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Abstract

The design of feature spaces for local image descriptors
is an important research subject in computer vision due to
its applicability in several problems, such as visual classifi-
cation and image matching. In order to be useful, these de-
scriptors have to present a good trade off between discrimi-
nating power and robustness to typical image deformations.
The feature spaces of the most useful local descriptors have
been manually designed based on the goal above, but this
design often limits the use of these descriptors for some spe-
cific matching and visual classification problems. Alterna-
tively, there has been a growing interest in producing fea-
ture spaces by an automatic combination of manually de-
signed feature spaces, or by an automatic selection of fea-
ture spaces and spatial pooling methods, or by the use of
distance metric learning methods. While most of these ap-
proaches are usually applied to specific matching or classi-
fication problems, where test classes are the same as train-
ing classes, a few works aim at the general feature trans-
form problem where the training classes are different from
the test classes. The hope in the latter works is the auto-
matic design of a universal feature space for local descrip-
tor matching, which is the topic of our work. In this paper,
we propose a new incremental method for learning auto-
matically feature spaces for local descriptors. The method
is based on an ensemble of non-linear feature extractors
trained in relatively small and random classification prob-
lems with supervised distance metric learning techniques.
Results on two widely used public databases show that our
technique produces competitive results in the field.

1. Introduction

Local image descriptors have received an enormous
attention ever since the seminal works of Schmid and
Mohr [17] and Lowe [14]. Essentially, the design of lo-
cal image descriptors is based on image features extracted
from compact image regions (covering a small percentage
of the image area) using certain types of spatial pooling
methods (e.g., weighted averaging, histogramming, etc.),
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Figure 1. Set of image matching problems and the subset of prob-
lems solved by each type of feature transform (a). In Figure (b),
we start with a specific matching problem (a subset of the orig-
inal set) and search for the best descriptors (or a combination of
descriptors) for the task. Figure (c) displays the combination of
feature spaces proposed in this paper, where the union represents
the whole set of matching problems that can be solved.

which generates a feature transform. This feature transform
can be mathematically [8, 13] or empirically [2, 14] shown
to be robust to certain image deformations and to achieve
a good trade-off between discriminating power and robust-
ness. There are two distinct ways to understand the problem
of designing feature transforms to be used by local image
descriptors methods. The first approach is to come up with
descriptors that show robustness to certain image deforma-
tions and present a reasonable discriminating power, and
then find the matching problems that can be successfully
solved with the use of such descriptors [2, 14, 17]. The
second way is to start with a matching problem and search
for feature transforms that can handle the deformations pre-
sented by the specific problem while producing descriptors
that are discriminating enough [20].

Figure 1-(a) shows a Venn diagram representing the
whole set of image matching problems (rectangle) and the
subset (circle) of problems solved by the feature trans-
forms SIFT [14], shape context [2], and differential invari-
ants [17]. This diagram means that each feature presents
a good trade off between discriminating power and ro-
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bustness for all problems located in its respective subset.
There have been reports describing the types of matching
problems that can be handled by certain image descriptors.
For instance, Mikolajczyk [15] noticed that shape context
presents high performance except for textured scenes (e.g.,
tree bark, brick wall) and when edges are not reliable. Also,
Ke [12] presented PCA-SIFT as an alternative to SIFT for
matching problems containing substantial image deforma-
tion (geometric transformation and brightness variations),
which also indicates that SIFT-based descriptors are less
suitable when large image deformations are present in the
problem. Although a common goal of the authors of new
types of local descriptors is to demonstrate their applicabil-
ity in several matching problems, it is inevitable that each
one of those descriptors can only be applied to a subset of
the matching problems. Therefore it is unlikely that any
of the current local descriptors will be useful for all types
of matching problems. We call the feature transform that
produces local descriptors which are useful to solve a large
number of unanticipated matching problems, the universal
feature transform.

