-to-end, and is able to provide a pixel wise
semantic segmentation which is the task addressed in this paper.

Our approach shares some common principles with [73]. Con-
cretely, they also use the two segmentation stages, i.e. rigid detection
and non-rigid segmentation. The former is accomplished using the
affine transformation, the later (non-rigid deformations) is modelled
using thin plate-splines (TPS). However, the use of TPS for modelling
the non-rigid deformations was first proposed in [7]. The main
differences between [73] and our method is that [73] does not address
a reduction of training complexity, and the training with small training
sets. These issues are addressed by this paper with a manifold learning
strategy as part of the segmentation process.

III. PROPOSED APPROACH

In this paper, we propose a novel methodology for segmenting non-
rigid visual objects, where the search procedure is conducted directly
on a sparse low-dimensional manifold, guided by the classification
results computed from a deep belief network. The main novelty
of our proposed approach is that we do not rely on the typical
sub-division of segmentation tasks into rigid detection and non-
rigid delineation. Instead, the rigid and non-rigid segmentation are
solved in an unified framework (see Fig. 1 (a)). Also, an elastic
regularization is proposed as a way to learn the deformations of the
object contour. The manifold is divided into several patches, with
each patch providing a segmentation proposal during the inference
process. Since several patches are obtained, a fusion strategy is
required, which is accomplished with the use of the confidence
measure of each segmentation patch produced by the DBN. We show
that our proposal reduces the search complexity and the amount of
training, since the dimensionality of the manifold is much smaller
than the dimensionality of the search spaces for rigid detection and
non-rigid delineation aforementioned. The proposed multiple atlas
segmentation exhibits the following advantages: (i) reduction of
the rigid detection space dimensionality, using manifold with low
intrinsic dimensionality, which allows for a faster inference process;
(ii) reduction of the training data sets, since now the positives and
negatives samples lie on the learned low-dimensional manifold; and
(iii) multiple segmentations fusion that improves the segmentation
robustness.

Although some of the contributions have been proposed in [7],
in this paper, we provide a more comprehensive literature review,
explanations, and experimental results, which not only compares
the segmentation results with the state of the art, also provides
statistical evaluation of the framework. Moreover, a new method for
data augmentation (DA) is provided that allows to incorporate local
deformation in the objects boundary.

Some of the contributions have been proposed in [6,7]. In [6] a
“two-shot” method is presented where the detection step uses sparse
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manifolds, but the segmentation step is based on an independent
method. Regarding [7], this paper provides a more comprehensive
literature review, explanations, and experimental results, which not
only compares the segmentation results with the state of the art,
also provides statistical evaluation of the framework. Moreover, a
new method for data augmentation (DA) is provided that allows to
incorporate local deformation in the objects boundary.

IV. CLASSIC NON-RIGID SEGMENTATION APPROACHES

This section describes how the non-rigid object segmentation is
usually tackled by machine learning based methodologies. Let us
consider the image I : Ω → [0, 255], (Ω denotes the image lattice)
that contains the visual object of interest. We will assume that the
contour of the object is explicitly represented by a list of S 2-
D points, i.e. the annotation is represented by S ∈ R2×S . The
training data set D contains images and their respective annotations:
D = {(I,S)j}|D|

j=1. The optimal segmentation is found by solving
the following optimization problem:

S∗ = argmax
S

p(S|I,D), (1)

where p(S|I,D) represents the probability of finding a non-rigid
segmentation S in image I, computed by a model that is learned
from the training set D. This is a hard problem to be solved due to
the high dimensionality of S, which makes the direct optimization
of (1) highly complex. One way to circumvent the problem above
is to reduce this complexity by a divide-and-conquer algorithm,
where preliminary lower dimensional problems are introduced and
summed out. As an example, several approaches [1]–[5] introduce
one preliminary problem represented by a hidden variable t ∈ RR,
with R << (2 × S). This sort of solution leads to the following
formulation:

p(S|I,D) =

∫
t

p(t|I,D)p(S|t, I,D)dt. (2)

In general, the variable t in (2) represents a rigid transform that is
applied to the coordinates of a canonical contour C ∈ R2×S (built
from the mean shape of the annotations S from D), where the search
for the segmentation contour S is then performed in the neighborhood
of the points of this transformed version of C. The grid of points
around C in the image I is represented by GC ∈ R2×G, forming
a rectangular 2-D region. The transformation of GC to a region of
the image space is achieved via a linear transformation matrix A ∈
R3×3, which is obtained from the variable t as follows [1]–[5]: At =
h(t) 2. The term p(t|I,D) in (2) represents the rigid detection and
computes the probability that the visual object underwent a transform
represented by t in image I. In practice, the rigid classifier p(t|I,D)
receives an image patch I(g(t)), with g(t) ∈ R2×G defined by

g(t) =

[
1 0 0
0 1 0

]
At[G

⊤
C,1G]

⊤ (3)

where 1G ∈ RG is a vector of ones. Eq. 3 is used to acquire the image
region to be used in the computation of p(t|I,D), which ultimately
estimates the probability that the input sub-window I(g(t)) contains
the structure of interest.

The term p(S|t, I,D) in (2) computes probability of the segmenta-
tion S in image I given the value of t. Notice the importance of t in
this procedure: it is responsible for constraining and initializing the

2Recall that current methodologies use t = [x, y, ϑ, νx, νy ] (t ∈
R5) that denotes a transformation comprising a translation x and
y, rotation ϑ, and non-uniform scaling νx and νy ; then h(t) = 1 0 x

0 1 y
0 0 1

 cos(ϑ) − sin(ϑ) 0
sin(ϑ) cos(ϑ) 0

0 0 1

 νx 0 0
0 νy 0
0 0 1

.

search for the contour S to be around the image patch I(g(t)). Also,
notice that the rigid search space, represented by the variable t has
dimension R. We shall demonstrate later that the search complexity in
these state-of-the-art approaches is dominated by this rigid detection,
which is in turn a function of R. Moreover, as the dimensionality
of t increases, the training process for the classifier p(t|I,D) in (2)
becomes more complex, requiring larger amounts of data to avoid
over-fitting.

