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Abstract

The design of optimal feature sets for visual classification problems is still one of the
most challenging topics in the area of computer vision. In this work, we propose a new
algorithm that computes optimal features, in the minimum Bayes error sense, for visual
recognition tasks. The algorithm now proposed combines the fast convergence rate of fea-
ture selection (FS) procedures with the ability of feature extraction (FE) methods to uncover
optimal features that are not part of the original basis function set. This leads to solutions
that are better than those achievable by either FE or FS alone, in a small number of itera-
tions, making the algorithm scalable in the number of classes of the recognition problem.
This property is currently only available for feature extraction methods that are either sub-
optimal or optimal under restrictive assumptions that do not hold for generic imagery. Ex-
perimental results show significant improvements over these methods, either through much
greater robustness to local minima or by achieving significantly faster convergence.
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1 Introduction

The fundamental goal for the design of a statistical classifier is to minimize its
probability of making mistakes. More formally, if the classifier operates on obser-
vations from a random variable X, defined on a observation space X , and C is
the random variable from which class labels are drawn, the goal is to design the
decision function g(x) that minimizes the probability of classification error[1]

EX[PC|X(c 6= g(x)|x)] = EX[1 − PC|X(g(x)|x)] (1)

with PC|X(c|x) denoting the posterior distribution of class c, and PX(x) the marginal
distribution of X. The implementation of the minimum probability of error clas-
sifier requires access to 1) ideal estimates of the class conditional distributions
PC|X(c|x), and 2) the space that best separates the two classes. In practice, the accu-
racy of the estimates PC|X(c|x) is affected by several factors (e.g., model assumed
for the distributions, the accuracy with which model parameters can be learned
from the available training data, etc.), but better estimates are usually obtained in
low dimensional spaces (where enough training data is more likely to be available).
On the other hand, it can be shown that the space where classification takes place
uniquely determines the lowest probability of error achievable by any classifier. Un-
like the estimation error, this lower bound, known as the Bayes error (BE), tends
to decrease with the dimension of the space [2]. Hence, the design of the optimal
space for classification usually requires the identification, among all spaces that are
low-dimensional enough to guarantee small density estimation error, that which
achieves the minimum BE.

The search for the optimal set of features, in the minimum BE sense, for a given
classification problem can be addressed in two ways: by 1) feature extraction (FE)
or 2) feature selection (FS). In both cases, the goal is to find the best transform W

into a lower dimensional feature space Y . While in the case of FE there are few
constraints on W, for FS the transformation is constrained to be a projection, i.e.
the components of a feature vector in Y are a subset of the components of the as-
sociated vector in X . While both FS or FE can be used for the minimization of BE,
both approaches have non-trivial limitations. On one hand, FS requires the solution
of a significantly simpler computational problem, since it consists of selecting the
best subset from a set of already available basis functions. On the other, because it
cannot produce features that are not part of the original set, the resulting transfor-
mation is usually sub-optimal. For example, as illustrated in Figure 1, two features
that (as a pair) are highly discriminant but also highly correlated can have marginal
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distributions of small discriminant power. Such feature pairs cannot be reduced to
a single new discriminant feature by FS techniques. FE avoids this problem by de-
signing the basis itself, through the search for the overall optimal W, but requires
the solution of a significantly more difficult optimization problem. In fact, because
BE is a non-linear function of the feature transformation, which does not have well-
defined derivatives everywhere, its minimization by straightforward application of
standard optimization procedures can be quite challenging. Perhaps due to this,
only a surprisingly small amount of work has addressed the direct minimization of
BE in both the FE and FS literatures [3–5].

The most successful visual classification approaches in the literature find the op-
timal feature set for a given classification task by explicitly optimizing the per-
formance of the classifier, thus skipping the estimation of the class conditional
distribution PC|X(c|x). While there are multiple ways to achieve this goal, e.g.
through the search for the optimal weight configuration for the hidden nodes of a
neural network [6,7], the selection of a best set of basis functions from a prede-
fined set [8,9], or the selection of feature configurations [10,11], the end product
is invariably a set of features that is optimal, in the classification sense, for recog-
nition. The most challenging issue faced by such approaches is their significant
computational complexity: assuming that the initial pool of features is large, the
complex problem of designing a complete classifier on a high-dimensional fea-
ture space has to be solved at each step of feature extraction. Since most of the
state-of-the-art algorithms for the design of discriminant classifiers (e.g. backprop-
agation, SVM learning, or boosting) do not scale well with the number of classes
that need to be discriminated, the task is virtually impossible in the context of large-
scale recognition systems, i.e. recognition systems applicable to problems contain-
ing thousands of classes and significant amounts of training data per class. For
this reason, sub-optimal feature extraction techniques such as principal component
analysis (PCA) [12], or linear discriminant analysis (LDA) [13], remain the most
popular for problems such as face, object, or texture recognition.