In order to increase the set of matching problems solved
by one type of descriptor, a quite simple solution is to form
a new descriptor based on the combination of different de-
scriptors (e.g. combine SIFT with shape context) [4, 16],
where the hope is that the final subset of problems covered
by the new descriptor will be represented by the union of
their subsets, but unfortunately there is no guarantee that
this is the case. The problem of combining local descriptor
types has been elegantly posed as an optimization problem
by Varma and Ray [20], where a combination of several de-
scriptors is found in order to maximize the margin among
descriptors produced by different local image classes for a
specific matching problem (Fig. 1-(b)). Even though the lat-
ter solution is interesting, small changes to the subset (of the
matching problem) require a new training process, which
reduces the interest in the method for the general problem
of universal feature transform unless it is possible to find de-
scriptors covering the whole set of matching problems, but
it remains to be seen whether this is a tractable optimization
problem.

The main inspiration for this work is the paper by Hua et
al. [11], where the authors propose a universal feature trans-
form through an automatic feature selection process, which
determines the type of feature to use and the spatial pooling
method. Our main criticism is that this is still constrained
to form one feature space, resulting in the same limitations
mentioned before, but note that the set of problems covered
by such feature space may be larger than any of the existing
spaces. Also, the authors resort to the use of linear distance
metric learning techniques, which we believe to be in the
right direction except for the fact that they are linear, re-
sulting in feature spaces with stable classifiers (the type of
classifier used is specified later) with high bias and low vari-
ance, and consequently not useful for producing an ensem-
ble of classifiers [3]. Implicitly, Hua et al. [11] acknowledge
the limitation of the linear transform by first applying a pre-
determined non-linear transformation, which results in bet-

ter feature spaces for classifying local descriptors. Another
important reference is the work by Chopra et al. [6], which
runs a learning procedure of a feature transform using only
a subset of the test classes for a face verification problem. It
remains to be investigated how this method would perform
under the same experimental conditions suggested by Hua
et al. [11], which is the main benchmark used in our paper.

In this work, we introduce a new method to solve the
problem of designing a feature transform that can be used
by a large number of unforeseen matching problems. We
call it the Universal Feature Transform (UFT). The ap-
proach is defined as an incremental method for automati-
cally learning feature spaces for local descriptors based on
an ensemble of feature extractors. Each feature extractor is
trained in relatively small and random classification prob-
lems using supervised non-linear distance metric learning
techniques. By random, we mean that we train each feature
space with a set of training classes selected randomly from
a pool of training classes. The aggregation of the feature
spaces is based on a simple distance sum scheme. There-
fore, given a new matching problem, the distance between
two descriptors is computed by the sum of the distances in
all automatically learned feature spaces. Fig. 1-(c) shows
the idea through the combination of several feature spaces
(FS1 to FSN) trained with the method proposed in this pa-
per, where the union of the FSi subsets represents the subset
of matching problems solved by our approach. Experiments
display simple examples that clarify the functionality of the
method, and then we show results in the database of local
descriptors provided by Winder and Brown [22], where we
follow a training approach specific to our method, but use
the same test conditions. Our results are comparable to the
best results shown by the same group [11], but note that
our method uses only the original gray values of the input
image patch instead of pre-determined features and spatial
pooling schemes to train the feature transformation, which
means that the run-time complexity can be smaller with a
clever implementation based on parallel algorithms. More-
over, the fact that we do not use pre-determined features has
the potential to increase the subset of matching problems
covered by our method. Using the feature space trained in
the database above, we show that the matching results of
our method in the problems developed by Mikolajczyk [15]
are better than for current state-of-the-art local descriptors.

2. The Universal Feature Transform

The proposed universal feature transform (UFT) is an
incremental learning method that can adapt itself to new
matching problems, but that does not worsen its perfor-
mance in problems that it already shows good performance,
as new learning rounds are processed. We assume the exis-
tence of a large pool of training classes containing labeled
local descriptors, where each class is produced with im-
age regions taken from the same 3-D location in a scene
(but from different viewpoints and viewing conditions) and
aligned to a canonical image space (with similar orienta-
tion, scale and translation parameters). In order to assess
quantitatively the accuracy of the method, we assume the



existence of a labeled test set built in the same way as
the training set, but note that the intersection between the
training and test sets is empty. The universal feature space
presented here is an ensemble of feature spaces produced
by non-linear supervised distance metric learning methods
trained over random training sets of relatively small size.

