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Abstract
In this chapter, we show two discoveries learned from the application of deep learning meth-
ods to the problem of classifying mammogram exams containing multi-view images and seg-
mentation maps of breast lesions (i.e., masses and micro-calcifications). We first demon-
strate the efficacy of pre-training a deep learning model using extremely large computer
vision training sets, and then fine-tuning this same model for the classification of mammo-
gram exams. We also show that the multi-view mammograms and segmentation maps do
not need to be registered in order to produce accurate classification results using the fine-
tuned deep learning model above. In particular, we take a deep learning model pre-trained
to identify Imagenet classes from real images, and fine-tune it with cranio-caudal (CC) and
medio-lateral oblique (MLO) mammography views of a single breast and their respective
mass and micro-calcification segmentation maps in order to estimate the patients risk of
developing breast cancer. This methodology is tested on two publicly available datasets (In-
Breast and DDSM), and we show that our approach produces a volume under ROC surface
of over 0.9 and an area under ROC curve (for a 2-class problem: benign and malignant)
of over 0.9. These results show that our method can produce state-of-the-art classification
results using a new comprehensive way of tackling medical image analysis problems.

Deep learning, Mammogram, Multi-view classification, Transfer learning
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Medical Image Computing and Computer-Assisted Intervention (MICCAI 2015) [1].
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2 Deep Learning for Medical Imaging

Figure 1.1 The first goal of the paper is to show how to fine-tune deep learning models, pre-
trained with the computer vision database Imagenet [2], for the joint analysis of the cranio-caudal
(CC) and medio-lateral oblique (MLO) mammography views. Note that the yellow annotations
denote breast masses and red annotations represent micro-calcifications.

Chapter points
• Shows how to fine-tune deep learning models, pre-trained with computer vision

databases, for the analysis of mammograms.
• Demonstrates how high-level deep learning model features can be used in multi-

view mammogram classification problems without pre-registering the mammograms.

1. Introduction

According to recent statistical data published by the World Health Organisation (WHO),
breast cancer accounts for 23% of all cancer related cases and 14% of all cancer related
deaths amongst women worldwide [3]. The early detection of breast cancer in asymp-
tomatic women using breast screening mammography is currently the most effective
tool to reduce the morbidity and mortality associated with breast cancer [4]. A breast
screening exam typically consists of two mammography views of each breast: the
medio-lateral oblique view (MLO) and the cranio-caudal view (CC) - see Figures 1.1-
1.2 for examples of these two views. One of the stages present in the analysis of these
mammography views involves the identification and classification of breast lesions,
such as breast masses and micro-calcifications (MC) represented by yellow and red
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Deep Learning Models for Classifying Mammogram Exams 3

Figure 1.2 The second goal of the paper is to demonstrate how high-level deep learning model
features can be used in multi-view mammogram classification problems without pre-registering
the mammograms. The meaning of the yellow and red annotations are the same as in Fig. 1.1.

annotations, respectively, in Figures 1.1 and 1.2. This identification and classification
is usually performed manually by a radiologist, and a recent assessment of this manual
analysis indicates a sensitivity of 84% and a specificity of 91% in the classification of
breast cancer [5]. These figures can be improved with the analysis of the mammog-
raphy views by a second reader: either a radiologist or a computer-aided diagnosis
(CAD) system [5]. Therefore, the use of CAD systems as second readers can have a
significant impact in breast screening mammography.

Current state-of-the-art CAD systems that can analyse a mammography exam work
in delimited stages [5, 6, 7]: lesion detection, lesion segmentation, and lesion classi-
fication. The main challenges faced by such systems are related to the low signal-
to-noise ratio present in the imaging of the lesion, the lack of a consistent location,
shape and appearance of lesions, and the analysis of each lesion independently of
other lesions or the whole mammogram. The detection of lesions usually follow
a two-step process that first identifies a large number of lesion candidates that are
then selected with the goal of reducing false positives while keeping the true posi-
tives [8, 9, 10, 11, 12, 13, 14, 15]. Lesion segmentation methods are generally based
on global/local energy minimisation models that work on a continuous or discrete
space [16, 17, 18]. The final stage consists of the classification of the segmented le-
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4 Deep Learning for Medical Imaging

