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Abstract—We propose a new methodology for creating 3-D
models for computer graphics applications from 2-D concept
sketches of human characters using minimal user interaction.
This methodology will facilitate the fast production of high qual-
ity 3-D models by non-expert users involved in the development
process of video games and movies. The workflow starts with an
image containing the sketch of the human character from a single
viewpoint, in which a 2-D body pose detector is run to infer the
positions of the skeleton joints of the character. Then the 3-D
body pose and camera motion are estimated from the 2-D body
pose detected from above, where we take a recently proposed
methodology that works with real humans and adapt it to work
with concept sketches of human characters. The final step of
our methodology consists of an optimization process based on a
sampling importance re-sampling method that takes as input
the estimated 3-D body pose and camera motion and builds
a 3-D mesh of the body shape, which is then matched to the
concept sketch image. Our main contributions are: 1) a novel
adaptation of the 3-D from 2-D body pose estimation methods
to work with sketches of humans that have non-standard body
part proportions and constrained camera motion; and 2) a new
optimization (that estimates a 3-D body mesh using an underlying
low-dimensional linear model of human shape) guided by the
quality of the matching between the 3-D mesh of the body shape
and the concept sketch. We show qualitative results based on
seven 3-D models inferred from 2-D concept sketches, and also
quantitative results, where we take seven different 3-D meshes
to generate concept sketches, and use our method to infer the
3-D model from these sketches, which allows us to measure the
average Euclidean distance between the original and estimated
3-D models. Both qualitative and quantitative results show that
our model has potential in the fast production of 3-D models
from concept sketches.

I. INTRODUCTION

We propose a new methodology that produces high-quality

3-D human character meshes from 2-D concept sketches in

an almost fully automatic manner. Such approach will enable

fast and easy production of 3-D base meshes of video game

and movie characters, streamlining their production process.

Currently, in these industries, the base mesh production starts

with the creation of the concept sketch and the subsequent

3-D modeling process, where the artist sets the sketch as

a background image in a 3-D modeling tool, such as 3DS

Max or Maya, and deforms and subdivides simple primitives

(e.g., cubes or spheres) to fit the silhouette and edge details

of that sketch. Once this base mesh has been developed, it is

added to a 3-D sculpting software such as ZBrush or Mudbox,

which allows artists to add details to the base 3-D mesh.

Our methodology will reduce the time to produce such base

meshes by the automation of the following three steps (see

Fig. 1): 1) automatic estimation of the 2-D body pose from

the concept sketch (Fig. 1-(a-b)) [1]; 2) automatic estimation

of the 3-D body pose and camera motion from 2-D landmarks

(Fig. 1-(c)) [2]; and 3) optimization of the 3-D body mesh by

minimizing the matching error between the projected mesh

and the concept sketch (Fig. 1-(d),(a)).

Our main contributions in the development of this method-

ology are as follows:

1) adaptation of the method that estimates the 3-D body

pose and camera motion from 2-D landmarks [2] such

that it can deal with non-standard human body propor-

tions and constrained camera motion (representing the

concept sketch frontal view); and

2) design and implementation of the optimization method

based on a sampling importance re-sampling algorithm,

which searches for a 3-D body mesh (on an underlying

low-dimensional linear model of human shapes) using

the matching quality between the concept sketch and

the projection of the estimated 3-D pose.

We show a qualitative experiment of the 3-D modeling process

using seven concept sketches of male and female charac-

ters. We also show a quantitative experiment showing the

matching error performance (average Euclidean distance) of

the methodology with respect to a known 3-D model that

is used to generate an artificial concept sketch. The results

from the qualitative and quantitative experiments show that

our proposed methodology has a potential to facilitate the

production of 3-D base meshes.

A. Literature Review

The (semi-)automated creation of 3-D models is one of the

major focuses of current research in 3-D computer graphics.