2.1. Supervised Non-linear Distance Metric Learn-
ing

Our work is rooted in the supervised distance met-
ric learning problem, which automatically designs feature
spaces that bring closer together points belonging to the
same class and that push farther apart points from differ-
ent classes. Hence, this new distance metric has the po-
tential to improve the accuracy of similarity-based classi-
fiers [6, 9, 21], which is usually the type of classifier used
in local descriptor matching methods. More specifically,
our classification scheme is based on the threshold match-
ing [15], where two descriptors (or two points) are matched
if their distance in the transformed feature space is below a
threshold. Following the notation used by Weinberger and
Saul [21], let us first consider how to solve the linear dis-
tance metric learning [5, 10].

Assume that we have N image patches x ∈ ℜn and
respective labels y ∈ {1, ..., C} forming the set R =
{(xi, yi)}i=1..N . A linear transform is represented by a
matrix T ∈ ℜn×m, where m ≤ n such that x̃ = T

⊤
x,

x̃ ∈ ℜm andT
⊤ means the transpose of matrixT. The dis-

tance between two points in the transformed space is then
denoted as:

DM(xi,xj) = (xi − xj)
⊤
M(xi − xj), (1)

where M = TT
⊤. The convex optimization problem to

learn the linear distance metric can be formulated as fol-
lows:

minimizeM
∑

ij Yij

√

DM(xi,xj)
subject to

∑

ij(1−Yij)DM(xi,xj) ≥ 1
M � 0,

(2)

where the element (i, j) of matrix Y is denoted as Yij = 1
if yi = yj , and Yij = 0 otherwise. In order to adapt this
problem to a non-linear transformation, we first reformulate
the problem (2) as follows [5, 18]:

T
∗ = arg max

T∈ℜm×n

[

tr

(

(

T
⊤
S

(w)
T

)−1 (

T
⊤
S

(b)
T

)

)]

,

(3)
where

S
(w) = 1

2

∑

ij W
(w)
ij (xi − xj)(xi − xj)

⊤,

S
(b) = 1

2

∑

ij W
(b)
ij (xi − xj)(xi − xj)

⊤,

with W
(w) = Y and W

(b) = 1−Y with Y defined in (2)
(note that problems (2) and (3) are related, but not equiva-
lent). Alternatively, this problem can be formulated as fol-
lows:

minimizeT − 1
2T

⊤
S

(b)
T

subject to 1
2T

⊤
S

(w)
T = I,

(4)

where I denotes the identity matrix. Solving the dual of (4),
we arrive at the following generalized Eigenvalue problem:

S
(b)

T = λS(w)
T, (5)

where the eigenvectors associated with them largest eigen-
values will form the linear transformT.

The kernelization of the method, which turns it into a
non-linear feature transform, is important since, intuitively,
linear feature transforms are unlikely to handle the wide
range of image deformations that typically appear in match-
ing problems, and are also unlikely to increase the discrim-
inating power of the original feature space. Also, even
though we are dealing with feature transforms, it is impor-
tant to recall Breiman’s argument about ensemble classi-
fiers. Breiman [3] argued that ensemble classifiers are effec-
tive only with the combination of unstable classifiers (low
bias and high variance), which is likely to reduce the vari-
ance of the final classifier (and keep the low bias). Below,
we show that similarity-based classifiers applied in non-
linearly feature transformed spaces produce unstable results
with low bias and high variance. Hence, using a similar
reasoning introduced by Breiman, we propose an ensemble
feature transform aggregating non-linear feature transforms
in order to keep the low bias and reduce the variance as
more feature transforms are added to the ensemble.

The kernelization of the approach [5, 18] is achieved by

first observing that S(w) and S
(b) in (3) can be written as

follows:

S
(.) =

∑

i

(

∑

j W
(.)
ij

)

xix
⊤
i −

∑

ij W
(.)
ij xix

⊤
j , or

S
(.) = XL

(.)
X
⊤,

(6)

where L
(.) = D

(.) −W
(.) with D

(.)
ii =

∑

j W
(.)
ij being a

diagonal matrix, and X ∈ ℜn×N is a matrix containing all
the training points. Another observation is that X

⊤
T =

X
⊤
XU = KU, where U ∈ ℜN×m and with the ele-

ment (i, j) of matrix K ∈ ℜN×N denoted as Kij = x
⊤
i xj .