sions based on typical machine learning classifiers that use as input hand-crafted fea-
tures extracted from the image region containing the detected lesion and the respective
segmentation map [19, 20, 21]. The state-of-the-art binary classification of breast le-
sions into benign or malignant [22, 23] produces an area under the receiver operating
characteristic (ROC) curve between [0.9, 0.95]. More similar to our approach, the
multi-modal analysis that takes lesions imaged from several modalities (e.g., mam-
mograms and sonograms) have been shown to improve the average performance of
radiologists [24]. Note that these hand-crafted features do not guarantee optimality
with respect to the classification goal, and the isolated processing of each lesion with-
out looking at the other parts of the exam may ignore crucial contextual information
that could help the classification of the whole exam.

In this chapter, we propose a methodology that can analyse a mammography exam
in a holistic manner. Specifically, we introduce the design and implementation of a
deep learning model [25, 26] that takes as input the two mammography views (CC and
MLO) and all detected breast masses and micro-calcifications, and produce an output
consisting of a three-class classification of the whole exam: negative (or normal),
benign or malignant findings. The challenges present in the development of such deep
learning model are: 1) the high capacity of such model can only be robustly estimated
with the use of large annotated training sets, and 2) the holistic analysis may require
the CC and MLO views to be registered in order to allow the alignment of lesions
between these two views. Given that publicly available mammogram datasets do not
contain enough annotated samples to robustly train deep learning models, we propose
the use of transfer learning [27], where a model is pre-trained with a large annotated
computer vision dataset [2], containing typical pictures taken from digital cameras,
and fine-tuned with the relatively smaller mammogram datasets. Furthermore, the
registration of the CC and MLO views of a mammography exam is a challenging
task given the difficulty in estimating the non-rigid deformations that can align these
two views, so we propose the classification from the deep learning features, where the
hypothesis is that the high-level nature of these features will reduce the need for a low-
level matching of the input data [28]. Finally, compared to the previous state of the art
in the field, deep learning model can extract features that are automatically learned (as
opposed to the previously proposed hand-crafted features) using objective functions
formulated based on the classification problem. We test our approach on two publicly
available datasets (InBreast [29] and DDSM [30]), and results show that our approach
produces a volume under ROC surface of over 0.9 and an area under ROC curve (for
a two-class problem: benign and malignant) of over 0.9. The results provide evidence
that our method can produce state-of-the-art classification results using a new holistic
way of addressing medical image analysis problems.
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Deep Learning Models for Classifying Mammogram Exams 5

2. Literature Review

Deep learning has been one of the most studied topics in the fields of computer vi-
sion and machine learning [25] for at least three decades. The recent availability of
large annotated training sets [2] combined with a competent use of graphics processing
units (allowing fast training processes) has enabled the development of classification
systems that are significantly more accurate than more traditional machine learning
methods [26, 31, 32, 33]. The impact in medical image analysis has been relatively
smaller, but also significant [34, 35]. Deep learning has several advantages, com-
pared with traditional machine learning methods [36], such as: features of different
abstraction levels are automatically learned using high-level classification objective
functions [28]; and methodologies can be designed ”end-to-end”, where the system
can learn how to extract image features, detect and segment visual objects of interest
and classify the scene using a unified classification model [37]. The major challenge
present in deep learning models is the extremely high number of parameters to esti-
mate during the training process, which requires an equally large annotated training set
to enable a robust training process. This challenge is particularly critical in medical
image analysis (MIA) applications due to the limited availability of large annotated
training set. In fact, the largest MIA datasets typically have in the order of a few thou-
sands of samples, which is generally considered to be not enough for a robust training
of a deep learning model. The initial successful MIA applications have been achieved
exactly with problems that contain large annotated training sets, such as the mitosis
detection [34] and lymph node detection [35]. However, MIA problems that have lim-
ited training sets have been generally tackled with the help of regularisation methods,
such as unsupervised training [38, 39, 40, 41]. The use of registered multi-view input
data has also been tested with deep auto-encoders [42, 43], which is similar to our
methodology, except that our multi-view data is not aligned.