Sketch-based 3-D modeling has become an important alterna-

tive to the complex freeform surface manipulation [3], but its

underlying principle of sketching in 3-D is one of the main

issues of this approach because artists are used to work in 2-

D. Tools that enable artists to working effectively in 2-D to

produce 3-D models, such as SketchUp, are becoming popular,

but are usually not ideal for the design of complex human

characters.

Recently, some research groups have proposed methods

especifically designed to estimate 3-D models of human char-



Fig. 1. Our methodology takes an input concept sketch (a) and estimates the 2-D pose, where the user can manually adjust the joint positions (b). This result
is used to infer the 3-D pose and camera motion (c), and then we run a sampling importance resampling algorithm using a learned model of 3-D meshes and
the inferred 3-D pose to match the 3-D body mesh to the concept sketch (d-a).

acters. For instance, ArtiSketch [4] is a method that can take

several 2-D views of a human character in a video game

and their respective user-input 3-D pose to produce a 3-

D articulated model. This work is similar to ours, but the

main difference is that our proposal requires less user inter-

action, compared with ArtiSketch, which requires intensive

user interaction. Another important work that is related to

our proposal is the 3-Sweep [5], which consists of a semi-

automated way to produce complex 3-D models with little

user interaction. Essentially, with 3 clicks non-artists can

obtain the underlying 3-D model from a single 2-D picture

of an object (note that complex objects require several stages

of 3 clicks to model all their parts). However, the strong

assumptions about the type of objects that can be modelled

with this technique renders the modelling process of a human

character extremely complicated. Kraevoy et al. [6] propose a

method for estimating 3-D human meshes by matching a 3-

D template shape prior model to contour drawings of human

figures. The interesting contribution about this work is the

technique used to find the correspondences between contour

points and model vertices. However, this approach has many

limitations compared to our methodology, such as the need for

having a clean background and a constrained input data, based

on a contour drawing, instead of an actual concept sketch.

Moreover, this method by Kraevoy et al. [6] appears to work

only with real humans, as opposed to the ”deformed” human

figures present in concept sketches.

The most relevant paper to our work is the method by

Guan et al. [7], which is based on similar steps to our

proposed methodology. Essentially, the user first guides the

estimation of the initial 3-D articulated body pose and shape,

then a segmentation algorithm detects the boundaries of the

human body on the image. A low-dimensional linear model of

human shape is then used for the estimation of the 3-D body

shape, where the optimization takes into account body pose,

shape, reflectance, and scene lighting, in order to produce a

synthesized body that is then used to match the input image.

The main limitations that affect this approach, and not ours

are: 1) it only works with naked or minimally clothed people;

2) it does not work properly with the challenging shading

present in concept sketches considered in our work; 3) it does

not take into account non-standard body proportions usually

present in concept sketches; and 4) the 2-D body joint detector

is not present, so it requires more user input than our method.

Finally, recently and developed in parallel to our own work,

Kazmi et al. [8] have proposed a methodology that estimates 3-

D body meshes from concept sketches based on the following

steps. First the methodology uses an input concept sketch

based on occluded contours, which are then associated with

3-D human models using a model that takes several poses and

human body shapes as its training set. Then, the user selects

manually anchor points to be matched to the 3-D model, so

that it can match the input image, similarly to the approach by

Kraevoy et al. [6]. Though similar to our own work in terms

of the final goals, Kazmi et al.’s method has many limitations

that do not apply to our own, such as: 1) the need of a quite

constrained input based on occluded contours, which is not the

usual type of image in a concept sketch; and 2) the need of

relatively intense user interaction in selecting anchor points to

drive the deformation from the 3-D mesh to the input concept



Fig. 2. Example of the automatic 2-D pose detection [1] (left) and the manual
adjustments of the joint locations (right).

sketch.

II. METHODOLOGY

In this section, we first describe the 2-D body pose detec-

tion, followed by the camera motion estimation and 3-D from

2-D pose estimation, which is adapted to take into account the

non-standard body pose proportions found in concept skecthes.

Finally, we then describe the matching of the 3-D mesh to

concept sketches using the sampling importance re-sampling

method guided by the matching quality between the projected

3-D body mesh and the concept sketch.