Therefore, the generalized eigenvalue problem in (5) can be
re-written as follows:

KL
(b)

KU = Λ̃KL
(w)

KU (7)

by taking the equality X
⊤
T = KU described above, and

multiplying by X
⊤ on both sides. Therefore, {xi}i=1..N

appear in terms of their inner product, and the non-linear
transformation can be obtained using the kernel trick [19],
with, for example, the following kernel:

Kij = 〈φ(xi), φ(xj)〉 = exp

(

−
‖xi − xj‖

2

2σ2

)

= K(xi,xj),

(8)
where φ(.) represents the non-linear transformation to a re-
producing kernel Hilbert space H [18], 〈., .〉 denotes the
inner product in H, and σ > 0. Finally, the transformed
feature vector of x is given by [18]:

ψ(x) = Λ̃0.5
U
⊤ [K(x1,x), ...,K(xN ,x)]

⊤
. (9)
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Figure 2. Distance metric learning in a 2-D data with three classes.
The top-left graph represents the distributions of classes C1, C2
and C3 (contours) and several points in the original space evenly
spread in a grid. The top-right graph displays the mean and stan-
dard deviation of ROC curves for the similarity-based classifier
using the learned non-linear (9) and linear (4) feature transforms.
The bottom-left graph shows the classes transformed using the
new space produced by the non-linear distance metric learning
and the transformed points from grid on the top-left graph. The
bottom-right graph shows the same results for the transform pro-
duced with linear distance metric learning.

Fig. 2 displays the application of the supervised non-
linear distance metric learning explained above for a three-
class problem using 2-D data. Each training class (C1,
C2, and C3 in the figure) is represented by a Gaussian
distribution of identity covariance and respective means
µ1 = [9, 12], µ2 = [12, 7], µ3 = [6, 7]. The training is pro-
cessed by sampling randomly 100 points from each class
and running the non-linear (9) and linear (4) feature trans-
form learning approaches described above. This figure also
shows how each point in the original space (top-left graph)
is transformed in the new space (bottom graphs) accord-
ing to the learned non-linear (left) and linear (right) feature
transforms. Notice that in the non-linear case, the area cov-
ered by each class collapses to a small area in the trans-
formed space, and points that are close to one of the classes
in the original space converges to one of these collapsed re-
gions. Points in the original space that falls far from any
of the classes are most likely situated at the origin with a
few exceptions located between the origin and one of the
classes. Also notice that the maximum distance between
points in the transformed space happens when points belong
to different training classes, and the minimum distance oc-
curs when points belong to the same training class. Finally,
the top-right graph of Fig. 2 displays the receiver operat-
ing characteristics (ROC) curves of the classification results
using a similarity-based classifier for the non-linear and lin-
ear feature transformations. To generate these curves, 10
training sets (with 100 points per class) were generated to

produce the feature transforms for one test set (also with
100 points per class) using the same classes C1, C2 and C3.
The ROC is built by varying the distance threshold in the
transformed space and calculating the true and false positive
rates. Given that we have 10 different feature transforms,
we show the mean and standard deviation for the 10 ROC
curves for each type of transformation. Notice how the ac-
curacy for the non-linear transform is much bigger than that
for the linear transform (i.e., smaller bias), but the precision
is significantly smaller (i.e., bigger variance), indicating the
instability mentioned before (this probably happens due to
over-fitting of the training data).

2.2. Combining the Non-linear Feature Transforms

The distance between two descriptors xi and xj in the
transformed space is computed through the following ag-
gregation strategy:

D(xi,xj) =
∑

K

‖ψK(xi)− ψK(xj)‖
2
2, (10)

where ψK(.) is the transformation computed from the Kth

training set as described in (9).
Empirically, we observe that the following conditions are

necessary for our method to work: 1) the original feature
values of the training points have to be in the same range
as the feature values of the test points of future matching
problems; and 2) the ratio of within and between training
class variances has to be similar to the ratio of within and
between test class variances in the original feature space.
Intuitively, condition (1) increases the probability that de-
scriptors of future matching problems have feature values
different from zero in the transformed feature space. The
second condition decreases the likelihood that points from
the same test class are split between two training classes.
Condition (2) also decreases the likelihood that points be-
longing to different test classes are positively classified by
the same training class.

