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Abstract

The use of an ensemble of feature spaces trained with
distance metric learning methods has been empirically
shown to be useful for the task of automatically design-
ing local image descriptors. In this paper, we present a
quantitative analysis which shows that in general, non-
linear distance metric learning methods provide better
results than linear methods for automatically designing
local image descriptors. In addition, we show that the
learned feature spaces present better results than state-
of-the-art hand designed features in benchmark quanti-
tative comparisons. We discuss the results and suggest
relevant problems for further investigation.

1. Introduction

The design of local image descriptors [11, 14] has
been a central topic of research in the field of visual
pattern recognition. The usefulness of a local descriptor
is related to its discriminating power and robustness to
typical image deformations (i.e., geometric and photo-
metric transformations). Essentially, the design of local
image descriptors is based on features extracted from
compact image regions (covering a small percentage of
the image area) that can be mathematically [7, 10] or
empirically [2, 11] shown to be robust to certain image
deformations and to be reasonably discriminating. Usu-
ally, each type of local image descriptor works better
for certain matching problems. For instance, Mikola-
jczyk [12] noticed that shape context [2] presents high
performance in matching problems that do not involve
textured scenes (e.g., tree bark, brick wall). Also, Ke [9]
presented results which show that SIFT [11] is not ro-
bust to large image deformations. Therefore, it is un-
likely that any of the current local descriptors will be
useful for all types of matching problems.

The combination of different types of hand designed
descriptors has been shown to improve the performance
in matching problems compared to the original perfor-
mance of each type of descriptor [5, 13]. Also, Varma
and Ray [17] proposed a combination of several hand
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Figure 1. Matching of image patches.

designed descriptors based on a maximization of the
margin among descriptors produced by different local
image classes for a specific matching problem. A more
general feature transform has been proposed by Hua et
al. [8], where an automatic feature selection process
estimates the optimal feature parameters for general
matching problems. Nevertheless, this method builds
only one feature space, which might limit the feature
transform to a limited set of matching problems.

The main goal of this paper is to present a quanti-
tative analysis of a recently proposed method [4] that
automatically designs local image descriptors using an
incremental learning algorithm. The method is based
on an ensemble of non-linear feature extractors trained
in relatively small and random classification problems
with supervised distance metric learning techniques.
Given its potential applicability to a large set of match-
ing problems, the method is called the universal fea-
ture transform (UFT). The quantitative analysis pre-
sented in this paper compares different algorithms used
in the training procedure. We are particularly interested
in showing that non-linear feature extractors are bet-
ter than linear extractors for building the UFT. Finally,
we show that such combination produces state-of-the-
art matching results, which in turn are better than the
most successful hand design features.

2. Ensemble of Feature Extractors

The main goal of the ensemble of feature extractors
is to produce a matching function f(xi,xj) ∈ [0, 1] that
computes the likelihood that the feature vectors xi and
xj extracted from the respective image patches di and
dj belong to the same class. For instance, in Fig. 1,
d1 and d2 represent local regions detected at the same
3-D locality in a scene capture by two separate images
(thus, f(x1,x2) = 1), and d3 is a local region detected
at a different 3-D locality (hence, f(x1,x3) = 0). As-
suming that yi and yj , where y ∈ {1, .., C}, denote



the classes of di and dj , respectively, we can define a

loss function L = (δ(yi − yj) − f(xi,xj))
2, where

δ(.) is the Dirac delta function. The minimization of
the expected loss function above produces f(xi,xj) =
p(yi = yj |xi,xj), where a similarity-based classifier
can be defined as:

p(yi = yj |xi,xj) =

{

1, if ‖ψ(xi)− ψ(xj)‖
2 < τ

0, otherwise

(1)
where τ is a distance threshold and ψ(x) represents a
feature transform, which is automatically learned given
a training data set R = {(xi, yi)}i=1..N and a model
M with parametersw (explained below).

We have previously shown [4] that the averaging of
several models Ml (l ∈ {1, .., S}), each trained with
a respective data set Rl ∈ R using non-linear distance
metric learning methods, improves the results of match-
ing problems outside of R, as described below. The
similarity-based classifier based on the model averag-
ing process (i.e., the UFT) is defined as:

p(yi = yj|xi,xj ,R) =
{

1, if
∑S

l=1 ‖ψl(xi)− ψl(xj)‖
2p(Ml|Rl) < τ

0, otherwise
(2)

where ψl(xj) = ψ(xj |Rl,Ml,w
∗) (i.e., the feature

transform learned with training set Rl, and model Ml

with parameters w
∗, defined below), p(Ml|Rl) ∝

p(Ml)
∫

p(Rl|w,Ml)p(w|Ml)dw with p(Ml) = 1,
and the integral is simplified by taking p(w|Ml) =
δ(w −w

∗) with w
∗ = arg maxw p(w|Rl,Ml).