In this paper, we introduce an algorithm for the computation of the minimum-BE
feature set for a given classification problem. This algorithm combines the appeal-
ing properties of FS and FE. Like FS methods, it progresses in a sequence of steps
where, at each step, the best features among those not yet selected are identified.
However, unlike FS methods, it does not blindly include these features in the se-
lected set. Instead, it considers the set of 2-D subspaces spanned by all pairs of
features such that one feature is in the selected set and the other in the candidate
set. It then performs FE in each of these subspaces, to find the direction that leads
to the largest decrease in BE, and includes that direction in the selected set. When
compared to standard FE procedures, the new algorithm has the advantage of im-
mediately zooming in on the optimal features that may already exist in the initial
feature set. This leads to a significantly improved rate of convergence. When com-
pared to FS procedures, it has the advantage of not being restricted to the original
feature set. Experimental evaluation on multi-class visual recognition tasks shows
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that it converges to minimum Bayes error solutions in a very small number of it-
erations. The new algorithm is compared to the FE solutions in common use in
the large-scale classification context - PCA, LDA and heteroscedastic discriminant
analysis (HDA) [14] - and to an alternative FE solution based on gradient descent on
a tight upper bound of the BE. It significantly outperforms these solutions, either
by having much greater robustness to local minima or by achieving significantly
faster convergence.

2 Minimum Bayes error features

Consider a set of training data {xl, cl}
N
l=1 drawn from a continuous-valued random

variable X such that xl ∈ R
n×1, and a discrete random variable C that generates

class labels cl ∈ {1, ..., |C|}. The goal of FE is to find a feature transformation
f : X ⊂ R

n×1 → Y ⊂ R
m×1. In this work we consider f(x) to be a linear function

of x, i.e. yl = f(xl) is written as yl = Wxl, that reduces the dimensionality of the
data from n to m (i.e., m < n), The minimum BE feature transformation W̃ is the
one that minimizes the BE[1] on the output space Y

L∗
Y = 1 −

∫

R
m

max
c

PC|Y (c|y)PY (y)dy = 1 − EY

[

max
c

PC|Y (c|y)
]

, (2)

where PC|Y (c|y) is the posterior distribution for class c on Y and PY (y) the prob-
ability density function for y. Formally,

W̃ = arg min
W,rank(W)=m

L∗
Y . (3)

2.1 Estimating the Bayes error

Typically one does not have access to the probabilities PC|Y (c|y) or PY (y) and it
is therefore impossible to evaluate the BE through (2). Noting, however, that by the
application of Bayes rule

L∗
Y = 1 − EY

[

max
c

PY |C(y|c)PC(c)
∑

c PY |C(y|c)PC(c)

]

, (4)

it follows that, given the class-conditional densities PY |C(yl|c), the priors PC(c),
and a sample {y1, . . . ,yN}, the expectation above can be estimated by the Monte-
Carlo approximation

L̂∗
Y = 1 −

1

N

∑

l

[

max
c

PY |C(yl|c)PC(c)
∑

c PY |C(yl|c)PC(c)

]

, (5)
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which we denote by the empirical Bayes error (EBE). The class priors are assumed
known (but could also be estimated from training data quite easily), while the class-
conditional densities are estimated by maximum likelihood (via the expectation-
maximization algorithm [15]) , using a Gaussian mixture model

PX|C(x|c) =
Kc
∑

k=1

λckG(x; µck,Σck) (6)

in X , where

G(x; µ,Σ) =
1

√

(2π)n det(Σ)
e−

1
2
(x−µ)T Σ−1(x−µ).

Using well known properties of the Gaussian, it can be easily shown that this leads
to a Gaussian mixture in Y [2]

PY |C(y|c) =
Kc
∑

k=1

λckG(Wx;Wµck,WΣckW
T ). (7)

Note that this estimation is an initialization step that only has to be performed once,
typically when the images in the class are added to the database, and is likely to
be required for operations other than feature design (e.g. the actual classification of
images presented to the recognition system). Hence, it does not affect the complex-
ity of the feature design algorithms to be discussed in the subsequent sections.