V. REFORMULATING THE NON-RIGID SEGMENTATION USING

SPARSE LOW DIMENSIONAL MANIFOLDS

The main goal of this paper is to reformulate the optimization
problem in (1). More specifically, the methodology is based on the
following maximization problem:

m∗ = argmax
m

p(m|I,D), (4)

where, m ∈ RM is a point in a low dimensional manifold M, which
is directly used in the estimation of S∗. That means that we no
longer require an intermediate rigid detection because we estimate
directly a non-rigid contour segmentation via m, with dimension
M < R << S. The implication of such procedure, is that the non-
rigid part must be accounted in the manifold. In order to use the same
types of classifiers as the ones described in Sec. IV, which require
an input consisting of a rectangular window, we resort to the use
of thin-plate splines (TPS) deformation. With the TPS deformation,
we can represent a non-rigid deformation from the test image to a
rectangular image patch to be used as an input to the classifier.

VI. THIN-PLATE SPLINES

The thin-plate spline (TPS) is a useful non-rigid model for es-
timating image and shape alignment, which has been applied in
different contexts, ranging from biological form [74,75] to computer
vision applications and image analysis problems [76]–[78]. A short
overview of TPS warp is now formalized. Let us denote v̂s ∈ R as the
target function values at locations (x̂s, ŷs) ∈ R2, with s = 1, ..., S.
Herein, we set v̂s equal to the target coordinates (x̂s, ŷs). The TPS
interpolation function f(x, y) defines the mapping f : R2 → R that
minimizes the following nonnegative quantity

Ef =

∫ ∫
R2

(
(
∂2f

∂x2
)2 + 2(

∂2f

∂x∂y
)2 + (

∂2f

∂y2
)2
)
dx dy, (5)

which is called “integral quadratic variation” or “’integral bending
norm”, having the form

f(x, y) = a1 + a2 x+ a3 y +

S∑
s=1

ws U(∥(x̂s, ŷs)− (x, y)∥), (6)

with U = r2 log r, where r = (x2 + y2)1/2 in Cartesian origin.
Notice that the interpolant function f(x, y) contains two terms: the
affine transformation parameter parameterized by a = (a1, a2, a3),
and the non-affine warping given by w = (w1, ..., wS). Equation (6)
can be re-written to a matrix formulation that allows the estimation
of parameters {w,a} by solving the following linear equation:[

KS×S PS×3

P⊤ 03×3

] [
wS×1

a3×1

]
=

[
w
0

]
, (7)

where the subscripts indicate the dimension of each variable. The
TPS in (7) allows the mapping from the grid GC, used to represent
the canonical contour C, to the non-rigidly deformed grid, that is
denoted by G̃C. The deformed grid is computed as follows:

[G̃⊤
C,1G] =

[
G⊤

C,1G

]
Ã+

[
KG

⊤wx,KG
⊤wy,0G

]
(8)
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where G̃C ∈ R2×G, wx,wy ∈ RS×1, 1G,0G ∈ RG×1 and KG ∈
RS×G. The elements of KG are given by

KG(i, q) = U
(
(

3∑
j=1

(cij − gqj)
2)1/2

)
(9)

and
U(r) = r2 log(r) (10)

where cij is the (i, j)-th element of [C⊤,1S ] ∈ RS×3 and gqj the
(q, j)-th element of [GC

⊤,1G] ∈ RG×3. The affine transformation
matrix Ã ∈ R3×3 and wi (for i ∈ {x, y}) are found from the
following linear system for estimating the TPS coefficients[

wx wy

ã1 ã2

]
=

[
KG [1S ,C

⊤]

[1S ,C
⊤]⊤ 03×3

]−1 [
S⊤

03×2

]
(11)

where ã1, ã2 ∈ R3×1 represent the vectors that are used to build
the matrix Ã, wx, wy are S × 1 vectors with the constraint that
[π1Swx, π2Swy]

⊤ is a 2 × 1 null vector (with π1 = [1, 0], π2 =
[0, 1]), and KC ∈ RS×S is a matrix whose (i, q)-th entries are
computed as KC(i, q) = U((

∑3
j=1(cij − cqj)

2)1/2) with cij , cqj
the (i, j)-th and (q, j)-th elements of [C⊤,1S ] ∈ RS×3, respectively.
Notice that (11) corresponds to the solution of (7).

As we did for g(t) (in (3)), we can now write

g(m) =

[
1 0 0
0 1 0

]
[G̃⊤

C,1G]
⊤ (12)

The difference of using I(g(m)) instead of I(g(t)) is that it allows
to obtain a patch that underwent a non-rigid deformation (see Fig. 2,
in which this procedure is illustrated for some images). Fig. 2 (a) top,
shows a horizontal contraction example. The red dots show the initial
canonical shape of the heart, and the blue dots depict the horizontally
scaled version of the initial shape. At the bottom of the Fig. 2 (a) it
can be seen the generated patches from the canonical and deformed
shapes. Fig. 2 (b,c) show examples of non-rigid deformations.

VII. SPARSE LOW DIMENSIONAL MANIFOLD

In this section we describe how the mappings between the contour
S ∈ R2×S (high dimensional) and the manifold M with dimension-
ality M are accomplished, using the lower dimensional variable m ∈
RM introduced in (4). We follow the strategy proposed in [3,79] that
is based on the tangent bundle concept of an M -dimensional manifold
M. Basically, this works by building and assembling multiple local
models or representations (i.e. the patches) in an agglomerative
fashion that are valid in distinct regions (please see supplementary for
more details). More specifically, the soft partitioning is accomplished
by using local PCA, which is based on a on maximum principal angle
between neighboring tangent subspaces. This procedure allows to
partition the manifold into several patches, where each patch contains
data points that are neighbours not only in terms of proximity but also
concerning its tangent space angles. The manifold learning algorithm
follows the main stages: (i) data partitioning and subsequent esti-
mation of each local coordinate system, and (ii) charts estimation.
Basically, given a set of contours S, it finds the intrinsic dimension
M , partitions the data into |P| patches, and estimates the forward-
backward mappings between contours S ∈ S and respective lower
representations m ∈ RM . That is, the charts are estimated as

m = ζ(S) (13)

and the corresponding parameterizations as

S = ξ(m) (14)

The search process for the optimization in (4) takes place in each
of the low dimensional patches {Pi}|P|

i=1 with initial guesses denoted

(a) X-scale (rigid) deformation patch

(b) non-rigid deformation

(c) non-rigid deformation

Fig. 2: Generation of samples I(g(m)) that are used as an input for
the proposed classifier p(m|I,D) in (4). For each example ((a),(b)
and (c)) the top-left image shows the initial grid containing the initial
shape (red) and the X-scale deformed shape (blue). The middle and
top-right images show the grid obtained according to the imposed
deformation (magenta and yellow). At the bottom ((a),(b) and (c)) it
is shown the initial patch (bottom-left) and the resulting deformation
patch obtained with the TPS (bottom-right).

by the patch member points m = ζ(S). Since the manifold learning
may provide a large number of patch members, this may result in
an inefficient search process. Thus, we resort to a patch member
point selection procedure, where the goal is to pick a subset of
representatives in each patch that preserves enough information about
the chart ζi. This subset is referred to as the landmarks.

