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ABSTRACT

This paper proposes a novel combination of manifold learning
with deep belief networks for the detection and segmentation
of left ventricle (LV) in 2D - ultrasound (US) images. The
main goal is to reduce both training and inference complexi-
ties while maintaining the segmentation accuracy of machine
learning based methods for non-rigid segmentation method-
ologies. The manifold learning approach used can be viewed
as an atlas-based segmentation. It partitions the data into sev-
eral patches. Each patch proposes a segmentation of the LV
that somehow must be fused. This is accomplished by a deep
belief network (DBN) multi-classifier that assigns a weight
for each patch LV segmentation. The approach is thus three-
fold: (i) it does not rely on a single segmentation, (ii) it pro-
vides a great reduction in the rigid detection phase that is per-
formed at lower dimensional space comparing with the initial
contour space, and (iii) DBN’s allows for a training process
that can produce robust appearance models without the need
of large annotated training sets.

1. INTRODUCTION

Two sequential stages are typical in current machine learning
methodologies for object segmentation [1, 2]: (i) rigid detec-
tion (coarse step) and (ii) non-rigid segmentation (fine step).
The first step (rigid detection) is of crucial importance, since
it reduces the search running time and training complexities.
This paper achieves a complexity reduction of the rigid detec-
tion1 by using a manifold learning algorithm. This is an atlas-
based segmentation, in sense that the manifold partitions (by
soft clustering) the data into several patches using two distinct
assumptions: (i)preserving the angular within a patch using
a smaller number of points and (ii) the distance (i.e. neigh-
borhood) within these points [4]. Each patch in the learned
manifold provides a segmentation proposal. Since multiple
patches are obtained, multiple segmentations should be com-
bined. In this paper, a novel strategy to accomplish this is
developed. More specifically, a DBN multi-classifier for fi-
nal segmentation is proposed. This means that a multi-atlas
segmentation strategy is followed, i.e. the different segmenta-

This work was supported by the FCT project [ UID/EEA/50009/2013]
and by Australian Research Council, discovery project DP140102794.

1State-of-the-art rigid detection produces in practice, translation, rotation
and scaling of the visual object, (e.g [3]), i.e. R = 5. In this paper, the rigid
detection space achieves M < R, where M in the intrinsic dimension of the
manifold. See Section 6.1.

tions are fused within patches, in which the weights are given
by the deep belief network classifiers.

2. RELATED WORK

There exists works showing that the use of multiple segmen-
tations as classifiers and combining them using fusion rules
improve the segmentation accuracy. This has been shown in
[5], where it is discussed different techniques for atlas se-
lection and where several individual images are used as at-
lases and multi-classifier for the final segmentation. In the
attempt to improve the reliance on a single segmentation in
[6] it is proposed the so called STAPLE, in which the classi-
fiers are weighted using the expectation-maximization (EM)
algorithm. It has been shown that Multi-atlas propagation is
useful in the context of brain segmentation in MRI. In [7], it
is shown the superiority of using multi-atlas propagation and
fusion when compared with single atlases for the segmenta-
tion of unseen images. The study presented in [8] also avoids
the use of a single atlases, using instead, a family of templates.
In [9] the LEAP framework for multi-atlas is proposed, where
the initial atlases may represent a subset of target images. The
goal is then to propagate a small number of atlases through a
large set of MRI brain containing a significant amount of vari-
ability among the anatomical structures. Another contribution
that uses manifold learning as a tool for atlas selection has
been presented in [10] where three different manifold learn-
ing techniques (ISOMAP, LLE and Laplacian Eigenmaps) are
assessed to select the best atlases and to combine in the multi-
atlas segmentation context.

In this paper, our multiple atlas segmentation exhibits the
following advantages: (i) reduction of the rigid detection
space achieving M < R, using manifold with low intrin-
sic dimensionality which allows for a faster inference process
(ii) reduction of the training data sets, since now the positives
and negatives samples lie on the learned low-dimensional
manifold and (iii) multiple segmentations fusion that allows
for accuracy segmentation. We illustrate the performance of
the proposed approach in the segmentation of the LV in 2D
US data.