2.2 Joint feature selection and extraction

The matrix W can be seen as the product of a matrix W0 whose rows form a basis
of X and the canonical projection matrix Πm

n : R
n → R

m, Πm
n (x1, . . . , xn) =

(x1, . . . , xm)

W = Πm
n W0. (8)

Under this interpretation, the rows of W are simply the subset of the basis vectors
of X that span a subspace Xs ⊂ X . The BE on Y is determined by how discriminant
this subspace is, i.e. it will be minimum when Xs is the most discriminant m-
dimensional subspace of X . Since discarding a discriminant direction can lead to
a drastic increase in BE, the transformation W can be significantly improved by
switching a basis vector of X c

s (row-vectors of W0 not in W) with a basis vector of
Xs (i.e. row vectors of W) when the former is a better discriminant than the latter.
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Fig. 1. A classification problem with a pair of jointly discriminant features that, individu-
ally, are not very discriminant.

This is the basic operation of FS, and one that is very unlikely under traditional FE.
Because, when seen as points in R

n×m, the matrices W before and after the switch
can be arbitrarily far apart, it is highly likely that local minima of the BE surface
will prevent a gradient-descent type of iteration from reaching the latter when ini-
tiated at the former. Due to this ability to avoid local optimum (the step in solution
space is not guided by the gradient) FS usually has a significantly faster conver-
gence rate than FE. The only problem is that it can never identify discriminant
directions which are not basis functions of W0 already. This can be a significant
limitation, as illustrated by Figure 1. In this example, while the features w1 and w2

are (jointly) a highly discriminant pair, their marginal class-conditional densities
exhibit a significant amount of overlap. Hence, because none of the two features
is significantly discriminant by itself, it is unlikely that, in the context of a larger
problem, the highly discriminant pair would be identified by a standard FS step.

In order to achieve convergence rates equivalent to those of FS, while avoiding this
limitation, we introduce an algorithm that performs joint FS and FE, and which
we denote by FSE (feature selection and extraction). The basic idea is to replace
the simple evaluation of the goodness of the switch between the two candidate
vectors with a full FE step in the plane spanned by them. Let wi be the vector in
Xs (the ith row of W0, i ∈ {0, . . . , m − 1}) and wo the one in X c

s (oth row of
W0, o ∈ {m, . . . , n − 1}), and consider the set of 2D rotation matrices R(i, o, θio)
(where R(i, o, θio) is identical to the n × n identity matrix with the exception of
Rii = cos(θio), Rio = sin(θio), Roi = − sin(θio), Roo = cos(θio)). Instead of sim-
ply evaluating the EBE resulting from the switch of wi with wo, we search for the
rotation angle θio that leads to the overall transformation

W = Πm
n R(i, o, θio)W0, (9)

with smallest EBE

L̂∗
Y = 1 −

1

N

N
∑

l=1

max
c

PC|Y (c|yl) (10)
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where PC|Y (c|yl) is obtained by combining (7) and the class priors with Bayes rule.
This is a one dimensional minimization problem that can, therefore, be solved very
efficiently with standard exhaustive search procedures (e.g. golden search [16]).

In fact, it is usually not even necessary to repeat this procedure for all possible pairs
of basis vectors. One observation that we have made quite consistently is that, when
W0 is a sensible initialization (e.g. that provided by PCA), the vast majority of the
planes (wi,wo) either 1) are not very discriminant, or 2) already have wi as the
most discriminant dimension. In these cases there is not much to be gained from
the rotation and it is unlikely that such planes will be selected. To take advantage
of this observation, we introduce an (optional) pre-filtering step that eliminates the
planes with small ratio between 1) the EBE of the projection on wi

L̃∗
[wi]

= 1 − EX

[

max
c

PC|X(c|wi x)
]

, (11)

and 2) the EBE of the projection on the plane

L̃∗
[wi,wo] = 1 − EX





max
c

PC|X





c|







wi

wo





x











 . (12)

Note that, because all the densities involved are one or two-dimensional, this ratio
can be computed using histograms 1 . Its complexity is therefore negligible when
compared to that of (10) and, if p planes are selected, the overall complexity is
reduced by a factor of sm(n − m)/p. The complete algorithm is as follows:

(1) let W = Πm
n W0;

(2) compute
L̃∗

[wi]

L̃∗
[wi,wo]

for all pairs (wi,wo) and select the p pairs of smallest ratio.

