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Tracking and Segmentation of the Endocardium of
the Left Ventricle in 2D Ultrasound using Deep

Learning Architectures and Monte Carlo Sampling
Jacinto C. Nascimento, Gustavo Carneiro and António Freitas Ph.D.

Abstract

The tracking and segmentation of the left ventricle (LV) of the heart from ultrasound data still deserves the
attention in medical image community, being a commonly used method in practical clinical setup nowadays. The
goal above stated can be formulated as a sequential state estimation problem, which is essential to the study of linear
and non-linear dynamical systems. In this work, we present a particle filter based approach, rooted in Bayesian
estimation and Monte Carlo procedures, for tracking and segmenting the LV. Two main ingredients characterize
this formalism: the prediction that models the dynamic of the object in consecutive frames and filtering that collects
information in the present frame. This methodology allows the computation of the expected segmentation value at
the current time instant of the object, given all previous and current observations. Although the probability values
of the filtering distribution can be straightforwardly computed, sampling from it is challenging, so this means that a
proposal distribution is needed since it provides an easier way for sampling the filtering distribution. In this work,
we present an algorithm for tracking and segmenting the LV in 2D Ultrasound data based on the observations made
above. The contributions are as follows: (i) a new transition model (prediction) that combines different motion
regimes presented in the systole and diastole phases of the cardiac cycle; (ii) a new observation model (filtering)
built with a deep neural network, and (iii) a new proposal distribution for efficient sampling mechanism. The
usefulness of our approach is evaluated using a database of disease cases and another dataset of normal cases,
where both datasets present long axis views of the left ventricle. Using a training set comprising diseased and
healthy cases, we show that our approach produces accurate results for tracking the endocardium. Also, we show
that our method correlates well with inter-user statistics produced by four cardiologists.

I. INTRODUCTION

Automatic tracking and segmentation of the left ventricle (LV) endocardium of the heart is an important
step towards the estimation of the heart condition, since its quantitative measurement is used as a crucial
indicator of the cardiac health. Such tool is able to provide useful information to improve the workflow by
increasing the patient throughput and decreasing the interuser variability. Moreover, it constitutes a way of
measuring the dynamic behavior of the human heart, where the regional characterization of the heart wall
motion is necessary to isolate the severity and extent of diseases such as ischemia. Other features, such
as the ejection fraction of the left ventricle, the left ventricle mass of the myocardium and wall thickness
and thickening constitute important information that can be accessed with such automatic procedure.

This is however, a difficult problem to be fully solved. Indeed, when developing an algorithm for tracking
and segmenting the LV, several problems are encountered in ultrasound data. This usually comprises: (i)
fast motion during systole (contraction) phase, (ii) low signal-to-noise ratio, (iii) edge dropout caused by
motion, (iv) presence of shadows produced by the dense muscles, (v) specific properties and settings of
the ultrasound machine, as well as (vi) anisotropy of the ultrasonic image formation [1]. In ultrasound
images, the LV appearance is characterized by a dark region, representing the blood pool inside the
chamber, enclosed by the endocardium, myocardium, and epicardium, which are roughly depicted by a
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brighter region. Also note that specific spatial texture and gray value distribution of each region vary
substantially among different cases and even within each case. All the above mentioned issues impose
obstacles when developing an automatic procedure for the LV segmentation in ultrasound data.

Most of the current methodologies formulate the problem of tracking as a state estimation problem, in
which the expected segmentation is computed taking into account the previous and current observations
over the space of segmentation parameters [2]. Under this formalism, the segmentation parameters con-
stitute the state vector while the image represents the observations. The expected segmentation described
above is computed using the filtering distribution, which calculates the probability of a possible segmen-
tation given the previous and current observations. The computation of this expected value is not possible
to be obtained analytically, given the high number of dimensions of the space of segmentation parameters
and the non-Gaussianity of the distribution. As such, it is common to approximate this expected value
using Sequential Monte Carlo (SMC) sampling techniques, meaning that only a few weighted samples
(each sample representing a segmentation of the object) are needed to produce the expected value. The
weights in the samples are computed using the observation and transition models, while the samples are
obtained from sampling the filtering distribution [3]. Another usual problem is the difficulty in sampling
this filtering distribution, which is solved by sampling another distribution, called the proposal distribution,
that provides a reasonable approximation to the filtering distribution, but being much simpler to sample.
Then the probability of the proposal distribution has to be taken into account when calculating the sample
weights. Finally, using the samples and their respective weights, it is possible to compute the expected
segmentation mentioned above.

