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ABSTRACT
This paper introduces a new semi-automated methodology com-
bining a level set method with a top-down segmentation produced
by a deep belief network for the problem of left ventricle segmen-
tation from cardiac magnetic resonance images (MRI). Our ap-
proach combines the level set advantages that uses several a pri-
ori facts about the object to be segmented (e.g., smooth contour,
strong edges, etc.) with the knowledge automatically learned from
a manually annotated database (e.g., shape and appearance of the
object to be segmented). The use of deep belief networks is jus-
tified because of its ability to learn robust models with few an-
notated images and its flexibility that allowed us to adapt it to a
top-down segmentation problem. We demonstrate that our method
produces competitive results using the database of the MICCAI
grand challenge on left ventricle segmentation from cardiac MRI
images, where our methodology produces results on par with the
best in the field in each one of the measures used in that challenge
(perpendicular distance, Dice metric, and percentage of good de-
tections). Therefore, we conclude that our proposed methodology
is one of the most competitive approaches in the field.

1. INTRODUCTION

The leading cause of death in the world is cardiovascular disease [17],
and one of the best methods to improve the survival rate is based on
the early diagnosis using imaging technologies. Over the last few
years, there has been significant developments of imaging tech-
nologies that have enabled physicians to analyze better some pa-
rameters to assess the health of the heart (e.g., ejection fraction,
wall motion, etc.). One of the current dominant imaging technolo-
gies is the cardiac magnetic resonance imaging (MRI), using the
short axis view, but the segmentation of the left ventricle (LV) is a
crucial first step in this analysis. Manual LV segmentation is still
the standard clinical practice, but it suffers from operator bias, poor
reproducibility and relatively large inter- and intra-observer vari-
ability. One possible solution to these issues is the development
of a (semi-)automated LV segmentation. However, there are a few
issues that must be solved before it can be accepted in a clinical
setting, such as [8]: 1) the precise segmentation of the LV when
the outflow tract is present, reducing the strength of edge informa-
tion; and 2) the variability of the LV shape across slices, phases
and patients.

Automated and semi-automated LV segmentation from car-
diac MRI images has been an intensive area of research, and it is
possible to classify current techniques into three categories: 1) ac-
tive contour models, 2) machine learning models, and 3) combined
active contour and machine learning models. Active contours with
explicit contour representation [13] segments an object by mini-
mizing an energy function with internal constraints denoting con-
tour smoothness, and external constraints usually represented by
strong edges. The use of implicit contour representation with ac-
tive contours, known as the level set method [20], allowed the

Fig. 1. Proposed methodology for cardiac MRI segmentation.

implementation of a similar optimization function directly on the
fixed Cartesian grid without having to parameterize the curve rep-
resenting the segmentation, which also allowed the delineation of
objects that change topology. The main issue with active contour
models is the fact that the energy function must contain all terms
that are needed to segment an object, requiring substantial hand-
engineering of functions (and their parameters). It is important to
mention that the task of writing such energy function addressing all
possible shape and appearance variations of the LV from cardiac
MRI is a complicated, if not impossible task. The introduction of
machine learning models has addressed exactly this issue with the
use of an annotated training set to automatically learn the parame-
ters of statistical appearance and shape models [4]. However, the
automatic learning of the model parameters either requires a large
training set or models with relatively low capacity, so it is clear
that it would be advantageous to include some of the segmenta-
tion priors used by active contour models in order to alleviate the
model learning issues. This is the idea behind the combination of
active contour and machine learning models, such as the combi-
nation of Markov random field with active contour models [9], or
conditional random field with active contour models [2,23]. Nev-
ertheless, the proper training of the random fields is usually con-
sidered intractable, but there has been some progress regarding
the implementation of an efficient training of random field mod-
els [22]. Our proposal focus on solving the LV segmentation prob-
lem from cardiac MRI images using this combination of active
contour and machine learning models, but the machine learning
model used is based on deep belief network [7], which offers: 1)
efficient training and inference approaches; 2) advantages in terms
of model flexibility (which means that it can be easily adapted to
different types of classification and segmentation problems); and
3) relatively small annotated training sets for a robust estimation
of model parameters.

In this paper we propose a novel semi-automated LV segmen-
tation from MRI images. Our method uses a level set method,
which has a constraint provided by an LV segmentation estimated
by a deep belief network (DBN), as depicted in Fig. 1. The main
novelties of our paper are:

• The combination of level sets and DBN for image segmen-
tation,

• The DBN segmentation model that produces a segmenta-



tion directly from raw pixels.