3. PROBLEM STATEMENT

The goal is to produce a non-rigid segmentation, say y ∈ R2S

containing S 2-D points, representing the segmentation con-
tour. We will represent the training set by D = {(x,y)j}|D|j=1,



where xj : Ω → R denotes the training images, yj denotes
the corresponding manual annotations and Ω stands for the
image domain. The segmentation is achieved using the fol-
lowing function:

y∗ = Ep(y|x,D)[y] =

∫
y

yp(y|x,D)dy. (1)

The high dimensionality of y makes the computation of (1)
challenging. The usual solution is the introduction of a coarse
search step that can be solved in lower dimensionality, where
the solutions are used to constrain and initialize an optimiza-
tion process that can produce samples y, which are then used
in a Monte Carlo approximation of (1). This coarse step in-
volves the use of a hidden variable t ∈ RR, with R << 2S,
as follows [11, 12, 13]:

p(y|x,D) =

∫
t

p(t|x,D)p(y|t,x,D)dt. (2)

where the variable t is used to transform linearly the coordi-
nates of a window that encloses the mean segmentation con-
tour. This linear transform is obtained from the variable t as
follows: At = f(t), where At ∈ R3×3 (see [11, 12, 13] for
details). The meaning of each term in (2) is as follows: (i)
p(t|x,D) represents the rigid detection classifier that outputs
the probability of having the visual object within the bound-
aries of the window transformed by t; (ii) p(y|t,x,D) is the
non-rigid segmentation classifier denoted by the probability
of finding the contour y in image x given the value of t. This
means that t denotes an initial guess for y and at the same
time it constrains the search space of y to be around the mean
segmentation contour transformed by t.

Assuming that the original rigid search space represented
by the variable t has dimension R = 5 (i.e. accounting for
translation, rotation and scaling, e.g. [3]), one of the objec-
tives of this paper is the introduction of a new space for t
with dimensionM < R, based on a manifold learning, where
this rigid search will take place with gradient descent search
mechanism on the manifold.

4. LEARNING THE MANIFOLD

The framework presented herein uses the manifold learning
algorithm proposed in [4]. Basically, from a training samples
{yj}|D|j=1, this framework finds a manifold M contained in
R2S , associated with a set of one-to-one mappings ζi : Pi →
Ui (i.e. the charts) and invertible functions yi,j = ξi(ti,j),
(or parameterizations ξi : Ui → Pi), where Pi ⊂ M and
Ui ⊂ Rn. The manifold M is covered by the union of the
overlapped Pi, with i = 1, .., |P |. The Pi are called patches
and Ui are the parametric domains of M. Locally, M it is
at least homeomorphic to RM having an intrinsic dimension
of M . The set of charts A = {ζi} is called an atlas. See
[4] for details. Fig. 1 (top) illustrates the main concepts used
in the manifold learning algorithm. Thus, one innovation of
this paper is the execution of the segmentation in (2) directly
on the manifold M. Fig.1 (bottom) illustrates the learned
manifold for the LV segmentation. In this figure, each circle
is a LV annotation after a PCA reduction.
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Fig. 1. (Top) Partition of the data (contours) into patches (only
one patch is shown) and the corresponding tangent hyperplane. The
forward-backward mappings are shown in black arrows. The black
dots are the contours on the manifold (in orange) and their respective
low dimensional representation (in green tangent space). (Bottom)
Manifold obtained for the LV segmentation problem. The graph il-
lustrates the patch member points after a PCA reduction (the first
three dimensions are shown). Each color denotes the patch-members
in a different patch.

5. TRAINING AND INFERENCE ON THE
MANIFOLD USING DEEP BELIEF NETWORKS

The rigid detection classifier in (2) is modeled by the pa-
rameter vector γMAP (learned with a MAP learning algo-
rithm), which means that p(t|x,D) is herein denoted by
p(t|x, γMAP). The parameter vector γMAP is estimated using
a set of training samples taken from the patch member points
ti,j = ζi(yi,j) (for j ∈ {1, ..., |Pi|}) of each learned patch Pi
produced by the manifold learning algorithm. Specifically,
the generation of positive and negative samples involves the
following steps: 1) estimate the contour in the original image
space from ŷi,j = ζ−1i (ti,j); and 2) find the transformation
matrix Ati,j of the image window enclosing the segmentation
contour ŷi,j produced in step (1) (see Fig. 1 top).

For training the classifier, we take the patch members
ti,j ∈M to build the positives and negatives sets, as follows,

Dist(Pi) = U(R(ti,j)) (3)
where U denotes an uniform distribution over the range R of
the patch-member points in Pi. More specifically, for the i-th
patch the positives and negative are generated as follows,

Pos(i,j) =
{
t
∣∣∣t ∼ Dist(Pi), |t− ti,j | ≺ ri

}
N eg(i,j) =

{
t|t ∼ Dist(Pi), |t− ti,j | � 2× ri

for all j ∈ {1, ..., |Pi|}
} , (4)



where ri is the margin between positive and negative samples
and where |.| returns the absolute value of the difference. The
samples drawn in (4) are used to learn the rigid classifier by
maximizing the following cost function [14]

φMAP = arg max
φ

|P|∏
i=1

|Pi|∏
j=1

( ∏
t∈Pos(i,j)

p(t|x, φ)
)

×
( ∏
t∈Neg(i,j)

(1− p(t|x, φ))
)
.