II. RELATED WORK

Several trends characterize the related work for object segmentation. One such trend is represented
by the active contours [4] whose geometry allows a broad shape coverage by employing a geometric
representation that involves many degrees of freedom. The deformable model designation stems from
the use of elasticity theory at the physical level within a Langrangian dynamics setting. In particular,
deformable model acts as an elastic body that respond to applied forces and constraints, and coupled
with it an energy is associated and modified as the deformable model moves in the image domain. In
the Lagrangean setting, the deformation energy is associated to elastic forces that are internal to the
model, which are called internal forcers (i.e. the prior). Under physics perspective, the external potential
energy functions are defined in terms of data of interest in the image (e.g. boundary of the object to
be segmented). These potential energies are associated to the external forces that are able to deform the
model to fit the desired data. The energy of the deformable model is supposed to be minimal when the
deformable model is located at boundary of interest (external energy) and has a shape which is supposed
to be relevant considering the shape of the sought object (internal energy).

Though successful at several tasks [5], [6], problems regarding the initialization as well as the presence
of outliers in the image motivated the development of level-set methods [7]. Level-set theory aims to
exchange the Lagrangian formalization (used in active contours) and replace it with an Eulerian form. In
this class of approaches, the initial valued partial differential equations control the front (i.e. boundary of
the object) evolution, representing the boundary as the zero level-set instance. For the level-set class of
approaches, the LV contour is represented by the zero-level in the signed distance function. In general
the level-set based approaches can provide higher robustness against the initialization [6], [8]–[16] and
robustness to sharp corners and cusps. Although level set have shown outstanding results in medical image
applications, they face limitations when dealing with the prior knowledge defined in the optimization
function regarding the LV boundary, shape and texture distribution.

The above issues motivated another line of research, namely the pattern recognition methods that involve
the use of a database of annotated LV images (i.e., a training set) to automatically build a model of the
LV shape and appearance. One of the first examples of pattern recognition models are the active shape
and appearance models [1], [17]–[19]. There are a few issues that affect these approaches: 1) need of



3

Fig. 1. Block diagram containing all steps of the tracking algorithm proposed in this chapter.

large annotated training set, 2) during inference, the initialization must be close to a local optimum, and
3) the Gaussian distribution assumption for the shape and appearance models constrain their capacity. The
initialization problem has been successfully handled [20], [21], but the large training set is still an issue
in the field.

Though receiving less attention, the transition model plays an important role in the computation of the
filtering distribution, since it conveys information about the dynamics. The most usual transition model is
the prediction estimated from the Kalman filtering [22]. However, the Gaussian assumption of the Kalman
filter is not realistic, given the complex motion patterns of the heart that violates such assumption. More
interesting transition models are built when providing more degrees of freedom to explain those motion
patterns that are more likely to happen in practice. For instance, Sun et al. [23] introduce a transition
model that is learned from training data using an information-theoretic criterion, but the lack of a prior
distribution in the model imposes the need of a large training set to provide a reliable transition model. A
related approach is proposed by Yang et al [24] consisting of a transition model that depends not only on
the previous state vector, but also on all state vectors up to current time instant. As previously, this model
is also automatically learned from training data and consists of a manifold describing the motion pattern
of the heart. Models based solely on prior information [25] also seem inadequate given that there might
be information present in training data that may not have been captured by the prior. The transition model
proposed by Nascimento [26] consisting of a mixture of two models (one for systole and another for
diastole) seems more adequate, and inspired us to implement our transition model. The main difference
is that we use both a prior information on the motion patterns, assuming the existence of two cardiac
cycles (i.e., systole and diastole), and a learned model from data instead of a transition model containing
only prior distributions [26].

Concerning now the tracking methods based on SMC sampling techniques, it is necessary to use a
proposal distribution that approximates reasonably well the filtering distribution [3]. Senegas et al. [25]
propose an SMC sampling method using a proposal distribution based only on the observation model,
which does not take into consideration the transition model. Sun et al. [23] introduce a proposal distribution
based only on the transition model, which also presents a limitation given that the observation model is
not considered. The work that inspired our model was proposed by Okuma et al. [27], who proposed
a tracking algorithm (i.e., not LV tracking) combining discriminative classifier detections and particle
filtering to track multi-target non-rigid objects. Notice however that the work presented herein contrasts
with [27] in sense that we are now concerned with the precision of the segmentation, which is a mandatory
requirement concerning the segmentation of the LV.
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Fig. 2. (a) Original training image; (b) manual segmentation of the LV in yellow dots inside the rectangular patch (yellow lines); (c)
representation of the canonical coordinate system for LV contour with the base and apical points highlighted and located at their canonical
locations within the patch delimited in (b); (d) lines taken at orthogonal lines radiating from the points depicted in (b); (e) intensity profiles
in three lines.