(3) for each of the p selected pairs find the rotation angle θ∗io, using golden section
search, that yields the smallest possible EBE as given by (7), (9) and (10)

(4) find the plane (wi∗,wo∗) that leads to the smallest empirical BE and update
W0 = R(i∗, o∗, θ∗i∗o∗)W0.

(5) return to step 2 until the EBE difference between 2 successive iterations is
smaller than a constant t (set to 10−6 in our experiments).

The matrix W0 can be the identity but can also be a feature transformation itself.
One sensible solution is to rely on a feature transformation that experience has
shown to perform reasonably well on the problem at hand. For example, a principal
component analysis or a wavelet decomposition in visual recognition problems.
In fact, as long as W0 is invertible, there will be no loss of BE and, therefore,
any orthogonal or overcomplete decomposition qualifies. Fig. 2, illustrates the FSE

1 In all experiments we used histograms of bin size set according to the standard deviation
of the projected data (for 1D, binsize = 6 std(wi xl|l∈{1,...,N})

# bins
, where # bins is fixed).
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Fig. 2. Illustrative example showing the feature selection/extraction.

steps on a problem where the goal is to reduce the dimensionality from 3 to 2, i.e.
to find the plane, in 3D space, that best separates the two classes. In this case, the
initial transformation is the identity and Xs is initially the plane spanned by w1

and w2. Note that there is substantial overlap between the projection of the class
densities on this plane. FSE searches for a more discriminant plane as follows:

(1) Search for pairs of features (wi,wo) such that wi ∈ Xs, and wo ∈ X c
s ,

that span a subspace where the classes are better separated. In the example,
since w3 is the only vector in X c

s , the possible combinations are (w1,w3) and
(w2,w3).

(2) Find 2D projection that maximizes the ratio
L̃∗

[wi]

L̃∗
[wi,wo]

. In the example, this is the

space spanned by (w2,w3), where the classes are best separated.
(3) Rotate in the plane (w2,w3) by the rotation angle that minimizes the EBE

in the output space: L̃∗
W = 1 − 1

N

∑N
l=1 maxd PC|Y (c|yl). This produces the

basis (w′
2,w

′
3). Projecting the classes on the plane spanned by this basis leads

to a classification problem of very small EBE, since the projections are well
separated.

2.3 Gradient descent

As a benchmark against which to compare the algorithm of the previous section,
we implemented an algorithm based on FE alone. As is customary in the FE litera-
ture, this algorithm performs gradient descent on the EBE surface. It turns out that
the solution to this problem is not straightforward since, due to the max(·) operator
in (2), the EBE surface does not have well-defined derivatives everywhere. To over-
come this limitation, we relied on the upper bound resulting from the replacement
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Fig. 3. The softmax function is a tight bound of the max function.

of the max(·) operator by the softmax function

s({xi}; σ) =
∑

j

eσxj

∑

i eσxi
xj, (13)

where σ > 0 is a scale parameter, and {xi} ≥ 0 the input set [17]. As illustrated
by Fig. 3 a), the bound can be made arbitrarily tight by taking σ to infinity, but is a
very good approximation to the max function even for relatively small values of σ
(e.g. σ = 10). Consequently,

L̂∗
Y = 1 − EY





|C|
∑

c=1

eσPC|Y (c|y)

∑|C|
d=1 eσPC|Y (d|y)

PC|Y (c|y)



 (14)

is a very good approximation to (2). This is illustrated by Fig. 3 b), which presents
the EBE on a problem with n = 2, m = 1, |C| = 2, as a function of the angle of
the line into which the input space is projected (see Fig.4 a)). Clearly, the extrema
of the two functions are co-located. Furthermore, because (14) has continuously
differentiable derivatives, it can be minimized with standard gradient descent

W(t+1) = W(t) − η

(

∂L̂∗
Y

∂W

)

(t)

, (15)

where t represents the time step, and η is a learning rate (in our implementation the
value that produces the largest decay of the cost among a set of pre-defined values).
The partial derivative of (14) with respect to W is then written as

∂L̂∗
Y

∂W
= −EY





|C|
∑

c=1

∂

∂W

(

eσPC|Y (c|y)

∑|C|
d=1 eσPC|Y (d|y)