Recently, there has been considerable interest in the development of deep learn-
ing methods for the analysis of mammograms, where this analysis can be divided into
three stages [5]: 1) detection of lesions (i.e., masses and micro-calcifications), 2) seg-
mentation of the detected lesions from the first stage, and 3) classification of the lesions
based on texture and shape features extracted from the segmented lesions. The prob-
lem of mass detection has been traditionally addressed by classical image processing
methods for initial candidate generation, followed by a cascade of machine learning
techniques to eliminate false positives [5]. The use of a cascade of deep learning mod-
els for mass detection essentially follows the same approach, with the exception that it
does not rely on classical image processing methods to generate initial candidates [44].
The use of deep learning methods for lesion segmentation has been explored in differ-
ent ways. For instance, a straightforward deep learning model receives the image at
the input and produces a binary segmentation map at the output [45, 46], which only
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6 Deep Learning for Medical Imaging

works if the annotated training set is relatively large [30]. When the annotated training
set is small [21], Dhungel et al. [47, 48, 49] have proposed a method that combines a
conditional random field with several deep learning potential functions, where the idea
is that this combination will compensate for the small annotated sets used in the train-
ing process. Finally, the last stage in the analysis, i.e., lesion classification, has also
been addressed with deep learning methods, with a direct classification of the detected
and segmented lesions from the first and second stages of the analysis [50, 51, 52].

Deep learning is also allowing the development of methods that can analyse mam-
mograms in a more holistic manner, like the work proposed in this chapter, which
represents a clear divergence from the traditional 3-stage analysis process [5] men-
tioned above. For example, the risk of developing breast cancer can be assessed with
deep learning classifiers that score breast density and texture [53, 54]. Finally, Qiu et
al. [55] propose a method that estimates the risk of developing breast cancer from a
normal mammogram. We expect that such deep learning-based methods that receive
a mammography exam at the input and produce either a diagnosis or prognosis result
will become the mainstream of future methodologies.

3. Methodology

For the training and testing of our methodology, we have the following dataset: D =

{(x(p,b), c(p,b),m(p,b), y(p,b))}p∈{1,...,P},b∈{left,right}, with x = {xCC, xMLO} denoting the mam-
mography views CC and MLO, where xCC, xMLO : Ω→ R and Ω denotes the image
lattice, c = {cCC, cMLO} representing the micro-calcifications (MC) segmentation in
each view with cCC, cMLO : Ω→ {0, 1}, m = {mCC,mMLO} denoting the mass segmen-
tation in each view with mCC,mMLO : Ω→ {0, 1}, y ∈ Y = {0, 1}C being the BI-RADS
classification with C classes, p ∈ {1, ..., P} indexing the patients, and b ∈ {left, right}
indexing the patient’s left and right breasts (each patient’s breast is denoted as a case
because they can have different BI-RADS scores). There are six possible BI-RADS
classes: 1: negative, 2: benign finding(s), 3: probably benign, 4: suspicious abnormal-
ity, 5: highly suggestive of malignancy, 6: proven malignancy. However, the datasets
available for this research only contains limited amounts of training data per class,
as shown in Fig. 1.6, so we propose the following three-class division of the original
classes: negative, denoted by y = [1, 0, 0]>, when BI-RADS=1; benign, represented
by y = [0, 1, 0]>, with BI-RADS ∈ {2, 3}; and malignant, denoted by y = [0, 0, 1]>,
when BI-RADS ∈ {4, 5, 6}. The dataset of non-mammography images, used for pre-
training the deep learning model, is represented by D̃ = {(̃x(n), ỹ(n))}n, with x̃ : Ω→ R

and ỹ ∈ Ỹ = {0, 1}C̃ , where C̃ represents the cardinality of the set of classes in the
dataset D̃. Fig. 1.3 shows examples of the non-mamographic images in D̃, and also the
mammography views plus their respective binary MC and mass segmentation masks
inD.
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Deep Learning Models for Classifying Mammogram Exams 7

Figure 1.3 The images in (a) represent samples from the dataset D̃, used for pre-training
the deep learning model, while (b)-(d) display training images and binary maps of micro-
calcifications (MC) and masses from dataset D.