The set of landmarks is obtained using the least square angle re-
gression (LARS) [80], which is based on the solution of a regression
problem that minimizes a regularized cost function [81]. If the set of
patch-member points is represented by Qi = {m1...,m|Pi|}, then
after the application of the above procedure, we obtain the subset
Li ⊆ Pi of size |Li|, which corresponds to the number of landmarks
in the ith patch. These landmarks will be the points used for the initial
guesses in the segmentation procedure, where in general, |Li| ̸= |Lj |
for Pi ̸= Pj . The sparsity is thus achieved by finding the above set of
landmarks. Table I describes the main steps for building the manifold
as described in this section (for more details, please refer to [3]).

Fig. 3 depicts the obtained manifold for the problem of left
ventricle segmentation (detailed in Sec. XIII-A), where the blue
circles are the training LV contours after the PCA procedure (only
the first three components are shown), and the red stars indicate the
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TABLE I: Obtaining the manifold M and sparsity.

• Input: training data DS.

• Output: patches P , low dimensional contours m ∈ RM ,
mappings between S ↔ m and landmarks L.

1) Data collection: Collect training object contour samples
DS = {S1, ...,S|D|}.

2) Intrinsic dimension: From the above dataset, estimate
the intrinsic manifold dimension M (see Appendix in the
supplementary material).

3) Partition: the manifold M is partitioned into patches P1, ...,Pp

using a soft-clustering method, based on two criteria: principal
angle and distance between points (see Appendix in the
supplementary material). See also Fig. 3 where the blue dots are
the patch-members found.

4) Chart and parameterizations: Given the above patch-partition
in M, compute the charts, i.e. the mappings between the
patches and tangent planes (see black arrows in Fig. 5) by
computing m = ζ(S), (see (13)). The parameterizations are
simply S = ξ(m), (see Eq. (14)) (see also [7,79] for more
details).

5) Sparsity: Finally, from the above set of patches member points
P1, ...,Pp, obtain a subset of its representatives, i.e. landmarks
L1, ...,Lp, with Li ∈ Pi and |Li| ≪ |Pi|. See the landmarks
in red dots in Fig. 3, that are a subset of the patch-members (also
see Section VII)

−300
−200

−100
0

100
200

−100

−50

0

50

100

150

200
−80

−60

−40

−20

0

20

40

60

80

100

Fig. 3: The graph shows the input LV contours (described in Sec.
XIII-A, i.e. S after the PCA reduction, the first three components are
shown for each contour (see blue dots). A total of 496 annotations
are given. This is the input to the sparse low dimensional manifold
learning (Sec. VII) The manifold learning algorithm estimates patch
member points distributed in 13 patches. In red it is shown the
landmarks estimated for these 13 patches.

landmarks obtained.

VIII. TRAINING PROCEDURE IN THE SPARSE LOW DIMENSIONAL

MANIFOLD

In this section, we first explain the main aspects of the training
process. The training of the DBN models relies on data augmentation,
but an interesting aspect of our work is that we can augment the data
by the application of geometric and appearance changes, and then
we can project the newly generated data to the learned manifold.

Data augmentation plays a regularization role, in which new
training data samples (i.e. positives and negatives training samples)
are artificially generated by sampling a noise vector from a Gaussian
distribution [82] using the available training data. However, the
artificial training samples are re-projected onto the learned manifold.
There are two advantages associated with this approach. First, since
the dimension of the manifold is small, there is no need to generate

TABLE II: Training.

• Input: low dimensional contours m.

• Output: positive T+ and negative T+ samples built from m

1) Train a multi-scale classifier, (represented by σ = {4, 8, 16})
using data augmentation (see (16)). Fig. 2 shows examples of
positive samples used for training the classifier.

a large number of artificial training data samples. Second, given
that the artificial samples are reprojected onto the manifold learned
from the training data, they resemble well the training samples.
Also, data augmentation has to be performed taking into account the
deformation of the object contour. To accomplish this, we resort to
the use of TPS (see Sec. VI), where the deformation of each contour
point can be estimated from the training data set. More specifically,
we collect the training set to obtain all the localizations for each
contour point, and run the Expectation Maximization (EM) algorithm
to obtain the statistical distribution for all contour points. Fig.4 shows
the statistical distribution of the contour points.3

Fig. 4: Statistical distribution for the LV contour points obtained with
the EM algorithm.

Fig. 5: Training procedure in the manifold. It is displayed the patches
(in green), at the bottom, the positive (blue) and negative (orange)
regions are displayed in the tangent hyper-planes.

For the classifier, we use the multiscale approach (as in [83]),
where an image scale space L(I, σ) is produced by convolving the
Gaussian kernel with the input image I, where the scales are σ ∈
{4, 8, 16} (see [83]). In order to train each classifier, we generate a
set of positive and negative samples, which are obtained as follows.
First, the estimation of the object contour in the image space from
the set is performed i.e. Ŝ = ζ−1(m). Second, use (11) to obtain
the non-rigid deformation grid G̃C (see Fig. 5). In order to generate

3In this case 21 initializations are provided for the EM algorithm, one for
each contour point.
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the positive and negative samples, we use the following distribution
based on the patch members m ∈ Qi of each patch Pi:

Dist(Pi) = U(range(Qi)), (15)

where U(range(Qi)) denotes the uniform distribution over the set
Qi of patch member points. The positive and negative generated
according to:

T+(i, j) =
{
m|m ∼ Dist(Pi), |m−mi,j | ≺ ri

}
T−(i) =

{
m|m ∼ Dist(Pi), |m−mi,j | ≻ 2× ri

for all j ∈ {1, ..., |Pi|}
} , (16)

where the margin between positive and negative samples is repre-
sented by ri = range(Qi) × κ, with κ ∈ (0, 1), ≺ and ≻ denote
the element-wise operators “less than” and “greater than” between
vectors. The margin defined in this way facilitates the training
process, avoiding the existence of similar samples with different
labels that can overtrain classifiers. Fig. 5 illustrates graphically the
data augmentation described above and how the artificial training
samples are generated. It is seen that the positive samples are drawn
from the blues area, while the negative samples are drawn from
the orange area. See Fig. 2 for an illustration of some of patches
generated. These samples are then used to train the discriminative
classifier parameters.