The expected value for the loss function is defined

as ER[L] =
∫

L(R)p(R)dR = Bias2 + Variance +
Noise [3]. We show in this paper that the combination
of non-linear feature transforms in (2) produces better
results than linear transforms. This is an expected re-
sult given the knowledge that the combination of un-
stable classifiers with low bias and high variance (in
general, non-linear transform methods lead to unsta-
ble similarity-based classifiers) is more useful than the
combination of stable classifiers with high bias and low
variance (linear transformmethods are likely to produce
stable similarity-based classifiers) for producing ensem-
ble classifiers [3]. In Sections 2.1 and 2.2 we show the
models used for learning each feature transform.

2.1. Linear Feature Transforms

Our work is rooted in the supervised distance metric
learning problem, which automatically designs feature
spaces that bring together points belonging to the same
class and that push apart points from different classes.
Hence, this new distance metric has the potential to im-
prove the accuracy of similarity-based classifiers [18].
In this section, we show how to solve the global [6] and
local [15] linear distance metric learning.

A linear transform is represented by a matrix T ∈
ℜn×m, wherem ≤ n such that ψ(x) = T

⊤
x with x ∈

ℜn, ψ(x) ∈ ℜm and T
⊤ means the transpose of matrix

T. The convex optimization problem to learn the linear
distance metric can be formulated as follows [6, 15]:

minimizeT − 1
2T

⊤
S

(b)
T

subject to 1
2T

⊤
S

(w)
T = I,

(3)

where I denotes the identity matrix, and

S
(.) = 1

2

∑

ij W
(.)
ij (xi − xj)(xi − xj)

⊤ . (4)

Solving the dual of (3), we arrive at the following gen-
eralized Eigenvalue problem:

S
(b)

T = λS(w)
T, (5)

where the eigenvectors associated with the m largest
eigenvalues form the linear transform T, representing

w
∗ in ψ(xj |Rl,Ml,w

∗) of (2). The definition of W(.)

in (4) defines the type of linear distance metric learn-

ing. For global linear distance metric, W(w) = Y and

W
(b) = 1 −Y, where Yij = δ(yi − yj). The global

and linear UFT using the feature transform above is de-
noted as UFT-GL. For local linear distance metric [15],
the features not only must belong to the same class, but
they also must be close to each other in the original fea-
ture space. This is achieved by defining W as follows:

W
(w)
ij =

{

Aij/Nl, if yi = yj = l
0, otherwise

W
(b)
ij =

{

Aij(1/N − 1/Nl), if yi = yj = l
1/N, otherwise

,

(6)
where Nl is the number of points in class l, N is the
total number of points in the optimization procedure,
and Aij = exp{−‖xi − xj‖

2}. The local and linear
UFT is denoted as UFT-LL.

2.2. Non-linear Feature Transforms

The non-linear feature transform is obtained from
the kernelization of the method described in Sec. 2.1,
which is achieved by first observing that S(w) and S

(b)

in (4) can be written as follows [6, 15]:

S
(.) =

∑

i

(

∑

j W
(.)
ij

)

xix
⊤
i −

∑

ij W
(.)
ij xix

⊤
j , or

S
(.) = XL

(.)
X
⊤,

(7)

where L
(.) = D

(.)−W
(.) with D

(.)
ii =

∑

j W
(.)
ij being

a diagonal matrix, and X ∈ ℜn×N is a matrix con-
taining all the training points. Note that the definition
of the matrix W determines whether the feature trans-
form will be global (4), forming the UFT-GN, or local
(6), building the UFT-LN. Another observation is that

X
⊤
T = X

⊤
XU = KU, where U ∈ ℜN×m and

K ∈ ℜN×N with Kij = x
⊤
i xj . Therefore, the gen-

eralized eigenvalue problem in (5) can be re-written as
follows:

KL
(b)

KU = Λ̃KL
(w)

KU. (8)



Figure 2. Example of training patches [19].

Therefore, {xi}i=1..N appear in terms of their in-
ner product, and the non-linear transformation can be
obtained using the kernel trick [16] with the kernel:

K(xi,xj |σ) = Kij = exp
(

−
‖xi−xj‖

2

2σ2

)

, where σ >

0. Finally, the transformed feature vector of x is given
by [15]:

ψ(x) = Λ̃0.5
U
⊤ [K(x1,x|σ), ...,K(xN ,x|σ)]

⊤
.
(9)