3.1. Deep Learning Model
The deep learning model explored in this work consists of the convolutional neural
network (CNN), which is represented by f : X → Y (X denotes the image or binary
segmentation map spaces while Y represents the space of classification vectors):

f (x, θ) = fout ◦ f f c ◦ hL ◦ gL ◦ fL ◦ ... ◦ h1 ◦ g1 ◦ f1(x), (1.1)

where ◦ represents the composition operator, { fi(.)}Li=1 denotes the convolutional lay-
ers, θ represents the model parameters formed by the input weight matrices Wl ∈

Rkl×kl×nl×nl−1 and bias vectors bl ∈ R
nl for each layer l ∈ {1, ..., L}, with kl × kl repre-

senting the filter size of the nl filters in layer l that has nl−1 input channels, gl(.)
is a non-linear activation layer, hl(.) is a sub-sampling layer, f f c denotes the set of
fully-connected layers {W f c,k}

K
k=1 (with W f c,k ∈ R

n f c,k−1×n f c,k representing the connec-
tions from fully connected layer k − 1 to k) and biases {b f c,k}

K
k=1 (with b ∈ Rn f c,k ) that

are also part of the model parameters θ, and fout is a multinomial logistic regression
layer [26] that contains weights Wout ∈ R

n f c,K×C and bias bout ∈ R
C , which also belong

to θ (Fig. 1.4 shows a visual description of this model). The convolutional layer is
defined by

Fl = fl(xl−1) = Wl ? Xl−1, (1.2)

where the bias term bl is excluded to simplify the equation and we are abusing the nota-
tion by representing the convolution of nl−1 channels of input Xl−1 = [xl−1,1, ..., xl−1,nl−1]
with the nl filters of matrix Wl, with ? denoting the convolution operator. The input
Xl−1 of (1.2) is obtained from the activation (e.g., logistic or rectified linear [26]) and
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8 Deep Learning for Medical Imaging

Figure 1.4 Visualisation of the single view CNN model used in this work, containing L = 5 stages
of convolutional layers, K = 2 stages of fully connected layers and one final layer containing the
softmax layer.

sub-sampling (e.g., the mean or max pooling functions [26])) of the preceding layer
by Xl−1 = hl−1(gl−1( fl−1(Xl−2))), where X0 represents the input mammogram x or seg-
mentation maps c or m. The output from (1.2) is Fl = [fl,1, ..., fl,nl], which is a volume
containing nl pre-activation matrices. The L convolutional layers are followed by a
sequence of fully connected layers that vectorise the input volume XL into xL ∈ R

|xL |

(where |xL| denotes the length of the vector xL) and apply a couple of linear trans-
forms [26]:

f f c = f f c(XL) =
(
W f c,2

(
W f c,1xL + b f c,1

)
+ b f c,2

)
, (1.3)

where the output is a vector f f c ∈ R
n f c,2 . Finally, these fully connected layers are fol-

lowed by a classification layer defined by a softmax function over a linearly trans-
formed input, as follows [26] :

fout = fout(f f c) = so f tmax(Woutf f c + bout), (1.4)

where so f tmax(z) = ez∑
j ez( j) , and fout ∈ [0, 1]C represent the output from the inference

process that takes x as the input (recall that the input can be either a mammogram or a
segmentation map of a micro-calcification or a mass), with C representing the number
of output classes.

Finally, estimating θ in (1.1) involves a training process that is carried out with
stochastic gradient descent to minimise the cross entropy loss [26] over the training
set, as follows [26]:

`(θ) =
1
N

N∑
i=1

yi log f>out,i, (1.5)

where N denotes the number of cases available for training, which are indexed by i.
The training of the model in (1.1) comprises two steps: a pre-training stage us-
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Deep Learning Models for Classifying Mammogram Exams 9

ing the dataset of non-mammography images D̃ and a fine-tuning stage that relies on
the dataset of mammography images and segmentation maps D. The pre-training
process produces the model ỹ∗ = f (̃x; θ̃), where θ̃ = [̃θ1, ..., θ̃L, θ̃ f c,1, θ̃ f c,2, θ̃out] with
θ̃l = [W̃l, b̃l] denoting the parameters of the convolutional layer l ∈ {1, ..., L}, θ̃ f c,k =