The DBN classifier (at a given scale σ) is trained by stacking
several hidden layers to reconstruct the input patches in T+ and T−
(see (16)). After this process, two nodes are added to the top layer of
the DBN, indicating p(m+|I,D) and p(m−|I,D). The classifier in
(4) is modeled by γMAP, meaning that p(m|I,D) can be represented
by p(m|I, γMAP). The classifier parameter γMAP is learned from
the patch-member points mi = ζi(Si) belonging to the patch Pi,
or from the landmark points, i.e. Li ⊆ Pi. This is accomplished as
follows [84]:

γMAP = argmax
γ

|P|∏
i=1

|Pi|∏
j=1

 ∏
m+∈T+(i,j)

p(m+|I, γ)


×

 ∏
m−∈T−(i)

(1− p(m−|I, γ))

 ,

(17)

where γ represents the model parameters of p(m|I, γ), which denotes
the classifier p(m|I,D) in (4) and

p(m|I, γMAP) = fsoftmax ◦ fQ ◦ gQ−1 ◦ fQ−1... ◦ g1 ◦ f1(I(t)), (18)

where ◦ represents the function composition operator, fsoftmax(.)
denotes the softmax activation function indicating the probability that
the input image I(t) contains the visual class of interest, fq(Iq−1) =

W
(γ)
q Iq−1 represents a linear transform from layer q − 1 to q (note

that there are Q layers in total), gq−1(.) denotes a logistic activation
function that takes as input the result from fq(Iq−1), I(t) (which
is equal to I0, i.e., the input to f1(.)) denotes the image region
extracted with the transformation parameters in At (see 3), and γ
represents the weight matrices for the Q layers, i.e. {W(γ)

q }Qq=1.
Table II summarizes the main steps for the training process.

IX. INFERENCE PROCEDURE FOR THE SEGMENTATION

In this section, we provide the details of the optimisation used in
the inference after the training process described in Sec. VIII. The
inference procedure to produce the segmentation takes an input test
image I and performs a gradient ascent procedure [85] on the output
of p(m|I, γMAP) that is computed in the low dimensional manifold

described in Sec. VII. This process will generate the final contour
S⋆ (see (1)) that we detail next.

The inference process can use either the landmark points in L or
patch-member points in P , depending on wether sparsity is used.
These points represent the initial guess for the gradient ascent (GA)
on the output of the classifier p(m|I, γMAP). Assuming the presence
of the object shape, i.e. p(m) = p(m+|I, γMAP), the GA algorithm
uses the Jacobian

∇p(m) =
[∂p(m)

∂m1
, ...,

∂p(m)

∂mM

]⊤
(19)

where each element of ∇p(m) is defined by

∂p(m)

∂m(1)
=

p(m+ v1)− p(m− v1)

ri(1)
(20)

where ri is the step size (see (16)), m(1) denotes the first dimension
of m and v1 = [ri(1)/2, 0, ..., 0]

⊤. Recall that in (20) the parameter
m± v1 is projected to the corresponding patch, i.e., S = ξ(m) (see
eq.(14)) in order to guarantee that this new quantity still belongs to
the manifold M.

Notice that the approach herein proposed resembles other gradient-
based search methods on manifolds, for instance, the method studied
by Helmke et al. [86], who propose a new optimization approach
for the essential matrix computation with the use of Gauss-Newton
iterations on a manifold in order to reduce the computational effort.
Another similar example is the use of Newton’s method on a manifold
structure [87]–[89]. Our approach represents an application of such
gradient-based search methods in the problem of top-down non-rigid
segmentation.

Once the GA search reaches the solution at the N th iteration, a
DBN segmentation and respective confidence are obtained. Notice,
however, that the GA process is applied to every patch in the manifold
M. The following section describes how to blend the proposal
segmentations of the patches to produce the final segmentation S⋆

(see (1)) for image I.

X. ENSEMBLE OF DBN CLASSIFIERS

To achieve the final segmentation S⋆, we propose a combination
of the segmentations from the patches (i.e., segmentation proposals)
using the DBN confidence. More specifically, the ensemble strategy
of the DBN classifiers comprises the following threes steps: (i) for
each patch compute the classification confidence, (ii) compute the
corresponding contour of the above confidence, and (iii) compute
the final segmentation combining the segmentation proposals of all
patches.

In the first step, and taking into account that each patch Pi has
a number of patch-member (or landmark) points, the GA procedure
provides several confidences for each patch as follows

FPi = {p(mij |IγMAP)}mij∈Pi (21)

where mij is the estimate from the jth member point in the ith patch
denoted by Pi.

The segmentation proposal for each patch is obtained by

m⋆
i = arg max

mij∈Pi

p(mij |I, γMAP). (22)

In the second step, the corresponding (high dimensional) contour
is found by computing S⋆

i = ξi(m
⋆
i ) (see (14)). Finally, the third

step blends the DBN as follows:

S⋆ =
1

Z

|P|∑
i=1

S⋆
i × p(m⋆

i |I, γMAP) (23)

Fig. 6 displays the segmentation process, where the level sets denote
the results of the classifier p(m|I, γ) that is used in the GA process.
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TABLE III: Segmentation.

• Input: image I;

• Output: segmentation S⋆ ∈ R2S

For each scale σi, and for each patch P1, ...,P|P| perform the
segmentation as follows:

1) Take the patch-member m ∈ P or landmark point m ∈ L as an
initial guess, i.e. m(0) = m to perform gradient ascent (GA)
on the output of the classifier p(m|I, γMAP) (see Eqs. (19,20))

2) Perform the ensemble DBN classification, as follows

a) Find the segmentation proposal m⋆
i for each patch (see

Eq. (22))

b) Find the corresponding (high dimensional) contour S⋆
i

c) Compute the final segmentation by performing the
following blending rule (see Eq. (23))

S⋆ =
1

Z

∑
i

S⋆
i × p(m⋆

i |I, γMAP)

Note that the search is performed on the low dimensional space of m,
and each patch has its own local maximum. Figure 11 illustrates the
segmentation process with four segmentation proposals (green dots)
along with the DBN confidences (top of each figure). On bottom
image (Fig. 11), the final segmentation is estimated (23).

Fig. 6: Segmentation procedure in the manifold. The patches are
also shown (top) and the gradient ascent (GA) is performed a low
dimensional space (bottom) with intrinsic dimension M .