III. CONTRIBUTIONS

In this chapter, we propose a new LV tracking algorithm based on SMC methods. See Fig. 1 for an
illustration of the proposal. Our main contributions are the following:

1) New transition model: The transition model proposed in this chapter makes use of the prior infor-
mation that at each time instant, the heart is either expanding (diastole) or contracting (systole). The
deformation caused by these motion patterns are described by a linear transform, whose parameters
are learned from the training data.

2) New observation model: the model is built with deep learning architectures which involves a
statistical pattern recognition model, where we address the robustness to imaging conditions unseen
in training data. In order to handle the robustness to imaging conditions, we move away from the
use of boosting classifiers [21], and rely on the use of deep neural network classifiers [28]. The
main advantage of deep neural networks is its ability to produce more abstract feature spaces for
classification and to automatically generate optimum feature spaces directly from image data.

3) New proposal distribution: the proposal is inspired by the work of Okuma et al. [27], which
combines the detection results from the deep learning architecture with the transition model. This
combination provides precise segmentation, and robustness to imaging conditions and drifting.

IV. STATISTICAL MODEL OF THE SEGMENTATION ALGORITHM

We assume a non-Gaussian state-space model, where the state sequence is a process represented by
{kt, st|t ∈ N}, where k ∈ {systole, diastole} is a (discrete) label indicating the cardiac phase at tth time
instant, and s ∈ R2N denotes the contour representation with N key points. The above hybrid state
is assumed to be an unobserved (hidden) Markov process with the initial state distribution represented
by p(k0, s0) and the transition distribution that takes into consideration the previous cardiac phase and
contour representation with p(kt, st|kt−1, st−1). The observations consist of the images {It|t ∈ N∗}, which
are conditionally independent given the process {kt, st|t ∈ N}, with marginal distribution p(It|kt, st).
Also, we assume the existence of a training set D = {(I, θ, s, k)j}Mj=1 containing M training images I
of the ultrasound imaging of LV, the parameters of a rigid transformation θ = [x, γ, σ] ∈ R5 (position
x ∈ R2, orientation γ ∈ [−π, π], and scale σ ∈ R2) that aligns rigidly the annotation points to a canonical
coordinate system (see Fig.2), a respective manual annotation s ∈ R2N in this canonical coordinate system
(this means that the contour has N two-dimensional points), and k ∈ {systole,diastole}, which denotes
the phase of the cardiac cycle.

A. Overview of the method
The goal of the algorithm proposed herein is to produce a segmentation st for each frame It, where

t ∈ {1, ..., T} represents the time variable with T denoting the number of frames in the sequence. The
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optimal contour at each time instant t is produced as follows:

s∗t =

∫
st

stp(st|I1:t)dst, (1)

The above integral is difficult to compute given the high space dimensionality of s. Thus, we resort to use
the sequential importance resampling (SIR) algorithm [3] to estimate it. With SIR, the filtering distribution
p(st|I1:t) is approximated with a set of P weights and particles {w(l)

t , s
(l)
t }Pl=1, which can approximate the

segmentation as [2]:

s∗t ≈
P∑
l=1

s
(l)
t w

(l)
t , (2)

with w
(l)
t ≈ p(s

(l)
t |I1:t) and

∑P
l=1w

(l)
t = 1. The mains steps of the SIR method are listed in Algorithm 1

Algorithm 1 SIR Algorithm.
1: for t = 1 to T do
2: sample {k(l)

t , s
(l)
t }Pl=1

3: Update sample weights {w̃(l)
t }Pl=1

4: Normalize sample weights: w(l)
t =

w̃
(l)
t∑

l w̃
(l)
t

for l ∈ {1, ..., P};

5: Compute effective number of particles Neff = 1/
∑

l(w
(l)
t )2;

6: if Neff < KNeff × P then
7: re-sample by drawing P particles from current particle set proportionally to weight and replace

particle, and set w(l)
t = 1/P for l ∈ {1, ..., P}

8: end if
9: Compute LV segmentation for It, i.e. how it is computed s∗t in (2)

10: end for

One of the issues of SIR algorithm is that while it is easy to compute p(s
(l)
t |I1:t) for a contour s(l)t , it is

hard to sample from this distribution, so it is necessary to have a proposal distribution that approximates
well this filtering distribution, and from which is relatively simple to sample. In the next sections we
describe the main components of the proposed model comprising the transition model, the observation
model and the proposal detailing precisely how do we compute the steps 2, 3 and 9 shown in Algorithm
1.