[W̃ f c,k, b̃ f c,k] representing the parameters of the fully connected layer k ∈ {1, 2}, and
θ̃out = [W̃out, b̃out] denoting the parameters of the softmax layer. This pre-training is
carried out by minimising the cross-entropy loss in (1.5) with the C̃ classes present in
the dataset D̃. The fine-tuning process takes a subset of θ̃ comprising [̃θ1, ..., θ̃L, θ̃ f c,1, θ̃ f c,2]
(i.e., all parameters except for θ̃out) to initialise the new training parameters
θ = [θ1, ..., θL, θ f c,1, θ f c,2, θout], where θout is initialised with random values, and all pa-
rameters in θ are re-trained to minimise the cross-entropy loss in (1.5) with the C
classes in D (see Fig. 1.4). Recently published results [27] have shown that such
fine-tuning process depends on the use of a large number of pre-trained layers, which
explains why we initialise almost all parameters (except for θout) with the values esti-
mated from the pre-training process. This fine-tuning shall produce six models: 1)
MLO image model: y = f (xMLO; θMLO,im), 2) CC image model y = f (xCC; θCC,im),
3) MLO MC segmentation map model y = f (cMLO; θMLO,mc), 4) CC MC segmen-
tation map model y = f (cCC; θCC,mc), 5) MLO mass segmentation map model y =

f (mMLO; θMLO,ma) and 6) CC mass segmentation map model y = f (mCC; θCC,ma).
Finally, the multi-view model combines the six models produced from the fine-

tuning process by concatenating the features from the last fully connected layer of
all six models, represented by [f f c,i]i∈{MLO,im,CC,MLO,im,MLO, mc,CC,mc,MLO,ma,CC,ma}, and
training a single multinomial logistic regression layer using those inputs (Fig. 1.5).
This multi-view model is represented by:

fout,mv = so f tmax(Wout,mv[f f c,i]i∈{MLO,im,CC,MLO,im,MLO, mc,CC,mc,MLO,ma,CC,ma} + bout,mv),
(1.6)

and trained by minimising the cross-entropy loss in (1.5) with the C classes in D,
where θmv = [Wout,mv,bout,mv] is randomly initialized in this multi-view training.

4. Materials and Methods

For the experiments below, we use two mammogram datasets that are publicly avail-
able: InBreast [29] and DDSM [30]. The InBreast [29] dataset contains 115 patients,
where there are around four images per patients, amounting to 410 images. InBreast
does not come with a suggested division of training and testing sets, so our experi-
mental results are based on a five-fold cross validation, where each fold uses a divi-
sion of 90 patients for training and 25 patients for testing. The DDSM [30] dataset
contains 172 patients, each having around four images, which results in 680 images.
This dataset is formed by merging the original micro-calcification and mass datasets,
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10 Deep Learning for Medical Imaging

Figure 1.5 Visualisation of the multi-view model with the responses from the single view CNN
models (see Fig. 1.4) that are connected to a classification layer.

Figure 1.6 Distribution of BI-RADS (left) and negative, benign and malignant classes (right) for
the cases in InBreast (orange) and DDSM (black).

but removing the overlapping cases that are available from the training set of mass
and testing set of micro-calcification and vice-versa. We use the suggested division
of training and testing sets for DDSM [30], containing 86 patients for training and
86 for testing. It is important to notice that the distributions of BI-RADS and, conse-
quently the negative, benign and malignant classes in InBreast and DDSM are quite
different, as shown in Fig. 1.6. In particular, InBreast tries to keep the percentage of
negative (i.e., normal) and benign cases at a higher level than the malignant cases,
while DDSM has a much larger percentage of malignant cases, compared to benign
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and negative cases.
The CC and MLO mammography views are pre-processed with local contrast nor-

malisation, which is followed by Otsu’s segmentation [56] that crops out the image
region containing the background. The remaining image is scaled (using bi-cubic in-
terpolation) to have size 264 × 264. Furthermore, a simple algorithm is run in order
to flip the mammograms such that the pectoral muscle always lies on the right-hand
side of the image. The manual binary segmentation maps representing the micro-
calcification and mass present in a mammography view uses the same geometric trans-
formations applied to their respective views (i.e., the cropping, scaling and flipping). If
no micro-calcification and mass is present in a particular view, then we use a 264 × 264
image filled with zeros (i.e., a blank image). Fig. 1.9 shows some samples of the pre-
processed mammography views and their respective segmentation maps.