We test our approach on the MICCAI grand challenge on left ven-
tricle segmentation from cardiac MRI images using the 15 train-
ing, 15 validation and 15 testing datasets [21]. The results show
that our approach produces results on par with the best in the field
in each one of the measures used in that challenge (perpendicular
distance, Dice metric, and percentage of good detections). Since
other approaches never achieve the top results in all three mea-
sures, we conclude that our proposed method is one of the most
competitive approaches in the field.

2. PROBLEM FORMULATION
In this section, we first explain the level set method used in our
methodology and then we explain how the DBN segmentation
model is formulated. Assume that a database of annotated cardiac
MRI images is denoted by D = {(I, c)i}|D|i=1, where I : Ω → R
represents an image (with Ω ⊆ R2 denoting the pixel address
space) and c : [0, 1]→ Ω denotes the explicit contour representa-
tion of the segmentation.

2.1. Distance Regularized Level Set (DRLS)
In the original level set formulation [20], the evolution of the level
set function tends to develop irregularities in the signed distance
function, which are fixed with periodic re-initializations of this
distance function, presenting practical and theoretical issues [14],
such as numerical problems and the scheduling of re-initializations.
By including a term in the level set formulation that guarantees
that the signed distance function remains regularized, Li et al. [14]
eliminates the need for re-initializations and consequently the is-
sues involved with them. Because of this advantage, we use this
level set implementation, and the implicit contour representation
is the zero level set of a signed distance function φ : Ω → R,
as in C = {x ∈ Ω|φ(x) = 0}, with φ(x) denoting the signed
Euclidean distance from x to C taking negative values for points
inside the contour and positive values outside this contour.

In order to find the contour C, we define an energy functional

E(φ, φDBN, L) = µRp(φ) + Eext(φ, φDBN, L), (1)

whereRp(φ) =
∫

Ω
p(|∇φ|)dx is the level set regularization term,

µ > 0 is a constant, and Eext is the external energy term with φDBN

representing the shape produced by the DBN model explained later
in Sec. 2.2. By solving the curve evolution equation ∂φ

∂t
= − ∂E

∂φ

using a temporal variable t ∈ [0,∞) (note that we assume that
φ is parameterized not only by x, but also by t), we can find the
zero level set using an initial guess φ0. The evolution of the time-
dependent function φ follows the steepest descent direction of the
energy functional E . The derivative of the regularization term
∂Rp
∂φ

= −div(dp(|∇φ|)∇φ), where dp(|∇φ|) = p′(|∇φ|)/|∇φ|
and div is the divergence operator. The idea of using a distance
regularizer is based on the fact that p(|∇φ|) should have two lo-
cal minima at |∇φ| = {0, 1}, which maintains the signed distance
property |∇φ| = 1 in a vicinity of the zero level set, and |∇φ| = 0
at locations far away from the zero level set [14].

The second term in (1) is defined as:

Eext(φ, φDBN, L) =

λElng(φ) + αEarea(φ) + γEshp(φ, φprior, L) + βEshp(φ, φDBN, L),

(2)

where λ, γ, β > 0, α ∈ R, Elng(φ) =
∫

Ω
gδ(φ)|∇φ|dx returns

small value for g and |∇φ| at edges (with δ(φ) denoting the Dirac
delta function), Earea(φ) =

∫
Ω
gH(−φ)dx speeds up the level set

evolution process by quickly increasing or decreasing the contour

area (depending on the value of α, with H(−φ) = 1 when φ < 0,
and H(−φ) = 0 otherwise), g = 1

1+|∇Gσ∗I|2
is a function that

is small at edges and close to one elsewhere (with ∇Gσ being the
gradient of a Gaussian kernel, and ∗ being the convolution opera-
tor). Also in (2), we add two energy terms to take into considera-
tion the prior geometrical shape [5,16] learned from the annotated
training set and the result of the segmentation produced by the
DBN, with Eshp defined as:

Eshp(φ, φk, L) =

∫
Ω

(φ− φk)
2(L+ 1)2dx, (3)

for k ∈ {prior,DBN}, where L : Ω → {−1,+1} is known as
the dynamic labeling function that assumes the values +1 or −1,
indicating that the prior must be enforced or not [5], respectively.
Note that the the size of the window where L = +1 is a rectan-
gle of M ×N pixels. In practice, this dynamic labeling defines a
window around the region of interest where the object of interest
is believed to be localized, and this means that initially, L = +1
will be around the initialization φ0 < 0, and after each iteration,
L = +1 will be around the updated φ < 0. Finally, the φprior is
computed from the training set D defined above by: 1) centering
the training contours c at the origin (0, 0), and 2) defining a bound-
ing box of size M ×N pixels around the centered contours. This
means that all contours will have the same center, which are repre-
sented by c̃i (for i ∈ {1, 2, ..., |D|}). The φprior is then the distance
function computed from c̄, which is the mean aligned contour in
the M ×N window, calculated as c̄ = 1

|D|
∑|D|
i=1 c̃i.

2.2. Deep Belief Network (DBN)

One of the main recent advances that has happened in machine
learning is the development of deep learning techniques, consist-
ing of a hierarchical representation that can learn complicated func-
tions, representing several levels of abstractions [1]. One of the
breakthroughs that enabled the exploration of deep learning archi-
tectures was the development of the contrastive-divergence learn-
ing algorithm [6] that could estimate reliably the parameters of
these deep hierarchies, with several levels of non-linear operators.
Deep learning architecture has been applied not only to classic
learning problems, producing better results than competing method-
ologies [7], but also to new learning problems, previously too diffi-
cult to be handled by traditional machine learning methodologies.
For instance, image segmentation from raw pixel data is a problem
that can be effectively handled by deep learning methodologies,
and we propose a solution based on DBN in this section. More-
over, this solution is used to build the distance function φDBN for
the level set energy function (2).

Specifically, we exploit the model depicted in Fig. 2 with the
following joint probability:

P (IL,h1, ...,hK ,y)

= P (hK ,hK−1,y)

(
K−2∏
k=1

P (hk+1|hk)

)
P (h1|IL)

= P (hK ,hK−1,y)

(
K−2∏
k=1

P (hk|hk+1)

)
P (IL|h1)

(4)

where IL represents the raw pixel extracted from the window de-
fined by L = +1 (3), y ∈ {0, 1}M×N represents the segmenta-
tion map of IL, h denotes the hidden variables, and

− logP (hK ,hK−1,y) ∝ERBM(hK ,hK−1,y)

= −b>KhK − a>K−1hK−1 − a>y y−

(hK)>WhK−1 − (hK)>Wyy

(5)



Fig. 2. Deep belief network model.

is known as a restricted Boltzmann machine (RBM) [7], where the
energy function in (5) is defined by the bias vectors bK ,aK−1,ay
and weight matrices W,Wy . Note from (4) and Fig. 2 that the
conditional probabilities outside the top pair of layers (represent-
ing the RBM) can either be top-down or bottom-up. Also in (4),
the remaining terms are related to the probability of hidden given
visible variables and vice versa, which in general has the form

P (hk+1|hk) =
∏
j

P (hk+1(j) = 1|hk),

where P (hk+1(j) = 1|hk) = σ(b(j) + h>kW(:, j))

P (hk|hk+1) =
∏
i

P (hk(i) = 1|hk+1),

where P (hk(i) = 1|hk+1) = σ(a(i) + W(i, :)hk+1),

(6)

where σ(x) = 1
1+e−x , the operator (j) returns the jth vector

value, (i, :) returns the ith matrix row, and (:, j) returns the jth

matrix column. The definition forP (h1|IL) is the same asP (hk+1|hk)
and P (IL|h1) is the same as P (hk|hk+1) in (6).

This DBN is trained layer by layer in an unsupervised way by
stacking RBMs up to layer K − 1 [7]. The error being minimized
during this unsupervised training is the reconstruction error of the
visible input. Note that as each layer k is added to the network, the
result obtained from the first layer IL up to layer k − 1 is used as
the ”visible” input for training the RBM formed by layers k−1 and
k. The supervised training takes place only at the highest layer K,
when the segmentation y is provided as visible inputs to the top
RBM, as depicted in Fig. 2. Note that the segmentation map is
computed from the annotation c, where pixels inside the contour
are labeled ”1”, and outside are labeled ”0”. Each RBM is trained
with contrastive divergence (CD) [6], which provides a maximum
likelihood estimation of the network parameters (i.e., weights and
biases) using a stochastic gradient descent algorithm (thus very
efficient for large scale problems).