B. Transition model
One of our contributions is the definition of the transition model. The main assumptions are: the current

cardiac phase kt only depends on the previous cardiac phase kt−1 and the current LV contour st depends
on the previous contour st−1 as well as the previous cardiac phase kt−1. Based on these assumptions, the
transition model becomes:

p(kt, st|kt−1, st−1) = p(kt|kt−1)p(st|kt−1, st−1), (3)

where p(kt|kt−1) stands for the switching/staying of the cardiac phases at each time step. The second term
in (3), is given as

p(st|kt−1, st−1) = g(st|f(st−1,M(kt−1)),Σs), (4)

where g(.) represents a multivariate Gaussian density function, the function f(.) produces an affine
transformation of the contour st−1; M(kt−1) is a linear transform of the contour st−1 learned from the
training data that allows an expansion (or contraction) according to the phase kt−1; and Σs is the covariance
of the annotations obtained during the training phase.
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C. Observation model
The observation model is defined as the process of image formation assumed to be

p(It|kt, st) ∝ p(kt, st|It)p(It), (5)

where p(It) is constant and the first term expanded as follows

p(kt, st|It) =
∫
θ
p(kt|θ, It)p(st|θ, kt, It)p(θ|It)dθ. (6)

Equation (6) contains three terms: the rigid (affine) detection contained in p(kt|θ, It), the non-rigid
segmentation in p(st|θ, kt, It) and the the prior distribution of the rigid detection p(θ|It).

The first term in (6) represents the rigid detection that is computed using discriminative classifier. The
classifier receives as input an image patch extracted from image It using θ and outputs the probability of
kt ∈ {systole, diastole}. Fig. 2-(b,c) illustrates how the image patch is extracted given the aligned base
and apical points. The second term in (6), represents the non-rigid segmentation that is defined as follows:

p(st|θ, kt, It) =
N∏
i=1

p(st(i)|θ, kt, It), (7)

where p(st(i)|θ, kt, It) represents the probability that the ith contour keypoint st(i) ∈ R2 is located at the
LV contour. Fig. 2-(d) shows that for each i ∈ {1, ..., N} the possible st(i) is confined to points lying on
a line orthogonal to the LV contour.

Finally, the third term in (6) is defined as p(θ|It) = g(θ|θ̄,Σθ), where θ̄ and Σθ are the mean and
covariance values of the training set values for θ, and g(.) denotes the multivariate Gaussian density
function.

D. The Filtering distribution
From the transition model defined in Section IV-B, and the observation model detailed in Section IV-C

we can now derive the solution to the filtering problem. Denoting the state and observation vectors up
to time instant t as s0:t , {s0, ..., st} (similarly for k0:t and I1:t), the solution is given by the following
Bayesian recursion [2]:

p(kt, st|I1:t) =
p(It|kt, st)p(kt, st|I1:t−1)

p(It|I1:t−1)

=
p(It|kt, st)

∑
kt−1

∫
p(kt, st|kt−1, st−1)p(kt−1, st−1|I1:t−1)dst−1∑

kt

∫
p(It|kt, st)p(kt, st|I1:t−1)dst

,

(8)

where p(kt, st|I1:t−1) =
∑

kt

∫
p(kt, st|kt−1, st−1)p(kt−1, st−1|I1:t−1)dst−1. The first term (in the numerator

of (8)) is the observation model given in (5), the second is the transition model (see (3)) whilst the third
is the available estimate at the previous time step.

Notice that (8) computes the distribution of cardiac phases and LV contours at every single time instant
without taking any option regarding the cardiac phases or contour values. This is an important issue, since
it endows a robustness in the algorithm.

E. Deep Particle filtering
In the particle filtering setup, the posterior p(kt, st|I1:t) in (8) is approximated with a finite set of P

particles, as follows:

p(kt, st|I1:t) ≈
P∑
l=1

w
(l)
t δ(kt − k

(l)
t )δ(st − s

(l)
t ), (9)
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where δ(.) is the delta function. The particles {k(l)
t , s

(l)
t }Pl=1 are sampled from a proposal distribution q(.)

with (k
(l)
t , s

(l)
t ) ∼ q(kt, st|k(l)

0:t−1, s
(l)
0:t−1, I1:t), where each particle is expressed as

w̃
(l)
t = w

(l)
t−1

p(It|k(l)
t s

(l)
t )p(k

(l)
t , s

(l)
t |k(l)

t−1s
(l)
t−1)

q(k
(l)
t , s

(l)
t |k(l)

0:t−1s
(l)
0:t−1, I1:t)

, (10)

where w̃
(l)
t and w

(l)
t represent the un-normalized and normalized weights, respectively.