In order to explain the intuition of the functionality of
our method we first define the indicator function:

ι(x, c) =

{

1, if p(x|c) > τ,
0, otherwise

, (11)

to determine whether a test feature x is classified as belong-
ing to training class c, which is 1 if the conditional likeli-
hood p(x|c) is larger than a threshold τ , and therefore will
likely be located in the collapsed region representing the
training class in the transformed feature space. The distance
(10) can then be rewritten as follows:

D(xi,xj) ≈
∑

K
d1(e

(K)
1 (xi,xj)) + d2(e

(K)
2 (xi,xj))+

d3(e
(K)
3 (xi,xj)) + d4(e

(K)
4 (xi,xj)),

(12)

where the events e
(K)
l (xi,xj) for each training set K

(e
(K)
l (xi,xj) ∈ {0, 1} and

∑4
l=1 e

(K)
l (xi,xj) = 1) and

distances dl are defined as follows:



• e
(K)
1 (xi,xj) =

∏

c1∈K
(1 − ι(xi, c1))

∏

c2∈K
(1 −

ι(xj , c2)), representing the event that none of test de-
scriptors fall in any of the training classes of training
set K, so both xi and xj collapse to a region around
the origin of the new feature space;

• e
(K)
2 (xi,xj) = 1 −

∏

c1∈K
(1 − ι(xi, c1)ι(xj , c1)),

representing the event that both descriptors fall in the
same training class of training setK, which means that
both xi and xj collapse to a small area covered by the
training class in the transformed space;

• e
(K)
3 (xi,xj) = (1−

∏

c1∈K
(1− ι(xi, c1))

∏

c2∈K
(1−

ι(xj , c2)) +
∏

c1∈K
(1 − ι(xi, c1))(1 −

∏

c2∈K
(1 −

ι(xj , c2))), representing the event that descriptor xi

falls in one of the training classes of training set K,
while descriptor xj does not fall in any training class
of the same training set, or descriptor xi does not fall
in any training class of training setK and descriptor xj

falls in one of the training classes of training set K;

• e
(K)
4 (xi,xj) = (1 −

∏

c1∈K
(1 − ι(xi, c1))(1 −

∏

c2∈K
(1 − ι(xj , c2))(1 −

∏

c3∈K
ι(xi, c3)ι(xj , c3)),

representing the event that descriptors xi and xj fall in
two different training classes of training set K;

• the distances di have the conditional expected value

E[‖ψ(xi) − ψ(xj)‖|e
(K)
i (xi,xj))], and in general

d2 < d1 < d3 < d4.

Denoting the likelihood of an event l (for l ∈ {1, 2, 3, 4})
between two test points xi and xj , given that they belong to

the same test class as p(e
(K)
l (xi,xj)|yi = yj) we observe

that p(e
(K)
1 (xi,xj)|yi = yj) > p(e

(K)
2 (xi,xj)|yi = yj) >

p(e
(K)
3 (xi,xj)|yi = yj) > p(e

(K)
4 (xi,xj)|yi = yj). On

the other hand, we also note that for test points belonging to

different test classes, we have: p(e
(K)
3 (xi,xj)|yi 6= yj) >

p(e
(K)
1 (xi,xj)|yi 6= yj) > p(e

(K)
4 (xi,xj)|yi 6= yj) >

p(e
(K)
2 (xi,xj)|yi 6= yj). Therefore, if our method can sub-

stantially increase d4

d1+d2+d3+d4
and decrease d2

d1+d2+d3+d4

in the transformed space (compared to the original space),
the average distance between test points of the same class is
likely to be relatively much smaller than points from differ-
ent classes when compared with the same distances in the
original space.