PC|Y (c|y)

)



 . (16)
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Equation 16 can be rewritten as follows

∂L̂∗
Y

∂W
= −EY

[

s
({

σPC|Y (c|y)
∂PC|Y (c|y)

∂W

}

; σ
)

−

s
({

σPC|Y (c|y)s
({

∂PC|Y (c|y)

∂W

}

; σ
)}

; σ
)

+ s
({

∂PC|Y (c|y)

∂W

}

; σ
) ]

,
(17)

where s({.}; σ) is the softmax function (13). It should be clear from (16) that
s({.}; σ) is the softmax function of the values in the set {.} across the classes c ∈
{1, ..., |C|}. Replacing the expectation in (17) by the empirical mean EY [f(y)] =
1
N

∑

l f(yl), and assuming that

s

({

σPC|Y (c|yl)
∂PC|Y (c|yl)

∂W

}

; σ
)

≈ s

({

σPC|Y (c|yl)s
({

∂PC|Y (c|yl)

∂W

}

; σ
)}

; σ
)

,

which is an equality when s({.}; σ) is replaced by max({.}), it follows that

∂L̂∗
Y

∂W
≈ − 1

N

∑N
l=1

[

∑|C|
c=1

e
σPC|Y (c|yl)

∑|C|

d=1
e
σPC|Y (d|yl)

(

∂PC|Y (c|yl)

∂W

)

]

(18)

where, by application of Bayes rule,

∂PC|Y (c|yl)

∂W
=
[

1
PY (yl)

(

∂PY |C(yl|c)

∂W

)

PC(c) −
(

PC|Y (c|yl)

PY (yl)

) (

∂PY (yl)
∂W

)]

, (19)

with

PY (yl)=
|C|
∑

c=1

PY |C(yl|c)PC(c),

∂PY (yl)

∂W
=

|C|
∑

c=1

∂PY |C(yl|c)

∂W
PC(c),

and PC(c) = 1
|C|

. Under the Gauss mixture assumption of (7)

∂PY |C(yl|c)

∂W
=

∂PY |C(Wxl|c)

∂W
(20)

=
Kc
∑

k=1

λckΨ(c, k) (−Ω(c, k) − Γ(c, k,xl))β(c, k,xl),

with

Ω(c, k) = (WΣckW
T )−1WΣck
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Ψ(c, k)= (2π)−
m
2

∣

∣

∣WΣckW
T
∣

∣

∣

− 1
2

Γ(c, k,xl)= (WΣckW
T )−1W(xl − µck)(xl − µck)

T

(

I − WT (WΣckW
T )−1WΣck

)

β(c, k,xl)= e−
1
2
(W(xl−µck))T (WΣckW

T )−1(W(xl−µck)).

Finally, the scale parameter is set to σ = arg maxσ

∥

∥

∥

∥

∂L̂∗
Y

∂W

∥

∥

∥

∥

, i.e. the value that maxi-

mizes the gradient of the cost function.

3 Experiments

To evaluate the algorithms introduced in this work, we applied them to three classi-
fication problems, in which their performance was compared to that of the classical
solutions. The first set of experiments were performed on a collection of toy prob-
lems (projection of two classes from 2 to 1 dimension) that provide some intuition
about the advantages of minimizing EBE. Because in a 2D space the FSE algorithm
performs an exhaustive search over all possible subspace (line) directions, we were
not able to find any example, or initialization, that would prevent convergence to the
global minimum. This was, however, not the case for most of the other techniques
that we considered, namely LDA, HDA, or even the minimization of the EBE by
gradient descent.

As illustrated by Fig. 4 a), all methods performed well on Gaussian problems with
classes of equal covariance. However, as shown in b) and c), LDA broke down even
for Gaussian problems of unequal class covariance. This is a well known problem
and the motivation for HDA [14,3]. Both HDA and the two minimum BE algo-
rithms converged to the optimal solution, shown in c). The problem on Figures 4
d)-4 f) consists of a Gaussian class and a second class which is a mixture of two
Gaussians. In this case, the EBE surface has a local minimum that, as shown in
d), is also the optimal solution for LDA and HDA. Fig. 4 e) and f) illustrate the
susceptibility of the gradient descent algorithm to local minima of the EBE. As can
be seen in e), if the initial W is close to a local minimum then gradient descent
will converge to it. There is however, as shown in f), a much larger region of the
solution space that will lead to convergence to the global minimum. This example
is more illustrative of the problems faced by the minimization of EBE on high-
dimensional spaces, where there can be many local minima. It demonstrates the
increased robustness of FSE to this problem.