A. 2-D Pose Detection

The problem of 2-D body pose detection has been addressed

for inputs consisting of real pictures of humans [1], [9].

For example, Yang and Ramanan [1] describe a method for

2-D body pose detection based on a flexible, non-oriented

mixture of parts model, whose parameters are learned with a

structured support vector machine solver [10]. This approach

produces solid results on several public databases and its main

advantage lies in its run-time efficiency. Alternatively, the

method proposed by Zuffi et al. [9] is based on an extension

of the pictorial structure model and can capture the non-rigid

shape deformation of the parts. We have tested these two

models on concept sketches and noticed that the former [1]

produces more reliable results. Nevertheless, the performance

achieved is not ideal mostly because the input images we

use are markedly different from the ones used to train the

original model [1], which essentially consists of real pictures

of humans on relatively cluttered backgrounds. Ideally, we

would need to retrain this model for concept sketch images,

but we are not aware of databases that contain a sufficient

number of annotated concept sketches that could be used to

train such model, so we adopt an alternative method, consisting

of requesting the user to manually adjust the joint positions, if

necessary (see Fig. 2). This is the only user interaction required

in our system - all remaining steps below are fully automatic.

B. 3-D Pose and Camera Motion Estimation

The 3-D body pose detection and camera motion estimation

from 2-D body pose landmarks is also another problem

being intensively studied in computer vision [2], [11], where

the main challenge lies in the ambiguities present in this

estimation. Salzmann and Urtasun [11] propose an approach

based on Gaussian process that requires large amounts of

training data from varied viewpoints and body deformation

to reliably recover the underlying 3-D pose, but in general

it does not generalize well for cases not present in the

training set, which is problematic for our application given

that the ”bodies” present in concept sketches will not be part

of any training set. Ramakrishna et al. [2] propose a more

robust approach by formulating it as an optimization problem

that minimizes the re-projection error by adjusting the 3-D

position of the landmarks and the camera motion. This method

generalizes better to concept sketches, particularly because

the original optimization problem can be extended in two

ways: 1) the camera motion can be constrained to a frontal

view setup, which is natural for concept sketches; and 2)

the anthropometric regularities can be relaxed, which allows

our method to adapt better for the non-standard human body

proportions usually found in concept sketches. Therefore, we

extend the method proposed by Ramakrishna et al. [2].

We consider that the P joints of the 3-D human body

skeleton is denoted by X = [X⊤
1 , ...,X

⊤
P ]

⊤ ∈ R
3P×1 [2].

Assuming a weak perspective projection, the 2-D coordinates

of the projected 3-D points onto the image plane are produced

by:

x =

(
IP×P ⊗

[
Sx 0
0 Sy

] [
1 0 0
0 1 0

]
R

)
X+t⊗1P×1, (1)

where IP×P is an identity matrix of size P × P , 1P×1 is a

vector of P ones, x ∈ R
2P×1, ⊗ represents the Kronecker

product operator, s =
(
Sx 0
0 Sy

)
is a diagonal scale matrix,

and R ∈ SO(3) and t ∈ R
2 are the respective rotation

and translation parameters of the camera. Considering that the

camera intrinsics are assumed to be known, the goal of the

method described in this section is the estimation of the 3-D

positions X and camera motion C = {s,R, t} in (1).

The human body joints are represented by a weighted sum

of action dependent basis poses, as follows [2]:

X = µ(X) +
∑

i∈IB∗

b
(X)
i ω

(X)
i (2)

where {b
(X)
i }i∈IB∗

∈ B
∗ ⊂ B represents the basis poses,

µ(X) ∈ R
3P×1 is the mean pose, and ω

(X)
i are the weights

assigned to each basis. Note that B ∈ R
3P×(

∑Na
i=1

Ni
b) is an

overcomplete dictionary of basis components, which is created

by concatenating N i
b bases from Na actions, B∗ is an optimal

subset of B, and IB∗ are the indices of the optimal basis B∗ ∈
B.