The inference process that produces the segmentation and clas-
sification is achieved by first taking an input test image at the input
visible layer IL, and then computing the probability of activation
up until the layer K − 1 using the bottom-up conditional prob-
abilities in (6). Then the algorithm performs Gibbs sampling in
order to achieve a stable value for the segmentation y, and hid-
den layers hK−1 and hK . The initialization of this sampling pro-

Fig. 3. Segmentation results. The left image shows a relatively
simple case, but the image on the right shows a challenging case
with the outflow tract present. In the legend, ’target’ (red) denotes
the detection and ’reference’ (green) shows the manual annotation.

cess is based on the probability distribution for layer K − 1 with
P (hK−1|hK−2) and y = 0 (for all input nodes in the segmenta-
tion layer).

2.3. Segmentation Algorithm Combining DRLS and DBN

The segmentation process (detailed in Alg. 1), consists of a level
set evolution explained in Sec. 2.1, where we assume that φprior has
been computed from the training images. The first step takes the
user-defined input center and scale, which forms a circle φ0 that is
used to initialize the level set evolution. With φ0, we compute the
dynamic window L in (2) by taking the region where φ0 < 0 and
extend it with a fixed margin. With the window L, we also form
the input window IL for the DBN and run an inference process in
order to find the map y, as explained in Sec. 2.2. We then use y
to compute the distance function φDBN. At this point, we run the
level set iteration, minimizing the energy in (1), which updates the
distance function φ.

Algorithm 1 Combined Level Set and DBN Segmentation
• Given test image I , φ0 from I , and φprior from D
for t = 1:T do
• Compute the dynamic window L from φt−1

• From L extract image region IL for the DBN, and infer y
• Compute distance function φDBN from map y
• Run DRLS using φt−1, φprior, φDBN, L to produce updated
distance function φt

end for
• Segmentation is the zero level set C = {x ∈ Ω|φT (x) = 0}

3. EXPERIMENTAL RESULTS

In order to assess the performance of our algorithm, we use the
MICCAI 2009 challenge database [21], consisting of three data
sets (online, validation and training) obtained from the Sunny-
brook Health Sciences Centre, Toronto, Canada. Each data set
contains 15 cases (4 ischemic heart failures, 4 non-ischemic heart
failures, 4 LV hypertrophies and 3 normal cases), thus forming 45
cardiac short axis cine-MR (SAX-MR) datasets with expert con-
tours for the endocardial and epicardial contours in all slices at
end diastole (ED) and end systole (ES) phases1, but note that in
this paper, we focus on the endocardial segmentation problem. All
the images were obtained during 10-15 second breath-holds with
a temporal resolution of 20 cardiac phases over the heart cycle,
and scanned from the ED phase. Six to 12 SAX images were ob-
tained from the atrioventricular ring to the apex. Three measures

1Only endocardial contours are available for ES.



Table 1. Quantitative experiments comparing the performance of several competing approaches on the MICCAI 2009 challenge
database [21]. Each cell is formatted as ”mean (standard deviation) [min value - max value]”. The best result for each measure on
each dataset is highlighted, and ’?’ means that the result is not available.

Method Endocardial AVP Endocardial ADM ”Good” Percentage
Training set (15 sequences)

DBN+LS 1.96(0.35)[1.43− 2.55] 0.90(0.03)[0.84− 0.94] 98.45(3.11)[91.66− 100]
LS ONLY 2.58(0.27)[2.28− 3.08] 0.86(0.03)[0.79− 0.91] 98.61(3.57)[88.88− 100]
Jolly [12] 2.09(0.53)[1.35− 3.23] 0.88(0.06)[0.75− 0.95] 96.93(7.59)[72− 100]

Validation set (15 sequences)
DBN+LS 2.22(0.46)[1.69− 3.30] 0.89(0.03)[0.83− 0.93] 96.58(9.58)[63.15− 100]
LS ONLY 2.91(0.35)[2.41− 3.73] 0.84(0.04)[0.77− 0.90] 97.01(6.97)[73.68− 100]
Jolly [12] 2.26(0.59)[1.35− 3.68] 0.88(0.04)[0.75− 0.95] 95.62(8.83)[62− 100]

Wijnhout [24] 2.29(0.57)[1.67− 3.93] 0.89(0.03)[0.82− 0.94] 86.47(11)[68.4− 100]
Lu [15] 2.07(0.61)[1.32− 3.77] 0.89(0.03)[0.84− 0.94] 72.45(18.86)[?−?]