The second set of experiments was performed on a face recognition task using the
ORL database. This database contains 40 classes, each composed of 10 112 × 92
images, which were scaled down to 15 × 13 (by smoothing and bicubic interpola-
tion). This set was split into a training database (first 6 images of each class) and
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Fig. 4. Various toy problems and the solutions obtained by LDA, HDA, and gradient descent
(GD). In all cases the best 1D subspace is represented by the solid bar, and the final value
of the estimated Bayes error is shown at the bottom of the plot. Also, the methods used to
obtain the solution depicted in each plot are listed at the bottom of the figure.

a test database (remaining 4 images). The matrix W0 was the PCA matrix of the
training data, as used in the popular eigenfaces technique [12], which was also used
as the initial basis for HDA. Recognition was performed with a maximum likeli-
hood classifier g∗(Wxl) = arg maxc PY |C(Wxl|c), where xl is a face from the test
database, and PY |C(y|c) the Gaussian learned from the training images of class c.
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Fig. 5. Recognition results in the ORL database. The first graph (a) shows the recognition
performance as a function of the number of dimensions of the output space computed using
FSE, PCA and HDA. Graph (b) illustrates the log(EBE) for each space.
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Fig. 6. Positive correlation between EBE and error rate.

Note that the classes are assumed to be Gaussian, an assumption that favors HDA.

Figure 5-(a) shows the recognition rates, as a function of the number of output di-
mensions, obtained with FSE, PCA, and HDA. Note that the feature transform with
30 output dimensions computed by FSE holds the best overall recognition result
of 87.50% (the best result recognition result for PCA was 86.25%, and for HDA
86.88%). Plot (b) shows the EBE in the output space as a function of the output
dimension, for each algorithm. Two conclusions can be drawn from this graph: a)
FSE produces the output space with minimum EBE for all dimensions, and b) for
all transforms, the EBE decreases with increasing dimensionality. Finally, Fig. 6
depicts the positive correlation between the EBE and the recognition error, on the
experiments of 5-(a) and (b). This correlation is important, in the sense that it vali-
dates the claim that the minimization of EBE is a suitable criteria for optimal feature
extraction. In particular, it shows that the FSE algorithm is in fact minimizing the
classification error. Note that, unlike neural networks, SVMs, or boosted percep-
trons this is achieved without the need to design the classifier at each iteration of
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the feature extraction process.

The next experiment is on the Brodatz texture database. Brodatz is interesting in
the sense that it poses a significant problem for many classification architectures.
For example, the straightforward application of a support vector machine (SVM)
to this database tends to perform quite poorly. Table 1 presents the best results that
we were able to obtain, at several image resolutions, for an SVM with a Gaussian
kernel, after a substantial amount of tuning of both the kernel variance and the SVM
capacity parameter 2 .

Table 1
Recognition rates on Brodatz for an SVM classifier at different image resolutions.

Resolution Recognition rate

8 × 8 32.08

16 × 16 32.08

32 × 32 31.25

128 × 128 33

We believe that this disappointing performance is due to the fact that the 1−vs−all
strategy required to turn the multi-class problem (that the SVM cannot handle di-
rectly) into a collection of binary problems (which are then combined into a multi-
class decision) may be strongly sub-optimal on Brodatz. We have also previously
shown that other currently popular representations in learning and vision, e.g. an
independent component analysis (ICA) type of decomposition, do not work well on
this database [18]. In fact, an extensive study comparing the performance of vari-
ous feature spaces (including PCA, ICA, and wavelets), has shown that the discrete
cosine transform (DCT) is a top performer on Brodatz (see [18] for details). We
therefore used the DCT as initial basis W0, in an attempt to determine if further
optimization, by either FSE or gradient descent, could lead to visible improvement
over this already very good solution.

We started by comparing the performance of the minimum-EBE feature sets ob-
tained by FSE and gradient descent, saving the matrix W at each iteration and
measuring the corresponding EBE on both the training and test sets, to make sure
that there was no over-fitting. Fig. 7 presents the evolution of the EBE as a function
of the iteration number, showing that the convergence of FSE is significantly faster
(at least one order of magnitude) than that of gradient descent. By running the al-
gorithms for an extended number of iterations, we also observed that the curves
remained flat after 50 iterations. This means that gradient descent was trapped in a
local minimum that prevented convergence to the better solution reached by FSE.