Our proposed optimization, which is an extension of the



original formulation in [2], is denoted by:

minimize
Ω,C,IB∗

‖x− (I⊗ sR)(B∗Ω+ µ(X))− t⊗ 1‖2

subject to
∑

∀(i,j)∈L

‖Xi −Xj‖
2
2 −

∑

∀(i,j)∈L

l2ij ≥ −κ

∑

∀(i,j)∈L

‖Xi −Xj‖
2
2 −

∑

∀(i,j)∈L

l2ij ≤ +κ

B
∗ ∈ B

R is close to identity,

(3)

where the main differences (compared to [2]) are the constraint

on the camera rotation matrix R, and the replacement of

the original equality constraint (denoted by κ = 0) by the

inequality constraint κ > 0. The new constraint on the camera

rotation matrix, which makes it close to identity, conveys

the assumption about the frontal view of the concept sketch

and the new inequality constraint reflects the anthropometric

irregularities typically observed in concept sketches. Also in

(3), L denotes the set of edges present in the 3-D skeleton

model and lij represents the average length of the limb

between nodes i and j of the skeleton.

The optimization in (3) is solved with a matching pursuit

algorithm [2], which is an iterative method that, at each step,

adds a new basis to IB∗ fixing Ω, C, and then solve for

each of the remaining parameters (Ω and C) assuming the

other two fixed. Note that in the original formulation [2], the

camera parameters are found by first re-writing the vectors

x and X in matrix form, as in x ∈ R
2×P and X ∈ R

3×P .

Denoting the mean-centered projections by x̂ = sRX , we

can use the singular value decomposition (SVD) to find

M = x̂X⊤(XX⊤)−1 = UDV
⊤. The scale parameter s is

estimated from the first 2 × 2 submatrix of D [2] and the

rotation is estimated with [12]:

R̂ = αI3×3 + (1− α)UV
⊤, (4)

where α ∈ [0, 1], which is re-adjusted using the SVD of R̂ =
ÛD̂V̂

⊤, as follows: R = ÛV̂
⊤. This adjusts the estimated

rotation matrix to be close to the identity rotation matrix I3×3,

which expresses the idea of little camera rotation.

C. Matching the 3-D Mesh to the Concept Sketch

Fitting the 3-D body mesh to the input concept sketch

requires a search process that estimates the 3-D mesh that

visually matches the input data. We propose an optimization

method that maximizes the density of edges found in the

concept sketch falling inside the area delimited by the silhou-

ette of the projected 3-D mesh, which implicitly assumes that

the background of the concept sketch contains a significantly

smaller density of edges compared to the foreground, but

at the same time allows some clutter in the background.

Our approach consists of a sampling importance re-sampling

(SIR) method [13], where the training set for estimating the

body mesh distribution is automatically generated with the

meshes from the open source software package Makehuman

(http://www.makehuman.org/).

Our SIR method is an iterative process (Fig. 3) consisting

of three steps. The first step consists of generating S samples

of 3-D body meshes according to

{Y
(s)
t }Ss=1 ∼ P (Yt|Yt−1), (5)

where P (Yt|Yt−1) is a generative model defined below in

(9), Y
(s)
t ∈ R

Y , t indexes the iteration step, and s denotes the

sample index given previously generated samples.

The second step transforms the underlying skeleton of each

of these samples from a canonical pose (notice the T-shape

of the samples in Fig. 3) into the estimated 3-D pose X ,

defined in Sec. II-B, via inverse kinematics [14] and linear

skinning [15]. Specifically, inverse kinematics works by esti-

mating the joint positions of the skeleton of a human model,

maintaining the joint constraints, given that the desirable

locations for the P joints are given by X1, ...,XP . We use

Havok [16] for the implementation of the inverse kinematics,

which outputs a set of matrices that define the forward

kinematic transformations of each joint. Linear skinning [15]

defines the changes in the surface of the 3-D mesh as a

function of the skeleton joint transformations. That is, given

that each mesh vertex can be affected by more than one bone, it

is necessary to interpolate the respective joint transformations,

and linear skining [15] simply interpolates linearly among the

transformation applied to each bone.