In this work, the proposal distribution combines both prediction and filtering distributions as in [27].
The key difference is that we accomplish this task differently. More specifically, the proposal distribution
takes into account a transition model (see (3)) for each particle and a detection provided by a discriminative
classifier based on a deep belief network (DBN). This, of course, results in a mixture of Gaussians as
follows

q(kt, st|k(l)
0:t−1, s

(l)
0:t−1, I1:t) = q(kt, st|k(l)

t−1s
(l)
t−1, It)

= αqDBN(kt, st|It) + (1− α)p(kt, st|k(l)
t−1, s

(l)
t−1)

(11)

with the detection term (first term in (11)) given by

qDBN(kt, st|It) =
∑

{k̃t ,̃st}

p(k̃t, s̃t|It)g(st |̃st,Σs)p(kt|k̃t) (12)

where {k̃t, s̃t} stands for the top detections, i.e. the local maxima of the observation distribution defined
in (6), g(.) is the multivariate Gaussian density function with mean s̃t and covariance Σs, and p(kt|k̃t) is
the transition between cardiac phases defined in (3). The parameter α ∈ [0, 1] in (11) is used to weight
the contribution of the observation and transition models. Note that α = 0 represents a distribution that
takes into account only the transition model, while α = 1 denotes a proposal distribution built based on
the observation model only.

Note that the main advantage of this proposal distribution is that when the motion model fails, the
observation model has a chance to recover the boundary based on the observations computed from the
current image. For the LV tracking this is important because it is hard to obtain a faithful model of the
LV motion. Nevertheless, the presence of the transition model is still quite important to deal with the
detection and segmentation failures of the observation model.

F. Segmentation of the Left ventricle
Using the particle filter setup in (9) for the filtering distribution, we estimate the values for the state

variables at each time step t as follows:

k∗
t = arg max

k∈{systole,diastole}
Ep(kt,st|I1:t)[k], (13)

where Ep(kt,st|I1:t)[k] ≈
∑P

l=1w
(l)
t δ(k − k

(l)
t ), and

s∗t = Ep(kt,st|I1:t)[st|k∗
t ] ≈

1∑P
l=1w

(l)
t δ(kt − k∗

t )

P∑
l=1

w
(l)
t s

(l)
t δ(kt − k∗

t ). (14)

Given all the main ingredients of the statistical model in Sections IV-B-IV-F, we can now provide more
details about the SIR in Algorithm 1. Thus, the sampling in step §2 is done by using (11); the weights
update in step §3 is accomplished using (10), and finally the segmentation in step §9, is performed using
(13), (14), to update k⋆

t and s⋆t , respectively.
In the following section we provide details concerning the training and inference of the Deep belief

network, for the rigid and non-rigid classifiers (6) in the observation model in (5).
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V. TRAINING AND INFERENCE ON DEEP BELIEF NETWORKS

Deep belief networks (DBN) are artificial networks containing a large number of hidden layers and
nodes, which allows the construction of models of large capability. However, the backpropagation algo-
rithm for estimating the classifier parameters is limited, in sense that it only provides reliable estimates
when the initial guess is close enough of the local optimum of the objective function to be minimized.
Hinton et al. [28] found an efficient mechanism to surpass this difficulty using unsupervised training of
multiple layers of restricted Boltzmann machines (RBM), which are represented by a hidden and a visible
layer of stochastic binary units with connections only between layers (i.e., no connections within layers).

After the parameters of several layers of RBMs are learned, the whole network is trained using
backpropagation to adjust the weights to a local maximum for the regressor and classifier functions.
The use of deep learning are grounded on the two following two main ideas [29]:

§ 1 An unsupervised generative model learns the process of the LV image generation, and
§ 2 a discriminative model that is trained on the above generative model.

A. Training the DBN
The training stage of the DBN comprises both the training of the rigid and non-rigid classifiers (see

(6)). For training the rigid classifier (first term in (6)) we follow the strategy proposed by Carneiro et
al. [30]. Basically, this method builds an image scale space L(x, σ) = G(x, σ) ∗ I(x), where G(x, σ)
is a Gaussian kernel, and ∗ is the convolution operator, and I(x) is the input image, σ is the image
scale parameter. In this methodology we have to define a set of images scales, say {σ1, ..., σQ}. More
specifically, in the present approach we have three scales, i.e. σ = {4, 8, 16}, (Q = 3) and we train three
classifiers separately. For training each classifier we generate a set of positive and negative training sets,
that are defined based on a scale-dependent margin mσ. The generation process of each training sample
(positive or negative), can be viewed as function φ(.) that receives a triplet containing the jth image Ij ,
scale σq and a set of affine parameter θ, and outputs the image patch Pnq×nq of size nq × nq containing
the LV, i.e. formally Pnq×nq = φ(Ij, σq, θ). Basically, the function φ(.) comprises a scale operation on
image I with σq and then perturbing by an affine transformation in θ ∈ R5. This produces a patch of size
nq × nq, where n is a vector indexed by q ∈ {1, .., Q}. After this process, we finally subtract each patch
pixel with its mean. This contrast normalization provides more robustness against brightness variations.