(5)

where |Pi| is the number of patch members in the i-th patch.
For training the non-rigid classifier (see second term in (2))
we follow our previous work [15], that is

ψMAP = arg max
ψ

|P|∏
i=1

|Pi|∏
j=1

L∏
l=1

p(yi,j(l)|ti,j ,x, ψ) (6)

where ψ represents the deep belief network (DBN) weights
and yi,j(l) ∈ [0, .., C], is the l-th orthogonal line of the con-
tour represented by yi,j with C-length. More specifically,
p(yi,j(l)|ti,j ,x), is a regressor that receives as the input a
profile of the image gray levels taken at the orthogonal line
from each contour point yi,j(l), and outputs an image lo-
cation at that l-th orthogonal line. Notice that, the training
strategy follows the same strategy as in [15] with the fol-
lowing key difference: the inference procedure to generate
the segmentation contour in the image x, takes each patch-
member ti,j from each learned patch Pi as an initial guess
for the gradiente procedure on the output of the rigid classi-
fier p(t|x, φMAP) in the manifold M. Whereas in [15], the
initial guess of the gradient is taken at t ∈ R5 that represents
the parameters of an affine transformation that aligns the con-
tour in a canonical coordinate system. This approach herein
proposed has the advantage of providing ti,j ∈ RM , with the
lower intrinsic M -dimensionality of the manifold2.

For the gradient ascent, a number of iterations is used3.
Once the gradient ascent is reached for each patch-member
ti,j , the estimate ŷ is obtained by the following Monte-Carlo
approximation

ŷ =
1

Z

|P|∑
i=1

|Pi|∑
j=1

y p(t̃i,j |x, φMAP) p(y|̃ti,j ,x, ψMAP) (7)

estimate in the gradient process.

6. EXPERIMENTAL EVALUATION

In this section we illustrate the performance of the proposed
approach targeted to the two goals mentioned in Section 1. To
accomplish this, we provide a study concerning the use of a
relatively small annotated training sets, providing segmenta-
tion results for several configurations of positive and negative
sets. Also, we provide a comparison of running time figures
with other methods to observe the running time improvement.

2In the experiments shown in Section 6 we obtained an intrinsic dimen-
sion of M = 2.

3In this work, and from the experiments conducted, we concluded that
above five iterations no changes were observed.

6.1. Experimental setup

For the segmentation of the LV from US sequences [16], 14
sequences taken from 14 different subjects are considered.
We worked with a cardiologist, who annotated 480 images
in 14 sequences. We stress that the annotations in the training
set contain the same number of keypoints, and that the base
and apical points are explicitly identified in order for us to de-
termine the rigid transformation between each annotation and
the canonical location of such points in the reference patch.

The dimensionality of the representation for the LV con-
tour is S = 21. The manifold learning algorithm produces:
(i) |P| = 7 patches, with a total of 496 patch member points,
and (ii) M = 2 for the dimensionality of the rigid search
space (i.e., the intrinsic dimensionality of the manifold). It is
worth mentioning that the original dimensionality of the rigid
search space is R = 5 (representing two translation, one ro-
tation and two scale parameters), which is the dimensionality
usually found in current state-of-the-art methods [17, 11, 13,
3]. See Fig. 1 (bottom) for an illustration of the results of our
manifold learning algorithm on the LV segmentation problem.
In this figure, the circles (each color for each patch-member
point) are the annotations after PCA reduction.

The training and inference methods used in this paper fol-
lows a coarse-to-fine rigid detector p(t|x, γMAP) and a non-
rigid classifier p(y|t,x, λMAP) based on deep belief networks
(DBN) [14]. The key issue is the use of low-dimensional
manifolds to represent the rigid detection space, which means
that we re-trained the coarse-to-fine rigid detector to run on
the learned manifold. Also, the proposed classifier is esti-
mated using training sets of different sizes, where the number
of additional training samples can be reduced with the use of
our low-dimensionality manifold. Specifically, we vary the
size of the set of positive samples by varying the number of
additional positive and negative samples per training image,
as follows |Pos(p, j)| ∈ {1, 5, 10, 15, 20}, and the size of
negative samples as |N eg(p, j)| ∈ {10, 50, 100, 150, 200},
as explained in (4).