2 We started from a kernel variance equal to the median Euclidean distance between the
training vectors and a capacity of 1, and then manually tried various variations of the two
parameters around these initial values. The combination that lead to smallest error was
selected.
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Fig. 7. a) empirical BE vs number of iterations for gradient descent and FSE on the test and
training datasets of Brodatz. b) empirical BE vs computational time required for conver-
gence by FSE as a function of the parameter p (solid line), initial EBE (dashed) and EBE
vs computational cost of gradient descent (dot).

In summary, gradient descent required a significantly larger number of iterations to
converge to a worse solution than that found by FSE.

In order to compare the computational cost of the two algorithms (and evaluate the
trade-off between BE and complexity due to the filtering step of FSE), we ran FSE
with various values of the plane-retention parameter p. Fig. 7 b) shows the variation
of the final value of EBE, for p = 1 and p ∈ {1%, 5%, 10%, 20%, 50%, 100%} of all
possible planes, as a function of the CPU time 3 . Also shown are the EBE achieved
by gradient descent and the corresponding time and the initial EBE. Clearly, simply
picking the best plane is enough to reach a solution that is very close to the best
possible (and better than the gradient descent solution), at a computational cost
more than two orders of magnitude smaller than that of either the overall best or
gradient descent.

Finally, we compared the recognition performance of the FSE solution with that of
the initial DCT features. Recognition was performed with a maximum likelihood
classifier g∗(Wxl) = arg maxc PY |C(Wxl|c), where xl is an image from the test
database, and PY |C(y|c) the Gaussian mixture learned from the training images
of class c. Table 2 shows the recognition rates obtained, confirming that the FSE
solution is the best one and reduces the error rate of the DCT features by about
12%. Given that the DCT features already perform very well for most test images,
we believe that this improvement is significant.

In fact, visual inspection of the classification results obtained for each test image
revealed no instances where FSE did worse than the DCT. On the contrary, FSE
tends to improve performance for test images belonging to classes that are visually
quite similar to other classes in the database. These are the most difficult images

3 Computer configuration: Intel Xeon processor at 2.4GHz with 4GB of memory.
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Table 2
Recognition rates on Brodatz for a mixture classifier based on the DCT and FSE feature
spaces.

Features Recognition rate

DCT 92.92

FSE 93.75
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Fig. 8. Recognition results obtained on Brodatz with the DCT-based (a) and FSE-based (b)
classifiers. In each case, the classes in the database are ordered by decreasing likelihood
with respect to the test image. For each class, we show a representative image.

to classify and the results above suggest that, for 12% of them, FSE is helpful.
Furthermore, we have noticed that this gain is not achieved at the cost of a loss of
the generalization ability of the classifier. On the contrary, the FSE-based classifier
appears to be more robust than the DCT-based counterpart and produces judgments
of similarity that seem more correlated to those of human perception. These points
are illustrated by Figure 8, where we show the classification results obtained with
the two classifiers for various test images. The top two examples of Figures 8 a)
and 8 b) illustrate how the FSE-based classifier has better ability to generalize,
producing an ordering of the classes that seems to be closer to human judgments of
similarity. The bottom two examples of Figures 8 a) and 8 b) show instances where,
even though close, the DCT-based classifier produces an error. In these cases, the
FSE-based classifier is able to recover the correct ordering without altering the
third match. All examples (as well as others that are omitted for brevity) support
the argument that FSE produces a layout of the feature space that, locally, allows
a finer discrimination between similar classes but, globally, brings those classes
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closer together.

4 Conclusion

We presented an algorithm to efficiently compute an optimal set of features in the
minimum Bayes error sense. The algorithm combines the efficiency of feature se-
lection with the ability of feature extraction to compute optimal features that are not
part of the original set of basis functions. One important aspect of this work is that
the feature set built by the algorithm now proposed can be used to train any type of
classifier, thus separating the complex tasks of feature and classifier design. The di-
vorce of these two tasks is important for large-scale classification problems not only
in terms of efficiency, but also with respect to recognition accuracy. We provided
empirical examples of the efficiency and efficacy of the algorithm in several visual
recognition problems, ranging from simple toy examples to full-blown recognition
tasks involving many classes in the domains of face and texture recognition.
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