When considering the sparsity on the manifold, the ensemble
strategy works in the same way, where the only difference is that
the set of landmark points i.e. L replaces P . The advantage is that
the sparsity leads to a |L| ≪ |P|, resulting in fewer computations in
the inference. Table III shows the steps of the inference process to
perform the segmentation using the ensemble of classifiers.

XI. RUNNING-TIME COMPLEXITY COMPARISONS

This section provides a comparison concerning the running time
complexity between the proposed approach and other approaches
available in the literature. The complexity of the non-rigid segmen-
tation approaches can be measured by the number of executions of
the rigid and non-rigid classifiers.

Table IV shows the different complexities concerning several
methodologies. A naive exhaustive search approach requires a com-
plexity shown in the first row of the Table IV, if we quantize each

TABLE IV: Comparison of object segmentation complexity in dif-
ferent approaches.

Methodologies Complexity

Naive approach O(K2S)

Exhaustive search (rigid + non-rigid)) O(KR + S)

Branch and bound [90] O(KR/2 + S)

Marginal space learning (MSL) [4] O(K + (R − 1) × ♯scales × Kfine + S)

Coarse-to-fine based methods [1,3,91] O(K + ♯scales × Kfine × R + S)

Sparse manifolds in the rigid detection [3,6] O((
∑

i |Li|) × ♯scales × M + S)

Proposed approach O((
∑

i |Li|) × ♯scales × M)

of the 2× S dimensions into K samples, where K = O(103). The
complexity of this naive approach has motivated the development of
more efficient methods.

The methodologies proposed in [1]–[5] try to reduce this com-
plexity by using a rigid classifier in the intermediate space t ∈ RR,
where R ∈ {4, 5}, and a non-rigid classifier that runs in the space
of S ∈ R2×S . (second row of the Table IV).

Other strategies have been proposed to reduce the segmentation
complexity. This includes the branch and bound framework [90]
(third row of Table IV) and marginal space learning (MSL) [4]
(fourth row). In the latter approach, ♯scales stands for the number of
scales, and Kfine represents the number of hypotheses to be tested
by the more complex classifiers in the model. Methodologies using
♯scales are characterized as a coarse-to-fine based approaches. For
instance, in [1,3,4,91], the number of scales is ♯scales = 3 and
the complexity of promising samples is assumed to be O(101). The
above methods use gradient ascent (GA) method in the space of R
dimensions (see fifth row of the Table IV).

Recent techniques using sparse manifolds [3] can reduce even more
the complexity as shown in the sixth row of Table IV. In this case,
the rigid detection is performed only in the set of landmarks (i.e.∑

i Li) of the estimated manifold, with the dimension M < R.
The non-rigid detection, however, takes place (as in the previous
coarse-to-fine methodologies) at the image domain. As such, the
reduction is achieved only in the rigid detection stage. In the present
formulation, we are able to integrate both rigid and non-rigid stages
in the manifold, thanks to the introduction of TPS deformations. This
means that the complexity no longer depends on S (thus removing
O(S)) (see seventh row of Table IV).

As a final remark, we should mention that that our approach is
orthogonal to all methods presented above, in the sense that any of
these methods can use our approach to achieve even higher efficiency
gains.

XII. EXPERIMENTAL SETUP

In this section we show empirical evidence that the use of the
proposed sparse low-dimensional manifold leads to less complex
classifiers and to segmentation methods without a negative impact
on the segmentation accuracy.

Three different databases are used to demonstrate the effectiveness
of the proposed approach. The first database contains ultrasound (US)
sequences of the LV of the heart [24], where the goal is to segment
the LV endocardial border. The second database has a sub-set of
the Cohn-Kanade (CK+) database [92], containing lip expressions in
video sequences. The third data set comprises a publicly available
data set from cardiac MRI sequences [93].

Note that the above datasets are chosen, since they share the
conditions where the object of interest undergoes a rigid transfor-
mation (e.g. affine transform) followed by a non-rigid deformation.
The main goal is to have a deformable object that changes its shape
through time (i.e. sequences of images containing the same object that
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suffered the two above transformations), and we wish to segment the
object using an explicit representation, where neighboring keypoints
in the segmentation are strongly correlated.

Concerning the problem of the LV segmentation, the data set used
for the experiments comprises 12 sequences for training and testing
(12 sequences from 12 subjects with no overlap), from which eight
present some kind of cardiopathy. According to the cardiologist’s
report4, the following cardiopathies/abnormalities are considered:

A total of 204 manual annotations were collected and the total
number of frames acquired in the 12 sequences is 3993. The expert
provided an average of 17 annotations per sequence with two anno-
tations in the systole phase plus 2 annotations in the diastole phase.
The annotation process was repeated during eight cardiac cycles in
each LV sequence.

The second database is a sub-set of the Cohn-Kanade (CK+)
database [92], where the objective is to segment the lips from video
sequences of people demonstrating different types of emotions. The
manual annotation of the lips has been provided. In order to test our
proposed approach, we select the surprise, happy and fear emotions,
which contains large shape deformation. We use 9 sequences for
training (roughly 189 annotations), where we used three sequences for
each of the emotions and each sequence has about 20-30 frames. For
testing, we used: 12 “surprise” sequences (194 frames), 12 “happy”
sequences (250 frames) and 15 “fear” sequences (261 frames). The
dimensionality of the object shape is S = 21 for the LV and S = 40
for the lips.

The third dataset contains 33 sequences acquired from different
subjects, where each sequence comprises 20 volumes, covering one
cardiac cycle, and the number of slices in each volume ranges from
5 to 10, with a spacing of 6 to 13 mm. In this dataset both healthy
and disease cases are present. The ground truth (GT) of the LV
segmentation in each slice is publicity available.

For the experiments below, we extend the method in [1,91]
(referred to as CAR1 and CAR2, respectively), where a coarse-to-fine
approach based on deep belief networks (DBN) [84] is used for the
segmentation procedure. The automatically learned sparse manifold
(Sec. VII) is different depending on the dataset used. For the LV
we obtain an intrinsic dimensionality of M = 2, with |P| = 13
patches, 1270 patch member points and 27 landmark points, where
the majority of the patches contains only one landmark (see Fig. 3).
For the lip case, the obtained intrinsic dimension is M = 2, with
|P| = 4 with 103 patch members points (corresponding to frame
used for training) and four landmark points.

In the training stage of the DBN, we used |T+(i, j)| =
{10, 15, 20, 50} positive and |T−(i)| = {100, 150, 200, 500} neg-
ative samples (for both datasets)5. We follow the same learning
procedure described in [91], which divides the initial training set into
training and validation sets containing 80% and 20% of the original
training set, respectively. This validation set is used to determine the
following DBN parameters: a) number of nodes per hidden layer, and
b) number of hidden layers.