The third step computes the weight of each sample with

w
(s)
t = w

(s)
t−1P (match|Y

(s)
t ), (6)

where

P (match|Y
(s)
t ) = (zp ∩ zc)/(zp ∪ zc), (7)

zp, zc : Ω → {0, 1} represents two binary maps that trans-

forms an index i ∈ Ω from image space to one or zero, with

zp(i) = 1 representing that the image index i lies within the

boundaries of the projected mesh (and zp(i) = 0 otherwise),

and zc(i) = 1 denoting that there is an edge detected from

the concept sketch image using Canny edge detector [17] (and

zc(i) = 0 otherwise). Note that P (match|Y
(s)
t ) in (7) denotes

the overlap ratio between the projected mesh binary map zp

and the edge map zc of the concept sketch. The weights in

(6) are subsequently re-normalized, and they are equal to 1/S
in the first iteration.

These three steps are iterated until convergence, and the

algorithm returns the result as Y
∗ =

∑
s w

(s)
T Y

(s)
T , where we

assume that T is the final iteration step. In this method, the

body 3-D mesh V ∈ R
3V ×1, where V is the number of ver-

tices in the mesh, is represented by a combination of Y basis

meshes, learned with PCA, with V = µ(V)+
∑Y

i=1 b
(V)
i ω

(V)
i .

This mesh can be represented by a point in the Y -dimensional

space with Y = [ω
(V)
1 , ..., ω

(V)
Y ]⊤, which allows us to estimate

the distribution of meshes with a Gaussian mixture model

(GMM) [18], as in:

P (Y|θ) =
∑

i

πiN (Y; θi), (8)



Fig. 3. Three steps of the matching SIR process: 1) generation of S samples of 3-D body meshes; 2) transformation of the underlying skeleton of each of the

generated samples from a canonical T-shaped pose into the estimated 3-D pose X ; and 3) computation of the weight of each sample, using P (match|Y
(s)
t

).

where N (.) denotes the Gaussian function, πi is the ownership

of the component, and θi denotes the Gaussian parameters

(mean and covariance). Finally,

P (Yt|Yt−1) = N (Yt|Yt−1,Σ)P (Yt|θ), (9)

where Σ = I is an identity covariance matrix. This means that

new samples are drawn using a distribution that depends on

the learned GMM and on their previous location (note that at

the first iteration step, the sampling is performed using only

P (Y|θ)).

III. EXPERIMENTS

For the experiments, we have downloaded seven concept

sketches from the web to analyze the performance of our

method qualitatively, by visual inspection of the estimated 3-

D meshes, and quantitatively by projecting these estimated

meshes to form new concept sketches with a known reference

3-D mesh. This allows us to compute the average Euclidean

distance (AED), defined by:

AED =
1

V

V∑

i=1

‖v
(r)
i − v

(e)
i ‖2, (10)

where v
(r)
i denotes the ith vertex of the reference 3-D

mesh, v
(e)
i represents the ith vertex of the 3-D mesh esti-

mated by our method, with the mesh being represented by

V = [v⊤
1 , ...,v

⊤
V ]

⊤ ∈ R
3V ×1, and both meshes normalized

by the height of the reference mesh. The concept sketches

are: Captain America1, Black Widow2, The Flash3,

1http://static.comicvine.com/uploads/scale medium/8/85629/
1868635-captain america comic drawings.jpg

2http://advancedgraphics.com/wp-content/uploads/2013/08/1589
BlackWidow AvengersAssemble 28.jpg

3http://www.beloeil-jones.com/tag/the-flash/



Fig. 4. Qualitative results showing the estimated 3-D mesh on a canonical T-shape pose (left of each panel) for seven concept sketches (right of each panel).

Tomb Raider4, Ironman5, Thor6, Spiderman7, and

Terminator8.