3. Experiments

We applied the UFT trained with local/global,
linear/non-linear distance metric learning methods on
two publicly available databases built to compare the
performance of local image descriptors. We first train
the UFT using the training data set proposed by Winder
and Brown [19] (see Fig. 2). This database consists of
more than 100, 000 image patches, sampled by back-
projecting 3-D points onto 2-D images from scene re-
constructions, where each patch is labeled according to
its 3-D scene location. The changes present in each
patch are due to variations in viewpoints, scene bright-
ness and partial occlusions, but note that all patches are
aligned to the same scale, orientation and position to a
64 × 64-pixel image patch. Given that typical interest
point detectors have a much poorer precision [19], the
patches of the training and test sets are artificially de-
formed, which introduces robustness to those deforma-
tions. Specifically, we use the following deformation
values proposed by Hua et.al. [8]: deviation of 0.25
pixels in position, 11 degrees in orientation and 12%
in scale. In the experiments, we used the matches in
the Trevi Fountain and Yosemite Valley data sets as the
training and validation patches. For testing, we used
the patches produced by the Notre Dame matches, from
where 50,000 match pairs and 50,000 non-match pairs
were randomly selected.

All original image patches are pre-processed to
have zero mean and standard deviation one and then
smoothed by convolving a Gaussian with standard de-
viation σs. The patches used for training and testing
also suffer a spatial weighting (points in the center re-
ceive higher weights than points closer to the border).
All procedures above represent standard operations in
the pre-processing of local descriptors. Using the val-
idation error rate at 95% detection rate, the following
parameters have been determined through cross valida-
tion: a) number of training classes per feature trans-
form; b) number of feature transforms to build the UFT;
c) σs for the smoothing pre-processing; d) σ in the ker-
nel (9); and e) the dimensionality of the transformed
feature space.

Fig. 3 shows the receiver operating characteris-
tics (ROC) curves of UFT, SIFT [11] (designed by
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Figure 3. ROC curves of SIFT, RAW, PCA
and UFT. In parenthesis, it is displayed the
dimensionality of the transform and the
The false positive rate at detection rates
of 95% [19].

Vedaldi [1]), raw patch (RAW) and PCA [8, 19] using
the test set. The ROC is built by varying the thresh-
old τ using the similarity-based classifiers defined in
(1) and (2). The non-linear UFT (UFT-GN and UFT-
LN) achieved an error around 2% at a detection rate of
95%, which is at the same level of the best results ob-
tained by Hua et al. [8], but compared to [8], the UFT
presents the following advantages: 1) efficient imple-
mentation, and 2) potential increase of the subset of
matching problems since we do not limit the type of in-
put image features. Also notice that the ensemble of lin-
ear transforms (UFT-GL and UFT-LL) produces worse
results in the range of 5% of false positives at 95% de-
tection rate, which is slightly better than the results of
the linear transforms from raw patch implemented by
Hua et al. [8]. Fig. 4 displays the evolution of the error
rates (at detection rate of 95%) in terms of the number
of transforms to build the UFT.

Finally, we take the UFTs learned above and apply to
the matching problems proposed by Mikolajczyk and
Schmid [12]. We compare the performance of UFT,
SIFT [11], GLOH [12] and raw patch cross-correlation
(CC), using Hessian-Affine interest point detector. Be-
fore the image patches can be pre-processed and trans-
formed by UFT, they are first aligned using the posi-
tion, orientation and scale parameters produced by the
Hessian-Affine detector. We used the similarity based
classifiers of (1) and (2), where the image regions are
considered to be a correspondence if there is at least
a 50% overlap between the regions projected onto the
same image [12]. For all eight cases available [12], all
versions of UFT perform better or comparable to the
best hand designed features using the 1-precision ver-
sus recall curves computed as follows (see Fig. 5):

recall = #CM
#CR

, 1− precision = #FM
#CM+#FM

,

(10)
where #CR means the number of correspondences,
#CM is the number of correspondences with similar-
ity bigger than τ , while #FM is the number of times a
similarity bigger than τ is found in any matching that is
not a correspondence.

The run-time complexity of the linear UFT is neg-
ligible since it involves simple pre-processing followed
by a matrix-vector multiplication. For the non-linear
UFT, the run-time complexity is dominated by the
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Figure 4. Evolution of the train, valid. and test error rates at detection rates of 95% as new
learned transforms are aggregated to the UFT (from left to right: GN, LN, GL, and LL).

distance computation between test points and training
points to produce the kernel matrix K in (9), which
has size O(103 × 103). However, the use of approx-
imate similarity computation methods should substan-
tially speed up this step without affecting much the end
result of the UFT. Finally, the problem of having several
feature spaces is an issue that can be solved with paral-
lel computation since each feature space is independent
of all others.

4. Conclusions and Discussion

In this paper we show a quantitative analysis of the
UFT [4], which shows that the use of non-linear fea-
ture transforms produces better results than linear trans-
forms. We also show that UFT has competitive detec-
tion results for the problem of matching local image
descriptors in benchmarking image matching problems.
We believe that this work has a potential to have a pro-
found impact in the design of local image descriptors,
but its applicability ought to be further explored in other
matching and visual classification problems. Also, the-
oretical results can also be developed to show conver-
gence and optimality properties of the UFT.
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