A quantitative performance is conducted using the following error
measures proposed in the literature for contour comparison: (i)
Hausdorff (MAX) [94], (ii) mean absolute distance (MAD) [5],
(iii) Jaccard index (JCD) [95], (iv) mean sum of squared distance
(MSSD) and (v) average (AV) [24]. A comparison with the following
baseline approaches for LV segmentation is presented: COM [2,5],
CAR1 [1,91,96], CAR2 [3], and MMDA [24]. For the lip segmenta-

4This was done in collaboration with cardiologist from Hospital Fernando
Fonseca who detailed each of the sequences.

5In [91] the adopted data augmentation was |T−(i, j)| = {10},
|T+(i, j)| = {100}.

tion, we also provide a quantitative comparison between our approach
and the baseline methods in [1,3] 6.

We also present the running time figures of the proposed method
and that of CAR1 [1,91,96], CAR2 [3].

XIII. RESULTS

This section provides an extensive evaluation and comparisons in
terms of qualitative, quantitative and run time figures using the two
datasets mentioned above. Section XIII-A addresses the results for
several LV echocardiography sequences, Section XIII-B describes the
results achieved for lip segmentation in human face expressions and
Section XIII-C describes the results obtained in 3D LV Magnetic
Resonance Imaging.

A. Segmentation of the LV Endocardium from 2D B-mode Echocar-
diogram

For testing the proposed methodology in the segmentation of the
LV, we performed a leave-one-out cross validation (i.e., given that
we have 12 sequences, this implies a 12-fold cross validation). For
the training stage the following steps are performed:

1) 12 different versions of the manifold are generated (see Section
VII), where each version of the manifold is obtained using 11
sequences for training, leaving one sequence out for testing.
This provides a set of landmark points for each of the 12
manifolds.

2) Given that we work with the configurations sets of
{{10, 100}, {15, 150}, {20, 200}, {50, 500}} for positive and
negatives (i.e. data augmentation), and since a coarse-to-fine
approach is used (i.e. σ ∈ {4, 8, 16}), a total of 11× 4× 3 =
132 DBN classifiers are trained.

3) The obtained classifiers have a small number of hidden layers
as follows: two layers for σ =∈ {8, 16} and four layers for
σ = 4

For the segmentation stage, we have:
1) Each sequence has on average 17 manually annotated frames.

Since four data augmentation configurations are used for every
version of the manifold, we have 17 × 12 × 4 = 816 LV
segmentations.

Fig. 7: LV segmentation using 12-fold cross validation. From left
to right: Jaccard index (JCD), average (AV) mean absolute distance
(MAD) and mean sum of squared distance (MSSD) as a function of
the number of positives and negatives used during training. The top
row shows the results using the proposed method with the landmarks
and the bottom row is the baseline approach based on the patch
member points.

In this experiment we compute the measures described in Sec. XII.
The measures are shown in box-plots for several data augmentation

6We have not provided the results of COM and CAR2 because they are
not available for this database
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Fig. 8: Several positive-negative data augmentation configuration,
using Jaccard index (a) and Average metric (b). The proposed data
augmentation (blue) using elastic deformation is shown in blue, while
the traditional data augmentation (with rigid deformations) is shown
in red.

configurations. The results presented herein are calculated from 194
segmentations (≈17 annotations × 12 sequences). In this experiment,
we compare the baseline version of the framework without sparsity
and the version based on sparse manifold. In the first version,
several patch member points are obtained for each patch, whilst
for the second, only sparse landmark points are considered. The
main difference is that the use of patch member points results in
a more computationally intensive GA (see (21)). The goal of this
experiment is to demonstrate that the use of landmarks allows for
a smaller computational cost while maintaining the accuracy of the
segmentation when compared with the baseline version.

Fig. 7 compares the results obtained with the landmark points (top)
against the baseline version of the proposal (bottom). It can be seen
that, generally, the accuracy results does not change significantly
with the variation of the number of positive and negatives (see JCD,
MAX and MSSD measures) for both versions. Both versions show
competitive results, where the Jaccard index is always below 0.2 and
the average metric is lower than 10 pixels. Concerning the the MAX
and MSSD measures, both versions provide a distance between 40-50
pixels and around 10-12 pixels, respectively.

1) Comparison with Classic Data Augmentation Strategy: In
this section, we provide a comparison between the proposed data-
augmentation (see Sec XIII-A) against a more traditional data aug-
mentation. Basically, we aim at studying the gains of using the elastic
deformations through TPS proposed compared with a more traditional
data augmentation procedure based on affine transformation to the
original training images, in order to produce new artificial training
samples. More specifically, we generate new samples per training
image following the previous configuration of positive and negatives,
i.e. {(10-100), (15-150), (20-200),(50-500)}, where the transforma-
tion consists of randomly cropping the original training image from
the top-left and bottom-right corners within a range of [1, 10] pixels
from the original corners and a small rotation within 15 degrees of the
LV shape. Figure 8, shows the performance of the two DA strategies,
using the Jaccard index (JCD) and average (AV) measures. The results
follows the same 12-fold cross validation strategy as described above.
From the results we conclude that the proposed data augmentation
seems to be more effective at producing more realistic artificial data
for training the models.

2) Comparison with Previously Proposed LV Segmentation Ap-
proaches: We also compare the proposed framework with other
related approaches, which have been demonstrated to be successful at
segmenting the LV (see Fig. 9). A particle filtering using deep learn-
ing classifiers proposed in [1,96] (CAR) that yields state-of-the-art
performance in this dataset. An information fusion tracker proposed

in [2,5] (COM) that decouples the uncertainty in terms of dynamics
and statistical shape constraints introducing a unified framework that
fuses both the subspace shape model, system dynamics, as well as
the uncertainty measurements. Also, we perform a comparison with
the Multiple Model Data Association tracker (MMDA) [24]. This
tracker is based on a deformable active contour that switches in
the prediction step between two pre-trained dynamical models (one
contraction and expansion model to cope with systole and diastole
phases, respectively). All the above trackers were run in T1 and T2

test sequences.

Fig. 9: Quantitative results using the test sequences T1 (top) and
T2 (bottom). Quantitative comparison using (from left to right)
JCD, AV, MAD and MSSD, measures. In each graph (from left
to right in the box-plots) we show the performance of the algo-
rithms COM, CAR, MMDA and the proposed framework for the
{(10, 100), (15, 150), (20, 200), (50, 500)} positive-negative config-
urations.