The difference between the generation positives and negatives are the ranges in which the affine
transformation parameters in θ are defined. Thus, for positive samples, denoted herein as Pos(k, q, j),
and considering a training image Ij , an image scale σ and a cardiac phase k ∈ {diastole, systole}, the
samples are randomly generated inside the following range

Pos(k, q, j) = {Pnq×nq |θ ∼ Dist(R(θ)), |θ − θj| < mp, kj = k} (15)

where Dist(.) is an uniform distribution, over the range R(θ) = [max({θj}j=1,..,M)−min({θj}j=1,..,M)] ∈
R5

For the negative samples the range of parameters R is now larger and becomes as

N eg(q, j) = {Pnq×nq |θ ∼ Dist(R(θ)), |θ − θj| > 2mp} (16)

where mp in (15),(16) is the margin between positive and negative samples that facilitates the training
process by avoiding similar examples with opposite labels. This avoids overtraining in the classifiers.

Notice that, with the above procedure, we are able to train the rigid (affine) DBN. To accomplish this,
we stack several hidden layers to reconstruct the input patches in the Pos and N eg sets. This corresponds
to unsupervised training (issue § 1 above). After this, three nodes are added to the top layer of the DBN
to account for: (1) p(k = systole|I, θ), (2) p(k = diastole|I, θ), and (3) the formed patch Pnq×nq does
not contain the LV. Finally, the discriminative training on the generative model is to find the appropriate
weights of the DBN (issue § 2 above).
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TABLE I
LEARNED CONFIGURATION FOR THE DEEP BELIEF NETWORKS.

Affine Classifier
σ Visible Layer Hidden Layer 1 Hidden Layer 2 Hidden Layer 3 Hidden Layer 4 Output Layer
4 196 (14× 14 pix.) 100 100 200 200 3
8 49 (7× 7 pix.) 50 100 - - 3

16 16 (4× 4 pix.) 100 50 - - 3
Non-rigid Classifier

σ Visible Layer Hidden Layer 1 Hidden Layer 2 Hidden Layer 3 Hidden Layer 4 Output Layer
4 41 50 50 - - 1

The non-rigid regressor is trained only at the finest scale σ = 4 (second term in (6)). In the training
process we build an orthogonal line radiating from each contour sample (see Fig. 2 (d)). This allows us to
define the ith sample of the jth contour point sj(i). The input of the regressor is the profile (gray levels)
of the orthogonal line (see Fig. 2 (d) for an illustration), and returns the location in each normal line that
is closest to the LV boundary.

VI. EXPERIMENTAL EVALUATION

In this section we first examine the data used for the experimental evaluation, the annotation procedure
and the team involved. We next describe the learned configurations of the deep belief networks, for both
rigid and non-rigid classifiers. Finally we perform a interuser statistics study comprising the modified
Williams index the Bland-Altman and Scatter plots and a comparison with the state of the art.

A. Datasets and manual annotations
The data set used for the experiments comprises 20 sequences for training and testing (20 sequences

from 20 subjects with no overlap), from which 16 present some kind of cardiopathy. According to the
cardiologist’s report1, the following cardiopathies/abnormalities are considered:
§1. Dilation of the LV. The dilation can be classified in mild, moderate or severe;
§2. Presence of hypertrophy of the LV. The hypertrophy can also be classified into mild, moderate or

severe;
§3. Wall motion abnormalities. The abnormalities can be classified as global (affecting all the LV

segments), or localized (affecting some of the LV segments);
§4. Function of the LV. The function may be preserved, mild, depressed, or severe (i.e. dysfunction of

the LV);
§5. Presence of valvular heart disease; and
§6. Presence of a pacemaker device.
The data set is splitted into two sets: T1 and T2. The set T1 contains 16 sequences presenting some

cardiopathy as mentioned above and other two sequences from healthy subjects, we term these sequences
as T1A...R

. The other set comprises two healthy sequences T2A,B
.

We worked with four members of the cardiology services from Hospital Fernando Fonseca 2 who
annotated five sequences in T1, they annotated roughly 20 frames in each sequence; one annotation in the
systole and in diastole phases of the cardiac cycle. In the set T2A,B

the head of the team provide us 40
annotations (20 for each sequence in T2). We access how the results of the proposed algorithm correlate
with interuser variation in the set T1. Also, we perform a quantitative comparison between the estimates
obtained in T2, thus, the results reported in five sequences of the LV.