The base CNN model is based on Chatfield et al.’s CNN-F model [57], which is
a simplified version of AlexNet [26], containing fewer filters. Figure 1.4 shows the
details of the CNN-F model, where the input image has size 264 × 264, the first con-
volutional stage as 64 11 × 11 filters and a max-pooling that sub-samples the input by
2, the second convolutional stage has 256 5 × 5 filters and a max-pooling that sub-
samples the input by 2, the third, fourth and fifth convolutional stages have 256 3 × 3
filters (each) with no sub-sampling, the first and second fully connected stages have
4096 nodes (each), and the multinomial logistic regression stage contains softmax
layer with three nodes. We use the CNN-F model that Chatfield et al. [57] have pre-
trained with Imagenet [2] (1K visual classes, 1.2M training, 50K validation and 100K
test images). The fine-tuning process consists of replacing the multinomial logistic
regression stage at the end by a new layer that has three classes (negative, benign and
malignant) and train it for the CC and MLO views, the micro-calcification segmenta-
tion maps of the CC and MLO views, and the mass segmentation maps of the CC and
MLO views (see Fig. 1.4). The multi-view model is built by concatenating the 4096-
dimensional feature vectors available from the second fully connected stages of the
six models (forming a 24576-dimensional feature vector) and training a single multi-
nomial logistic regression with three nodes (see Fig. 1.5). This two-stage training,
comprising pre-training and fine-tuning, can be seen as a regularisation that helps the
generalisation ability of the model. As a result, we can compare such two-stage train-
ing to other forms of regularisation, such as data augmentation [26], which is obtained
by applying random geometric transformations to the original training images in order
to generate new artificial training samples. We compare our proposed two-stage train-
ing with data augmentation with an experiment that uses the CNN-F structure defined
above without pre-training, which means that the training for the parameter θ in (1.1)
is randomly initialised using an unbiased Gaussian with standard deviation 0.001, and
run with data augmentation by adding 5, 10 and 20 new samples per training image.
In this data augmentation training, each original training image is randomly cropped



i
i

“Book” — 2016/9/19 — 19:09 — page 12 — #12 i
i

i
i

i
i

12 Deep Learning for Medical Imaging

Figure 1.7 VUS in terms of data augmentation on InBreast (top) DDSM (bottom) for the MLO
and CC views, and with each isolate input (image, micro-calcification and mass segmentation
maps), all inputs (All) and both views (Multiview) together. 1st column shows the results with the
Imagenet pre-trained model, and the 2nd column shows the randomly initialized models.

from the top-left and bottom-right corners within a range of [1, 10] pixels from the
original corners. This data augmentation is also used in the two-stage training process
in order to verify if the combination of two regularisation methods can improve the
generalisation of the CNN-F model. In all training processes, the learning rate is fixed
at 0.001 and momentum is 0.9.

Classification accuracy is measured in two ways. For a three-class problem, with
classes negative, benign and malignant, the accuracy is measured with the volume
under ROC surface (VUS) [58]. The two-class problem, with classes benign and ma-
lignant, is assessed by the area under ROC curve (AUC), where it is assumed that all
cases contain at least one finding (a micro-calcification or a mass).

5. Results

The VUS as a function of the data augmentation (varying in the range {0, 5, 10, 20})
for the test sets of InBreast and DDSM are shown in Figure 1.7. For InBreast, the
results are shown with the average and standard deviation of 5-fold cross validation
and the two breasts, and for DDSM, results are based on the average and standard
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Figure 1.8 Mean improvement of the VUS results for InBreast (left) and DDSM (right) of the
pre-trained models compared to the randomly initialised models.

deviation of the two breasts. Also note that in Fig. 1.7 we show the results for the
MLO and CC views, and with each isolate input (image and segmentation maps) in
addition to all inputs and both views together. The improvement achieved with the use
of the Imagenet pre-trained model, compared with the randomly initialised model, is
shown in Fig. 1.8. We also show five examples from the classification process using
the pre-trained model (without data augmentation) on InBreast test cases in Figure 1.9.