2.3. Simple Example

In this section, we show an example that demonstrates
the functionality of our approach and illustrates the intu-
ition explained before. In order to facilitate the explana-
tion, note that the test set represents the problem one in-
tends to solve, and the training sets are the ones available
to train the feature spaces to be combined. For the prob-
lems in this section, each point (xi, yi) with xi ∈ ℜn and
yi ∈ {1, 2} is sampled using the following Gaussian dis-
tribution: xi ∼ G(µyi

, σ2
yi

). The set of training classes is

(a) (b)
Figure 3. Graph (a) displays the ROC curves of the test set in the
original feature space (red curve) and transformed (UFT) space
(black curve). For comparison purposes, we also included the
curve (labeled ’test set TRAINED’, cyan dashed) for the case
where the feature space described in Sec. 2.1 was trained specifi-
cally for the test classes. Graph (b) shows the evolution of the false
detection rate for a true positive rate of 95% in the ROC curve. For
each trained feature space (the hor. axis depicts an index to each
of the 100 feature spaces trained, but note that the index ∈ [0, 1])
the training set errors in the original (blue, solid) and transformed
(red, solid) feature spaces are shown. Also, the error results for
the test sets in the original (green, dashed) and transformed spaces
(magenta, dashed) are displayed along with the error result of the
UFT feature space (black, thick solid) described in Eq. 10.

represented by Rtrain, and the set of test classes is denoted
byRtest, whereRtest

⋂

Rtrain = ∅.
The simple example involves a 1-D problem, such that

σyi
= 1, and µyi

∈ [0, 20]. First, retrieve two random test
classes to formRtest with the restriction that |µ1 −µ2| = 4,
and randomly generate 200 test points (100 for each class)
according to the distribution for the test class. This is the
test problem for which we want to create a feature space
that provides a more accurate threshold-based matching
classifier. Then, randomly select a certain number of sets
K ∈ Rtrain, where each set contains two training classes
with |µ1 − µ2| ≈ 4. For these experiments, we select 100
sets K, each used to produce one feature space. Notice that
this setup respects all the assumptions (same range of train-
ing and test points, and similar within and between training
and test class variances) made in Sec. 2.2. For each train-
ing set K ∈ Rtrain, we train the non-linear feature transform
described in Sec. 2.1 for 200 training points (100 for each
class) randomly generated according to the distribution of
the respective classes. Then given all trained feature spaces,
the distance between two points xi and xj is computed with
the aggregation approach (10). Fig. 3-(a) displays the ROC
curve comparing the results of the of the aggregated fea-
ture space (UFT) with the results in the original space and
the results of a non-linear feature space (9) trained specif-
ically for that test set. Fig. 3-(b) depicts the value of the
false positive rate (from the ROC curve) at the operating
point where the true positive rate is 95% (same criterion
proposed by Winder and Brown [22]). In this graph, the
following curves of the evolution of the false positive er-
ror rates are shown: the training set errors in the original
and transformed spaces, the test set errors in the original
and transformed spaces for each feature space, and the UFT
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Figure 4. The first row shows the probability of each one of the
four events given pair of test points from the same class (right
graph) and from different classes (left). The second row displays
the average distances in the original (right) and transformed (left)
space given each of the four events.

error.
In Fig 4, we show the probability of each of the four

events given test points belonging to the same and differ-
ent classes (top row) and the average distances per event
(bottom row) described in Sec. 2.2, where τ = 2× the stan-
dard deviation of the training class distribution (recall that τ
represents the threshold in the definition of function ι(x, c)
(11), which describes if a point x belongs to a class c). No-
tice that this example illustrates the points raised in that sec-
tion about the event probabilities and distance modifications
from original to transformed feature space.