6.2. Experimental results and comparison evaluation

The performance of our approach is assessed with a quan-
titative comparison over the test sets. The experiments are
divided in two main parts: (i) we perform a n-fold valida-
tion over the 14 sequences, and (ii) we perform a comparison
with state-of-the-art methods, e.g. [11, 13] and [17]. To ac-
complish the later, we train our method in 12 sequences per-
forming the test in the remaining two test sequences, termed
herein as T1 and T2. This is because we have available the
segmentation results of the above state-of-the art methods in
these two sequences.

Quantitative comparison is performed using (i) Jaccard
distance (JCD) and (ii) average distance (AV) [16].

We start by illustrating an example of a test frame seg-
mentation provided by our multi-atlas approach in Fig. 2. It is
shown the segmentation of each patch found in the manifold
along with the confidences given by the DBN. In the left most
image, we see that the segmentation estimated by this patch is
a bit under the apex location. In the right most image, the left
side of the contour and the base points are slightly above the



correct locations. In these two situations the DBN correctly
provides low confidences. The other two segmentations are
accurate and receive high confidence of the DBN providing,
in this way, accuracy robustness in the final segmentation, that
is accomplished using (7).

Fig. 3 shows the error metric statistics of the segmenta-
tions. In the first row, each box-plot is a mean value over
the segmentations performed in the n-fold validation. From
the figure, remarkable performance is achieved. The Jaccard
distance seems the metric that most distinguish the results.
For all configurations of the training sets the performance is
similar, being the best result below 0.20 (see configuration
{20, 200}).

The 2nd and the 3rd rows of the Fig. 3 shows a com-
parison with [11, 13] and [17] approaches using the two
measures already mentioned. For this comparison, we also
varied training set sizes as in the previous experiment. In this
figure, we observe that all the methods exhibit a dJCD < 0.2
and dAV < 4 pixel for the test sequence T1 (see top row).
For the second test sequence (T2), only the method in [17] is
able to produce JCD < 0.2 and all the methods provide an
average error AV < 4 (see bottom row and for the configura-
tion {20, 200}). We stress that, however, this comparison is a
bit unfair since in [17] a dynamical model is used, whereas
our framework is purely for segmentation without any time
information.

Fig. 4 shows a qualitative comparison displaying the seg-
mentation results from our method and also from [11, 13] and
[17] illustrating some snapshots of the LV test sequences.We
compare the running time figures of our approach with [17].
The mean running time of our approach for both sequences is
2.77 sec., while for [17] is 7.4 seconds. From the obtained
running time of the proposal, 2.60 sec. is needed for the rigid
part. The non-rigid part takes 0.17 sec. All these running time
figures were obtained with unoptimized Matlab implementa-
tions on a computer with the following configuration: Intel
Core i5, with 4GB of RAM.

0.01297 0.994481 0.97103 0.443414

Fig. 2. Muti-atlas segmentation illustrating each patch proposal
segmentation along with the confidence provided by the deep be-
lief network. From the 7 patches in the manifold (see Section 6.1), it
is shown the results in four patches.

7. CONCLUSIONS

We presented a multi-atlas segmentation methodology for
non-rigid object segmentation. The methodology combines
the deep learning architecture with the use of manifold
learning. The main contribution and focus of the paper is
the dimensionality reduction of the segmentation contour
parametrization for the rigid segmentation stage. A mani-
fold learning based approach has been proposed and allows
to reduce the dimension of the rigid space. Each patch in
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Fig. 3. (Top row) N-fold validation of the proposed approach in
14 LV sequences. Comparison with state-of-the-art for the test se-
quence T1 (middle row) and for the test sequence T2 (bottom row).
Comparison with COM (approaches in [11, 13]) and CAR (method
in [17]) are also shown.

the manifold proposes a segmentation of the LV, that is fur-
ther fused using the confidences of the deep belief network
through monte carlo approximation. This allow us to con-
clude, that the framework provides faster running time in both
training and segmentation stages. This is because, the train-
ing and parameters search are both reformulated directly in
terms of the manifold parametrization at low dimensionality.

Further directions will include a dynamical model in the
manifold, where the object dynamics is learned directly in
the low dimensional manifold parameter space. This will al-
low for a reduction of the computational cost in the predic-
tion step. As explained above we also plan to parallelize the
segmentation process given that the landmarks represent in-
dependent initial guesses for the search process.

Fig. 4. Qualitative comparison between the expert annotation (GT
in blue) and the results of our approach (green), [17] (yellow), and
[11, 13] (purple). The results show the segmentations for the test
sequence T1 (top row) and for T2 (bottom row).
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