Huang [10] 2.10(0.44)[?−?] 0.89(0.04)[?−?] ?
Marak [18] ? 0.86(0.04)[?−?] ?

O’Brien [19] ? 0.81(?)[?−?] ?
Online set (15 sequences)

DBN+LS 2.04(0.35)[1.53− 2.67] 0.90(0.04)[0.83− 0.95] 98.71(3.66)[86.66− 100]
LS ONLY 2.66(0.38)[2.24− 3.49] 0.85(0.04)[0.80− 0.92] 99.33(2.58)[90− 100]

Full set (45 sequences)
DBN+LS 2.08(0.40)[1.43, 3.30] 0.90(0.03)[0.83,0.95] 97.91(6.18)[63.15,100]
LS ONLY 2.72(0.36)[2.24, 3.73] 0.85(0.04)[0.77, 0.92] 98.31(4.78)[73.68,100]

Constantinides (full) [3] 2.44(0.56)[1.31− 4.20] 0.86(0.05)[0.72− 0.94] 80(16.00)[29− 100]
Constantinides (semi) [3] 1.94(0.42)[1.47− 3.03] 0.89(0.04)[0.80− 0.96] 91.00(8.00)[61− 100]

Hu [8] 2.24(0.40)[?−?] 0.89(0.03)[?−?] 91.06(9.42)[?−?]
Huang [11] 2.03(0.34)[?−?] 0.90(0.04)[?−?] ?

are computed for each data set in order to assess the performance
of the proposed methodology: percentage of ”good” contours, av-
erage perpendicular distance (AVP) and the average Dice metric
(ADM). A contour is considered good if its AVP is less than 5mm,
where each measure was computed for the annotated slices and a
mean value for all the slices is given. However, AVP and ADM are
computed only for good contours.

For the combined model proposed in this paper, the DBN pa-
rameters/structure and level set weights are learned using the train-
ing set, and validated with the online set. The validation set is used
exclusively for testing. Note that this setup is implemented to en-
able a comprehensive comparison with other approaches that used
the validation set for testing. With this setup, the DBN configura-
tion achieved is: 2 hidden layers with 100 nodes in the first layer
and 1000 in the second, the segmentation layer has size 20 × 20
in (2). The level set weights learned are: µ = 0.12, λ = 4, α =
−2, γ = 0.0005, and β = 0.001, and the window size of L = +1
in (3) is M ×N = 73× 73.

In Table 1, we show quantitative results (mean, standard de-
viation and range) for the proposed approach combining level sets
and DBN (labeled as ”DBN+LS”) and for the approach that uses
the original DRLS formulation [14] (i.e., without the term Eshp in
Eq. 2), which is labeled as ”LS ONLY”. The goal of comparing
”DBN+LS” and ”LS ONLY” is to show the influence of the DBN
in the level set formulation. Moreover, we also show the results
of several methodologies proposed in the literature for comparison
purposes. In general, most of the approaches can be considered
to be some variation of the active contour model [3,10–12,15,18],
and few can be classified as machine learning methods [19,24],
and one can be classified as a combination of both methods [8]. In
Fig. 3, we show a couple of segmentation results produced by our
approach.

From these results, we can conclude that the influence of DBN

in the level set evolution is important, producing significantly more
accurate results in terms of AVP and ADM, and decreasing slightly
(but not significantly so) the ”Good” percentage results. In gen-
eral, our method is comparable or superior to all other competing
methods in almost all measures, except for the AVP in the valia-
dation and full sets. These results place our approach among the
most competitive in the field. In terms of running time per patient,
the approaches vary from one minute [3,12,24] to anything in be-
tween two and three minutes [8,15]. Our approach currently takes
167.25 ± 32.71 seconds per patient (i.e., between two and three
minutes), which is similar to the state of the art.

4. CONCLUSIONS AND FUTURE WORK

In this paper we present a technique for the LV segmentation in
cardiac MRI images that combines level sets with deep belief net-
works. This is the first time such combination is proposed. More-
over, the DBN segmentation model proposed is also new, with
promising results. We apply our methodology on the MICCAI
2009 challenge database [21], and the results show that the pro-
posed methodology is one of the most accurate among the ap-
proaches that have used such database. We plan to extend our
approach in several ways. First, we are currently working to make
it fully automatic, with a method to detect the LV blood pool. Sec-
ond, we are also extending the methodology for the detection of
the epicardial contour. Finally, we also plan to work on the reduc-
tion of the running time of our approach to be closer to one minute
per patient.
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