In all experiments, meshes contain V = 15000 vertices, the

PCA model of the meshes is trained with 200 samples to keep

96% of the energy of the principal components (which means

that Y = 5 in our experiments), the number of skeleton joints

is P = 15, and κ = 8 and α = 0.8 for the optimization

in (3). The Gaussian mixture model in (8) is trained with 30

components with the same samples as the ones used to train

the PCA model above. Even though our implementation allows

us to model male and female populations jointly, we model

the model genders independently because we notice that the

pose does not provide enough information to return the correct

gender accurately.

4http://francinedelgado.deviantart.com/art/Lara-Croft-Tomb-Raider-9-189389580
5http://www.deviantart.com/art/Iron-Man-Modular-Armor-62488829
6http://comics.cosmicbooknews.com/content/

guardians-galaxy-origin-announced-gamora-ron-lim-concept-art
7http://comics.cosmicbooknews.com/content/

guardians-galaxy-origin-announced-gamora-ron-lim-concept-art
8http://www.comicbookmovie.com/fansites/nailbiter111/news/?a=90782

A. Results

We first present the qualitative results in Fig. 4, where we

show seven examples of concept sketches (right on each panel)

and their respective estimated 3-D meshes (left on each panel)

using our proposed methodology. The quantitative experiments

in Fig. 5 take as input the image on the left of each panel,

which is obtained by taking the estimated 3-D mesh from the

qualitative experiment for each concept sketch, and projecting

it to form a new concept sketch. Note that this new sketch has

a reference 3-D ground truth mesh, and our method estimates

the 3-D mesh shown on the right of each panel, which is used

to compute the AED in (10) after normalizing both meshes by

the height of the known (reference) 3-D mesh, as mentioned

above. The AED result for each concept sketch is displayed

on the top of the right image of each panel.

B. Discussions

The qualitative results in Fig. 4 shows that our proposed

methodology produces, in general, 3-D meshes that are visu-

ally similar to the underlying (but hidden) 3-D model present

in the concept sketch. In particular, the method differentiates

well models that are very muscular (e.g., Thor and Terminator)

from models that are not so muscular, such as Spiderman of



Fig. 5. Quantitative results showing a concept sketch that contains a ground truth reference 3-D mesh, on the left of each panel (obtained by projecting the
3-D mesh estimated using the original concept sketch). On the right of each panel, the new estimation of the the 3-D mesh is shown using the sketch on the
left (i.e., not the original sketch) with the corresponding AED, computed with (10).

The Flash. It is also interesting to note that the system is

robust to background noise, as clearly see in the models for

Black Widow, Tomb Raider and Thor. In particular, the cape

present in the Thor sketch produces a large number of edges

that could have potentially confused the matching algorithm.

The method also seems to be robust to the non-standard human

proportions present in all of these sketches. Actually, the

fact that the method can generate models with non-standard

human proportions is interesting, given that it is trained with

meshes produced by Makehuman, which in general generates

standard human models. This happens because the sampling in

the PCA space generates meshes that can deviate reasonably

from the training samples. Finally, the quantitative experiment

in Fig. 4 shows that in general, the estimated 3-D mesh is

close to the reference meshes not only in terms of the AED

results, but also in visual terms.

IV. CONCLUSIONS

In this paper, we present a methodology for estimating 3-D

meshes from concept sketches using minimal user interaction.

We believe the qualitative and quantitative results indicate that

the proposed methodology has potential to be further inves-

tigated. We plan to study this method further, by addressing

some of the issues noticed during the experimental evaluation.

For instance, we plan to make the 2-D pose detection more

effective and less dependent on human interaction. This will be

achieved by building our own annotated database of concept

sketches and re-training the method developed by Ramakr-

ishna et al. [2]. We also intend to replace the linear skinning

process to avoid the typical artifacts seen in our examples [19]

(see for instance the skinning in Fig. 3). We also plan to use

more sophisticated non-linear dimensionality reduction meth-

ods [20] that can lead to more effective matching processes.

Finally, we plan to texture the 3-D mesh using the patterns

present in the concept sketch.
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