Focusing on the cases where there exists at least one lesion (mass or micro- calcifi-
cation) allows us to compute the AUC for a two-class problem (benign or malignant).
Using the model that is pre-trained with Imagenet and fine-tuned with InBreast with-
out data augmentation, produces an AUC of 0.91(±0.05), and fine-tuned with DDSM
results in an AUC of 0.97(±0.03).

Finally, running Matconvnet [57] on a standard desktop (2.3GHz Intel Core i7 with
8GB, and graphics card NVIDIA GeForce GT 650M 1024 MB), the training time for
six models and the multiview model (without data augmentation) is one hour. With the
addition of 10 artificial training samples per original training sample, the training time
increases to four hours, and with 20 artificial training samples per original training
sample, the training time increases to seven hours.

6. Discussion

The graphs in Figure 1.7 show that the multiview results that use all inputs (images
and segmentation maps), represented by the solid black curve, present the best per-
formance amongst all models considered in this work. This shows evidence that the
high-level features provided by each model are indeed useful for the classification of
the whole exam, even though the input images and segmentation maps are not regis-
tered. Another interesting result shown in Figures 1.7 and 1.8 is the improvement of
5% to 16% observed with the use of Imagenet pre-trained models, particularly when
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Figure 1.9 InBreast test case results using Imagenet pre-trained model with no data augmen-
tation, where the ground truth and the automatic classifications are shown.

the training process does not involve data augmentation. One final point shown by
Fig. 1.7 is that the results, with respect to data augmentation, saturates rather quickly
with the use of five or more artificially generated training samples (per each original
training sample). This point needs further investigation - for instance, it may the case
that geometric transformations may not be the most appropriate way of augmenting
medical data. The visual results in Figure 1.9 show that the system is likely to classify
cases as malignant when micro-calcifications and masses are found, and as negative
when no lesions are found. However, when either masses or micro-calcifications (but
not both) are found, then the system can classify the case either as benign or malignant.

The results in Sec. 5 also show poor performance of the single/multi view classi-
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fications containing only one of the inputs (image or segmentation maps). This may
happen due to several reasons, such as that cases where BI-RADS > 1 may contain
annotations for either micro-calcification or mass, but not for both lesions. Also, the
mammogram images alone may not have sufficient information for a robust classifica-
tion, particularly considering the fact that they are down-sampled around ten-fold to
an input of size 264 × 264. It is also interesting to note the consistency of the results
in the sense that micro-calcification segmentation maps produce better classification
results than mass, which in turn is better than the image classification.

The comparison of our proposed methodology to previously proposed methods in
the field (see Sec. 2) is difficult because most of these previous methods use datasets
that are not publicly available and they also focus on the classification of individual
lesions, as opposed to the classification of the whole exam that we propose. In any
case, it is possible to compare the AUC results produced by our method to the AUC
results of individual mass/micro-calcification classification of the current state of the
art, which are between [0.9, 0.95] for MCs and mass classification [22, 23]. Therefore,
we can conclude that our proposed method is comparable (on InBreast) or superior (on
DDSM) than the current state of the art.

7. Conclusion

In this chapter, we show that the high level features produced by deep learning mod-
els are effective for classification tasks that use un-registered inputs. This is partic-
ularly important in mammograms, where registration is challenging due to non-rigid
deformations. Moreover, the use of pre-trained models appears to be advantageous,
compared to the randomly initialised models. This is somewhat an expected result
given that the randomly initialised model is more likely to overfit the training data.
We would like to emphasise that the results shown in Sec. 5 can serve as baseline for
the field because the data used is publicly available, which allows for a fair comparison
with future works that will be published in the field [5]. Our proposal has the poten-
tial to open two research fronts that can be applied to other medical image analysis
problems: 1) the use of deep learning models pre-trained with non-medical imaging
datasets, and 2) the holistic analysis of un-registered multi-view medical images.
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