Fig. 9 shows a quantitative comparison of the LV segmentation
accuracy using the measures described in Sec. XII for the first
test sequence T1 (top row) and for the second test sequence T2

(bottom row). Fig. 10 shows some examples of the segmentations
obtained with the proposed approach and with the other related
techniques. It can be seen that the best results achieved belongs
to CAR method. Also COM exhibits remarkable performance. The
methodology herein proposed achieves a competitive accuracy perfor-
mance compared to the other methods. We may argue that both CAR
and COM are tracking procedures, meaning that temporal information
is incorporated, while our approach does not explore the temporal
information.

Fig. 11 shows partial the patch segmentations along with the cor-
responding (un-normalize) weights given by the DBN (left). On the
right, we can see the linear combination as a final segmentation result
(green) superimposed with the ground-truth (red). It is interesting to
notice that the deep belief network gives more weight to the correct
segmentations (see two top images).

Table VII shows a comparison with [6] in which the segmentation
is partitioned in two stages: rigid and non-rigid (RNR). We see
that [6] spends 2.37s for the segmentation from which 1.7s is for the
rigid-detection and 0.67 for the non-rigid detection. The proposed
framework spends 2.07s for the segmentation that corresponds to
the non-rigid segmentation. Notice that the TPS parameterization
(i.e. image warp) is negligible, taking only 0.017 sec. The accuracy
performance of the proposed approach is similar to [6] regarding
all metrics used. For both approaches the obtained best scores are
JCD ≈ 0.25, AV < 6 pixel, and 5 < MSSD < 10 pixel.7

In order to measure the statistical significance of the results
presented, we also perform the Wilcoxon signed-rank tests, assuming

7For comparison purposes the same configurations of positive-negative
samples are used.
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Fig. 10: Qualitative comparison for the test sequence. The segmenta-
tion of each tracker (and the expert annotation) is shown in different
colors as follows: green (medical ground-truth), pink (COM tracker),
yellow (CAR tracker), cyan (MMDA tracker) and red (proposed
approach).

0.046 0.039 0.017 0.012

(a) Partial Segmentations

(b) Final segmentation

Fig. 11: Illustration of the LV segmentation in a test sequence. (Top)
Segmentation of the most relevant patches with the corresponding
(non-normalized) DBN weights (a) and the final segmentation (b).
(Bottom) The estimated contours are in green and the ground truth
in red.

that null hypothesis is the hypothesis that there is no difference
between the results of the proposed method and the other methods.
This is accomplished by computing the LV volumes of the ground
truth (provided by an expert annotations) and the volumes provided
by the contour estimates of the proposed framework. The objective
of this study is to show that the results obtained with the proposed
approach are competitive with the state of the art related methodolo-
gies. Assuming a significance level of 1%, (see Table V), we can
conclude that we cannot reject the null hypothesis stated above.

B. Lip Segmentation

Fig. 12 illustrates the quantitative evaluation concerning the metrics
described in Sec. XII. We see that competitive results are achieved

TABLE V: Wilcoxon signed-rank test (WSR test) between the
volumes estimated with the proposed approach and with the CAR [1],
COM [2,5] and MMDA approaches on the LV test sequences.

Data augmentation training sizes
10 − 100 15 − 150 20 − 200 50 − 500

CAR 0.2368 0.0347 0.0879 0.0898
COM 0.2358 0.0597 0.1027 0.1495
MMDA 0.2366 0.2457 0.1671 0.2108

Fig. 12: Quantitative performance for: 12 “surprise” sequences (top),
12 “happy” sequences (middle) and 15 “fear” sequences (bottom)
using the metrics mentioned in Sec. XII.

TABLE VI: Wilcoxon signed-rank test (WSR test) between the areas
estimated with the proposed approach and with the CAR [1] on the
Surprise and Happy test sequences.

Data augmentation training sizes
{10 − 100} {15 − 150} {20 − 200} {50 − 500}

Surprise 0.2893 0.2222 0.3113 0.2910
Happy 0.2425 0.2366 0.2600 0.1723

in all configuration of the data augmentation. The best results are
achieved for the “fear” sequences (see bottom row of the table). This
is perhaps due to the smaller lip motion when comparing with the
other two sequences.

Fig. 13, show three snapshots of “surprise”, (top row) “happy”
(middle row) and “fear” (boom row) sequences, respectively. Each
image corresponds to a given phase of the expression in a different
subject. See supplementary material for more results in these se-
quences. As in the LV case, we also perform a statistical significance
of the results on both sequences, we again assume that null hypothesis
is the hypothesis that there is no difference between the results
of the proposed method and the other methods. The results of the
Wilcoxon signed-rank test are shown in Table VI, where we again
cannot reject the null hypothesis. A comparison between the proposed
methodology and with CAR is also conducted (see the bottom of the
table where a graphical illustration is shown). To achieve these results
we have to compute first the lip area computed from the 2D contours.

Table VII shows a comparison with [6] for the lip experiments. It
shows that the two-stage approach [6] takes between 2.60 and 2.63
sec. for the segmentation (“surprise”, “happy” and “fear” sequences),
from which 2.41 to 2.44 sec. are spent on the rigid detection and 0.19
sec. on the non-rigid segmentation. The proposed framework provides
an improvement over [6] where the time spent for the segmentation
varies between 1.66 and 2.22 sec. The accuracy performance of the
proposed approach is similar to [6] in the metrics used. The obtained
best scores are JCD ≈ 0.23, AV ≈ 3 pixel, MAX < 10 pixel,
MAD < 50 pixel, and 5 < MSSD < 10 pixel.8

C. Comparison with FCN - LV Segmentation in MRI

Due to the success of Convolutional Neural Networks (CNN) in
several domains of application (e.g. [97]), we also compare the pro-
posed framework with CNN in the problem of the LV segmentation
in magnetic resonance imaging (MRI). As already detailed, the Fully

8These values are obtained for same the configurations of positive and
negative samples, i.e. using {10− 100}, {20− 200}.
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Fig. 13: Lip segmentation results produced by our proposal (red)
jointly with the CAR estimates (blue) and the manual annotations
(green) for “surprise” (top row) and “happy” (middle row). At the
bottom it is shown the results produced by our proposal (red),
superimposed with the ground truth (green) for fear sequences.

TABLE VII: Running time figures for the LV and Lips sequences,
comparison with [6]. The results are shown in sec. per frame.