1This was done in collaboration with Dr. António Freitas from Hospital Fernando Fonseca who detailed each of the sequences
2The annotations were possible thanks to the collaboration with the cardiology service in Hospital Fernando Fonseca headed by Dr. António

Freitas
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B. Training of the DBN
This section describes the two training phases of the DBN, comprising the afine (rigid) and non-rigid

stages. For training rigid classifier, three separate classifiers are trained, each one at different scale, i.e.
q ∈ {1, ..., Q}. To accomplish this, we generated 100 positive and 500 negative patches that will integrate
the sets Pos and N eg, respectively (see (15),(15)). This initial training set, is further, divided 80% in Pos
and N eg for training and validation sets. The multiscale strategy mentioned in Section V-A is used in
training and segmentation purposes at three different scale; σ = {16, 8, 4}. The dimension of the patches
depends on the scale used. Thus, the original patch size is 56×56, but it decreases as the scale increases.
More specifically, we used patches of dimension, 4 × 4, 7 × 7 and 14 × 14, for scales 16, 8 and 4,
respectively. The validation set, is used to estimate the parameters of the DBN, namely: (i) number of
visible, hidden and output layers; (ii) number of nodes for the visible, hidden and output layers. These
sets of parameters are shown in Table I for both rigid and non-rigid classifiers. This was achieved using
the annotations data set contained in T1.

The non-rigid classifier (see (7) and Fig. 2 (d,e)) is trained with the approach described in Section V-A.
Each normal line has 41 pixel-length. In this training stage we also use the same positive set Pos, 80
samples for training and 20 for validation.

C. Error measures
To perform a quantitative assessment we use several error mesures that compute the mismatch between

the estimated LV and the ground truth contours. Among possible choices for the quantitative study, we
will use metrics that are common and widely known in the literature. More specifically, we use the
Hammoude distance (HMD) [31], average error (AV) [26], mean absolute distance (MAD) [32], and
average perpendicular error (AVP) between the estimated and ground truth contours, (see [26], [33] for a
complete definition of the these measures).

D. Comparison with Inter-user Statistics
The robustness of the proposed approach against the interuser variability is assessed following the

works of Chalana et al. [34] and Lopez et al. [35]. The measures used are the following: (i) modified
William index, (ii) Bland-Altman plot [36], and (iii) scatter plot. These comparisons are performed on the
diseased sets contained in T1,{A,B,C}, for which we have four LV manual annotations per image delineated
by four different Cardiologists (Sec. V-A).

Fig. 3 illustrates the inter-variance of the delineations given by the four cardiologists. This figure shows
that indeed the delineation of the LV contour is somehow subjective. Parts of the contour belonging to
the apex and the right lateral part are the regions in which the discrepancy is larger.

For each sequence we have about 17 expertise annotations. Considering four cardiologists, this gives
51 manual annotation for each sequence, resulting in a total amount of 204 annotations in T1

In order to have a fair comparison, we train three separate DBN classifiers using the following training
sets: 1) T1 \T1,A, 2) T1 \T1,B, and 3) T1 \T1,C , where \ represents the set difference operator. These three
classifiers are necessary because when testing any image inside each one of these three sequences, we
cannot use any image of that same sequence in the training process.

1) Modified Williams Index: To provide the results concerning the modified Williams index we start
by considering the set {sj,k}, where j ∈ {1..M} indexes the testing images, and k ∈ {0..U} indexes the
manual annotations, where the index k = 0 denotes the computer-generated contour (i.e., each one of
the M images has U manual annotations). The function Dk,k′ measures the mismatch or disagreement
between users k and k′, which is defined as

Dk,k′ =
1

M

M∑
j=1

d−(sj,k, sj,k′), (17)
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Fig. 3. In each image, four manual delineations of the LV contour are shown, where each color refers to the annotation of an expert.

where d−(., .) is an error measure between two annotations sj,k, sj,k′ . The measure can be, for instance,
the average distance between the estimated contou and the ground-truth contour. The modified Williams
index is defined as

I ′ =

1
U

∑U
k=1

1
D0,k

2
U(U−1)

∑
k

∑
k′:k′ ̸=k

1
Dk,k′

. (18)

A confidence interval (CI) is estimated using a jackknife (leave one out) non-parametric sampling
strategy [34] as follows:

I ′(.) ± z0.95se, (19)

where z0.95 = 1.96 represents 95th percentile of the standard normal distribution, and

se =

{
1

M − 1

M∑
j=1

[I ′(j) − I ′(.)]

}
(20)

with I ′(.) = 1
M

∑M
j=1 I

′
(j), and I ′(j) is the Williams index (18) calculated by leaving image j out of

computation of Dk,k′ . A successful measurement for the Williams index is to have the average and
confidence interval (19) close to one.
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TABLE II
COMPARISONS IN THE SEQUENCES. EACH CELL SHOWS THE MEAN VALUE AND THE STANDARD DEVIATION IN

PARENTHESES.
Sequence One

Approach Hamm. Aver. Hausd. )

Proposal 0.17(0.04) 3.3(0.8) 19.1(2.2)
[40] 0.18(0.06) 3.2(0.8) 20.0(2.6)

[26] 0.24(0.03) 4.8(0.9) 22.4(2.1)

Sequence Two

Approach Hamm. Aver. Hausd.