3. Experiments

We applied the UFT on two publicly available databases
built to compare the performance of local image descrip-
tors. We first train the non-linear feature transforms using
the training dataset proposed by Winder and Brown [22]
(see Fig. 5). This database consists of more than 100, 000
image patches, sampled by back-projecting 3-D points to
2-D images from scene reconstructions, where each patch
is labeled according to the scene location it belongs (notice
that a label represents a 3-D scene location, and that each
label contains between 2 and 50 patches). The changes
present in each patch are due to variations in viewpoints,
scene brightness and partial occlusions, but note that all
patches are aligned to the same scale, orientation and po-
sition to a 64 × 64-pixel image patch. Given that typical
interest point detectors (used to select locations, orientation
and scales to extract local descriptors) have a much poorer
precision than the reconstruction proposed [22], we also ap-
ply random deformations by artificially warping the patches
of both the training and test sets, which introduces robust-
ness to those deformations. Specifically, we use the follow-

Figure 5. Example of the training patches [22].

ing deformation values proposed by Hua et al. [11]: devia-
tion of 0.25 pixels in position, 11 degrees in orientation and
12% in scale. In the experiments, we used the multi-way
matches in the Trevi Fountain and Yosemite Valley data set
as the training patches. The training was based on randomly
selected Nlabels labels from these datasets for training and
Nlabels different labels for validation, which were used to
train Nfeature spaces non-linear feature extractors as described
in Sec. 2.1. The aggregation of the feature extractors is done
as described in Sec. 2.2, producing the UFT. For testing,
we used the patches produced by the Notre Dame matches,
from where 50,000 match pairs and 50,000 non-match pairs
were randomly selected.

All image patches xin ∈ ℜ64×64 (assumed to contain
the gray values of the image patch) are pre-processed as
follows:

1. Normalization: x
(1) =

xin−µxin

σxin

, where µxin
is the

mean gray value of the patch and σxin
denotes stan-

dard deviation of the gray values of the patch;

2. Smoothing: x
(2) = G(0, σs) ∗ x

(1), which is a con-
volution between the image patch and a Gaussian filter
G(.) with standard deviation σs;

3. Spatial weighting: x
(3) = xw • x

(2), where xw ∈
ℜ64×64 is a patch containing a Gaussian centered at
position [32.5, 32.5] with standard deviation σw and
• denotes the element-wise matrix multiplication (this
operator increases the weight of points at the center of
the window compared to points at the borders). The

patch x
(3) is the one used for training and testing.

Using the error rate at 95% detection rate (determined
with the ROC curve) over the validation set to compare per-
formance, we reached the following values for each of the
parameters above: number of training classes per feature
transform Nlabels = 50; number of feature transforms to
build UFT Nfeature spaces = 50; (although, we note that af-
ter 10 feature spaces, the performance is already stable),
σs = 2.0 for the smoothing pre-processing, but the error
results at 95% were reasonably stable for σs ∈ [1.5, 4.0];
σw = 24 for the spatial weighting pre-processing; and
σ ∈ [1, 20] in the kernel (8) is determined through cross-
validation for each new feature space. Finally, using the
feature learning algorithm of Sec. 2.1, the dimensionality of
each transformed feature space was cross-validated to have
49 dimensions.

Fig. 6-(a) shows the ROC curve of UFT along with
the curves produced by the raw patch (blurred and down-
sampled to 32 × 32 [11]; see label SSD, standing for sum
of squared distances) in its original space and its principal
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Figure 6. The ROC curves in (a) displays a comparison between
UFT and other methods described in the text. The error rates at
detection rates of 95% in graph (b) shows the evolution of the test
error as new learned non-linear feature spaces are aggregated to
UFT.

component analysis (PCA) space. We also show the curve
produce by SIFT (designed by Vedaldi [1]) using the same
parameters as by Winder et al. [11, 22]. We observe that
the results are quite similar to those obtained by those au-
thors, which are an error rate (at detection rate of 95%)
for SIFT of 6.3%, for raw patch of 36.6% and for PCA
of 34.98%. The UFT achieved an error of 2.28%, which
is at the same level of the best results obtained by Hua et
al. [11], but note that while our results were obtained from
simple pre-processed image patches, the best results of [11]
were obtained through a series of pre-determined image fea-
ture transforms, where the parameters of the transforma-
tions are automatically learned . If one considers the use
of the original image patch gray values only (with simple
pre-processing steps as the ones proposed above), then our
results are substantially better than the ones shown by Hua
et al. [11], which are around 5% to 6% at 95% detection
rate. There are two important advantages with the use of
simple pre-processed image patches (as the ones used in this
paper): 1) potentially efficient implementation of the trans-
formation (described below), and 2) increase of the subset
of potential matching problems since we do not limit the
type of input image features, as in [11]. Fig. 6-(b) displays
the evolution of the error rates (again, at detection rate of
95%) by aggregating each newly learned non-linear feature
transform.