Sequences RNR [6] Proposal
LV (T1,T2) 2.37 = 1.7 (R) + 0.67 (NR) 1.7 = 1.68 (NR) + 0.017 (TPS)

Surprise 2.63 = 2.44 (R) + 0.19 (NR) 2.07 = 2.07 (NR) + 0.002 (TPS)
Lip Happy 2.60 = 2.41 (R) + 0.19 (NR) 1.66 = 1.66 (NR) + 0.002 (TPS)

Fear 2.60 = 2.41 (R) + 0.19 (NR) 2.22 = 2.22 (NR) + 0.002 (TPS)

Convolutional Network (FCN), based on CNNs [72] is trained to
produce a pixel wise semantic segmentation, which is the problem
being addressed in this paper.

For this purpose, we use a publicly available data set from
cardiac MRI sequences [93] that contains 33 sequences acquired from
different subjects, where each sequence comprises 20 volumes.

In our experimental setup, the FCN receives an input image of size
101 × 101, and the architecture of the network (see Fig. 14) is as
follows: the first convolutional stage has 50 5 × 5 filters followed
by a ReLU layer and a max-pooling that sub-samples the input by 2
(48×48); the second convolutional stage has 250 5×5 filters followed
by a ReLU layer (44× 44) and a max-pooling that sub-samples the
input by 2 (22× 22); the third (18× 18), fourth (14× 14) and fifth
(10×10) convolutional stages have 500 5×5 filters, each followed by
a ReLU layer with no subsampling; and finally one deconvolutional
(23 × 23) stage with 500 5 × 5. Thus, in total we have L = 14
layers. In the training process, the learning rate is fixed at 0.0001
and momentum is equal to 0.9; the batchSize = 10; the number of
epochs is 100; the weight decay is 0.0005.

We follow a leave-one-subject-out cross validation, i.e. 20 volumes
for testing and 20× 32 volumes for training. Also, for the proposed
methodology, we follow the strategy described in Sec. XIII.

For the FCN segmentation we have to estimate the threshold from

the training data. Notice that the FCN provides a probability map
(see Fig. 15 middle column) which have to be binarized to obtain
the final segmentation (see Fig. 15 right column). For each fold (i.e.
test subject p), this process is based on the following steps:

1) Obtain the FCN segmentation map from the training set repre-
sented as FCNtrn

map and obtain threshold T (p) from that training
set,

2) Obtain the FCN segmentation map for the test subject p, which
is denoted by, FCNtst

map(p),
3) Obtain the final segmentation for the test subject p, with the

threshold T (p) producing FCN⋆
seg(p)

The steps 1), 2) are related to the training that are detailed in the
supplementary material (see Algorithm 1). The step 3) is related with
the evaluation of the model and it is detailed in the supplementary
material (see Algorithm 2).

Figure 15 shows several LV segmentation examples in MRI
taken in basal slice (top row) and apical slice (bottom row). More
specifically, it is shown the input MRI image of the LV (left
column), the segmentation map FCNtst

MAP(p) (middle column), and
the segmentation FCN⋆

seg(p) (right column) obtained using the the
Algorithms 1,2 (see supplementary material), where, it is shown the
ground truth GT(p) delineated by a red line, (see more qualitative
results in the supplementary material).

Figure 16 shows a quantitative comparison between the FCN
(left) and the proposed method (right) using the Intersection over
Union (IoU) coefficient. Each boxplot refers to the segmentations
obtained for the 20 volumes of each subject. It can be seen that the
performance of the FCN is similar, where the proposed framework
achieves competitive segmentation accuracy.

Fig. 15: Segmentation of the LV Endocardium using the FCN. Input
image (left), probability map of the FCN (middle), segmentation after
the threshold operation in red color (right). The white part is the
segmentation while the red line is the ground truth.
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Fig. 16: Accuracy in the FCN semantic segmentation (green), and the
proposed segmentation (blue) using the IoU metric. The mean(std)
values are: 0.801(0.05) for the FCN and 0.785(0.05) for the proposed
approach.
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Fig. 14: Architecture of the FCN used for comparison (see text).

XIV. CONCLUDING REMARKS

This paper proposes a novel deep learning method for object
segmentation with low training complexity that needs small training
sets. These two advantages speed up the training time when compared
to recent state-of-the-art approaches. We are able to address the above
challenges with a manifold learning strategy for the optimisation that
results in the segmentation. The combination of deep and manifold
learning is still scarce in the literature, but we anticipate that the use
of these techniques will grow in the near future. An extensive study
in Sec. XIII provides evidence of the robustness of the methodology
when small training datasets are provided (see the positive-negative
configurations in the experiments). The training times are indeed
small – we obtained training times under four hours to train the three-
scale classifiers with 50-500 (positive-negative) samples and under
two hours for the remaining training configurations. This is possible
given the low complexity of the classifier structures (see Sec. XIII-
A). Naturally some issues are raised using low dimensional data for
segmenting contours. One of the issues is the patch selection used
in the initial guess for the optimisation process. We handle this issue
by proposing a novel and effective strategy, where all the patches in
the manifold are taken into consideration for the segmentation. Since
the reliability of each patch varies, we use the deep belief networks
confidence to produce a final segmentation.

XV. DISCUSSION LIMITATIONS AND FUTURE WORK

In this paper, we show that it is possible to have a machine
learning based segmentation system that operates directly on the
space combining the rigid and non-rigid deformations. We should
highlight that the non-rigid deformation is incorporated via thin
plate splines, allowing the net to learn object deformations. This
constitutes new way to perform the regularization of the network.
Also, we show evidence that this space can be represented with
manifolds of low dimensionality and by associating points in this
manifold to segmentation probability values (given a test image), it
is possible to run a gradient ascent algorithm that quickly finds the
correct segmentation. Moreover, the reduced dimensionality of this
manifold also constrains the complexity of the trained model, which
further reduces the search complexity. In our experiments, we show
that our approach efficient when compared to other state-of-the-art
approaches [1,3,91], while producing competitive results in terms of
accuracy. We also show that the models trained are less complex than
the ones used by other approaches [1,91].

One of the difficulties of our approach that we plan to address
in the future is with respect to its generalization capability. More
specifically, if a test sample presents rigid and non-rigid transform
parameters that are substantially different from the ones in the training
set, our approach may fail to converge. Another difficulty is that the
proposed regularization technique is tailored to objects that suffer
non-rigid deformations. For other types of deformations, our approach

may not be the most appropriate. As a final remark, we should
stress that we plan to extend this approach to tracking problems (i.e.,
segmentation in space and time) with the introduction of a motion
model that works directly in this manifold of low dimensionality [98].
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