Proposal 0.15(0.03) 2.9(0.5) 19.4(1.4)
[40] 0.17(0.02) 3.0(0.5) 19.8(1.1)

[26] 0.24(0.03) 4.8(0.7) 20.2(1.4)

TABLE III
COMPARISON OF THE COMPUTER GENERATED CURVES TO THE USERS’ CURVES WITH RESPECT TO ALL THE ERROR MEASURES FOR

THREE SEQUENCES USING THE AVERAGE AND 0.95% CONFIDENCE INTERVAL (IN PARENTHESIS) OF THE WILLIAMS INDEX.
measure dHMD dAV dMAD dAVP

Average(CI) 0.83 (0.82, 0.84) 0.91 (0.90, 0.92) 0.94 (0.93, 0.95) 0.83 (0.82, 0.84)

2) Bland-Altman and Scatter Plots: Quantitative results to provide the Bland-Altman [36] and scatter
plots from which we also compute the correlation coefficient and the p-value. To accomplish this we have:
(i) the gold standard LV volume computed via an iterative process using the manual annotations [34]; (ii)
the Cardiologists’ LV volumes, and (iii) the computer generated LV volume. To estimate the LV volume
from 2-D contour annotation we use the area-length equation [37], [38] with V = 8A2

3πL
, where A denotes

the projected surface area, L is the distance from upper aortic valve point to apex, and V is expressed
in cubic pixels. The p-values are computed as follows: 1) compute several independent p-values from 3
samples, each taken from separate sequence; and then 2) combine the p-values using the Fisher’s method
into a single result by assuming independence among the p-values [39].

E. Experimental results
Fig. 4 shows the qualitative performance of the proposed approach at segmenting the LV. In green

contour it is displayed the expertise annotation superimposed with the estimated contour in red. Each row
corresponds to a different cardiac sequence, and all the sequences are contained in the set T1,{A,B,C}. It
is seen that the proposed approach exhibits quite remarkable segmentations in these sequences.

We show a comparison with the state of the art in Table II using the error metrics Hammoude (Hamm),
average (Aver.) and Hausdorff (Hausd.) In this study, we used the two test sequences T2A,B

and compared
with our previous methods [40], [26]. The approach in [40] only contains the observation model, which
means that does not contain any dynamic model, only the static segmentation. In [26] a deformable
based approach is proposed, which contains a transition model that is based on a switching mechanism.
More specifically, at each time instant (each frame) the deformable model is able to switch the phase (i.e.
k=systole) two hypothesis are considered.

In terms of inter-user statistics, Table III shows the mean values as well as and confidence intervals
of the Williams index defined in (18)-(19). This is done for all ultrasound sequences considered for
the comparison with inter-user statistics. Fig. 5 shows the scatter and Bland-Altman plots. Concerning
the scatter plot, the correlation coefficient between the users and gold standard is 0.99 with p-value=
3.11× 10−68 (left images images in the figure) and for the gold standard versus computer the correlation
is 0.95 with p-value= 1.9×10−4 (right image in the figure). In the Bland-Altman plots, the Inter-user plot
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Fig. 4. LV contour estimates (red) are compared against the expertise ground-truth (green). Also it is shown the cardiac phase and the
correspondent confidence in the top of each snapshot.

produced a bias of 4.9× 104 with confidence interval of [−5× 105, 5× 105], while the Gold vs Computer
plot shows a bias of 1.8× 105 and confidence interval of [−4× 105, 7× 105].



14

Scatter plot
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Fig. 5. Scatter plots with linear regression and Bland-Altman bias plots
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VII. CONCLUSIONS AND FURTHER WORK

We have described an automatic algorithm for the segmentation and tracking of the LV in 2D ultrasound
data. The contribution presented herein resides is in the ability to combine deep learning architectures with
sampling importance resampling (SIR) techniques incorporating dynamical model. Under this framework,
a novel transition and observation models are presented. In the dynamical model, there is no commitment
to a specific heart dynamical regime, instead it combines the transition and observation results. Notice
however, that there are some limitations concerning the training sets used. In particular, the present
framework is still dependent on a rich training data set, being preferable to have several frames from
distinct patients rather several frames from the same patient. Also, when generating the positive and
negatives samples (in Section V-A eqs. (15),(16)) that are estimated from the training set, the range may
not be enough to robustly represent all the variation that can happen with the left ventricle. In further
work we plan to address the above issues by developing a semi-supervised based techniques to reduce
such dependence. We also plan to apply this approach to other anatomies and other medical imaging
techniques.
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