Finally, we take the UFT learned above and apply
to the matching problems proposed by Mikolajczyk and
Schmid [15]. Using the detection methods and performance
evaluation provided by the authors, we compare the perfor-
mance of UFT, SIFT [14], GLOH [15] and cross-correlation
(CC), using interest points detected with the Hessian-Affine
detector. In order to generate the patches xin ∈ ℜ64×64

to be pre-processed and further transformed by UFT, we
take the parameters produced by the Hessian-Affine detec-
tor, which are the position, orientation, and two dimensional
scale deformation (one in the main orientation and another
in an orthogonal orientation), and align the patch accord-
ingly. We used the threshold-based matching strategy (as
already mentioned above), where two regions are matched
if the distance between their descriptors is below a thresh-

old, and the image regions are considered to be a a corre-
spondence if there is at least a 50% overlap between the
regions projected onto the same image [15]. For all eight
cases available on-line [15]1, UFT clearly outperforms the
best features in the 1-precision versus recall curves (see
Fig. 7), which are GLOH and SIFT. The only case where the
performance is comparable is for a few cases in the ’bark’
sequence (first case on the top left of Fig. 7). As a reminder,
these curves are computed by varying the matching thresh-
old and calculating the following values:

recall = #correct matches
#correspondences

,

1− precision = #false matches
#correct matches+#false matches

,
(13)

where #correct matches represents the number of corre-
spondences having a similarity value bigger than the match-
ing threshold, while #false matches represents the number
of times a similarity bigger than the matching threshold is
found in any matching (note that false matchings cannot be
correspondences).

For the complexity analysis, the pre-processing part is
negligible and the main run-time complexity is derived from
the distance computation between test points and training
points to produce the kernel matrix Kij in (8). In general,
the number of training points for each classifier is between
1000 to 2000 and the number of descriptors extracted from
a test image is around 1000, so the matrix Kij would have
size O(103× 103). We believe that with the use of methods
for fast similarity computation (resorting to approximate
similarity computations, for example) each feature space
can be computed in negligible time. The problem of hav-
ing several feature spaces is an issue that can be solved with
parallel computation since each feature space is indepen-
dent of all others. Therefore, the whole transformation can
be computed quite fast if implemented with parallel algo-
rithms and using approximate similarity computations.

4. Discussion and Conclusions

In this paper we proposed a new feature transform, which
we call the universal feature transform, consisting of an en-
semble of non-linear feature transforms. We show that it has
competitive detection results for the problem of matching
local image descriptors in typical image matching and clas-
sification problems. We also show empirical results demon-
strating the functionality of the method and the intuition of
why it works. We are currently working on a formal proof
of convergence of the method based on the empirical evi-
dence presented in this paper. We are also working on show-
ing the applicability of this method in current matching and

1The bark sequence (row 1, column 1) represents zoom and rotation
changes of a textured scene, the bike sequence (row 1, column 2) rep-
resents image blur deformations of a structured scene, the boat sequence
(row 1, column 3) represents zoom and rotation changes of a structured
scene, the graffiti scene (row 1, column 4) represents a viewpoint change
of a structured scene, the Leuven sequence (row 2, column 1) represents
light changes of a structured scene, the tree sequence (row 2, column 2)
represents blur deformations of a textured scene, the UBC sequence (row
2, column 3) represents JPEG compression deformations, and the wall se-
quence (row 2, column 4) represents viewpoint changes of a textured scene
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Figure 7. 1-precision versus recall curves for all eight cases available for testing [15] using the features UFT (proposed in this paper),
SIFT [14], GLOH [15] and CC, which is the raw patch cross correlation.

visual classification problems. Also, we plan to use UFT in
the features designed by Hua et al. [11] in order to improve
even more the performance shown by the most accurate de-
scriptors proposed by them. Finally, we also plan to study
the impact of different kernels on the results as proposed by
Cristianini et al. [7].
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