
A VARIATIONAL APPROACH FOR OVERLAPPING CELL SEGMENTATION

Masoud S. Nosrati, Ghassan Hamarneh

Medical Image Analysis Lab., Simon Fraser University, BC, Canada
{smn6,hamarneh}@sfu.ca

ABSTRACT
We propose a variational method for overlapping cervical cell
segmentation in Pap smear images. Number and type of cells
(typically inferred from features such as shape and area of cy-
toplasm and nucleus) are two important factors in detecting
pre-cancerous changes in the uterine cervix. Therefore, ac-
curate and automatic detection and delineating of such cells
are two preliminary steps toward automatic Pap smear image
analysis. We evaluated our method on the dataset provided
through the ISBI 2014 challenge.

1. METHODS

Let Ω be a bounded subset of Rn where n is the image di-
mension (in this work n = 2) and I : Ω → R be a given
gray-scale image. We use level sets (φ) to represents objects
of interest due to its several advantages such as handling topo-
logical changes implicitly, being independent of parameteri-
zation and its suitability for data-driven applications.

Each cell in cervical cytology images consists of two
parts: nucleus and cytoplasm, where nucleus typically stands
out with high contrast. We take advantage of this feature and
use nuclei as good indicators for detecting cells. To detect
nuclei, we used the popular maximally stable extremal region
detector (MSER) [1]. We noticed that MSER is not able to
detect all nuclei, therefore we trained a random decision for-
est classifier (RF) to find the most probable nuclei locations.
We combined the results of two nuclei detectors and filtered
out the non-elliptical connected components to obtain final
nuclei candidates.

We represent each cytoplasm and its corresponding nu-
cleus by φci (x) : Ω → R and φni (x) : Ω → R as two
signed distance map (SDM) functions, respectively, where
φci (x) > 0 is inside and φci (x) < 0 is outside the ith cyto-
plasm and φci (x) = 0 on the boundary of the ith cytoplasm
(similarly for φni ). We leverage several prior information and
define the following energy functional
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n
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(1)

where ER is the regional term, ED is the distance prior be-
tween the boundary of the cytoplasm and its corresponding
nucleus,ES is the elliptical shape prior,EO is an overlap con-
straint that motivates neighbouring cytoplasms to be excluded
from one another (to not overlap), andR is the regularization
term that ensures a smooth boundary of the segmented cells.
λ1 to λ4 are positive weights balancing the contribution of
each term in (1). We define the regional term ER as

ER(φci , φ
n
i ) =

∫
Ω

ξ(x)gbg(x)H(−φci (x))dx

+

∫
Ω

ξ(x)gc(x)H(φci (x))H(−φni (x))dx

+

∫
Ω

ξ(x)gn(x)H(φni (x))dx , (2)

where ξ(x) = 1
1+|∇Gσ∗I| encourages the evolving contours to

align with edges (Gσ is the Gaussian kernel with standard de-
viation of σ), gbg(x), gc(x) and gn(x) are the regional terms
that measure the agreement of the image pixel x ∈ Ω with
the background, cytoplasm and nucleus statistical models, re-
spectively, and are calculated as follows

gbg(x) = − log pbg(x|I(x)) , (3)

where pbg(x|I(x)) is the probability of a given pixel x be-
longing to background. We calculate gc(x) and gn(x) similar
to (3). pbg(x|I(x)), pc(x|I(x)) and pn(x|I(x)) are estimated
by training a random forest using the provided ground truth
segmentation in the training set.

Using the signed distance functions enables us to effi-
ciently control the relative distance d between the boundary
of the cytoplasm and its nucleus by introducing the distance
term ED as

ED(φci , φ
n
i ; d) =

∫
Ω

ξ(x)w(x) ‖ φci (x)− φni (x)− d ‖2 dx.
(4)

Eq. (4) ensures that the nucleus, φni , is contained within the
cytoplasm, φci , while maintaining the distance of d pixels
between them. w(x) is a spatially adaptive weight which
controls the distance prior influence. We incorporate this
weight as we observed large variation in the cell sizes and the
distance between the nucleus and the cytoplasm. In regions
where the density of nuclei is large the distance prior must



Table 1: Quantitative results on the training and test sets. JI: Jaccard index; TPR: True positive rate (pixel-level); FPR: False
positive rate (pixel-level); FNR: False negative rate (cell/object-level).

Training Set: TPR/FPR (FNR) d=DSC
λ1 λ2 λ3 λ4 JI> 0.5 JI> 0.6 JI> 0.7 JI> 0.8

1 1.5 0.15 1 0.84/0.0041 (0.01) d=0.87 0.84/0.0039 (0.01) d=0.87 0.85/0.0039 (0.03) d=0.88 0.86/0.0034 (0.14) d=0.89
1.5 1.5 0.15 0.5 0.90/0.0104 (0.01) d=0.86 0.90/0.0103 (0.01) d=0.86 0.90/0.0095 (0.04) d=0.87 0.91/0.0072 (0.21) d=0.89

Test Set: TPR/FPR (FNR) d=DSC
λ1 λ2 λ3 λ4 JI> 0.5 JI> 0.6 JI> 0.7 JI> 0.8

Lu et al. [2] 0.88/0.0032 (0.02) 0.89/0.0025 (0.09) 0.92/0.0023 (0.21) 0.93/0.0017 (0.34)
1 1.5 0.15 1 0.87/0.0038 (0.01) d=0.87 0.87/0.0036 (0.02) d=0.86 0.87/0.0032 (0.07) d=0.87 0.88/0.0024 (0.24) d=0.90

1.5 1.5 0.15 0.5 0.90/0.0066 (0.01) d=0.84 0.90/0.0060 (0.05) d=0.85 0.90/0.0051 (0.14) d=0.87 0.90/0.0033 (0.32) d=0.90

be enforced more strongly to prevent the cytoplasm’s con-
tour from growing too far from its nucleus, while in regions
with no or sparse nuclei we relax the distance prior and let
the regional term dictate the contour, Fig.1. In this work we
calculate w as w = eSDM(all nuclei)/20.

The shape prior term is defined as follows [2, 3]

ES(φci ) =

∫
Ω

ξ(x)H(`(φci (x)))dx , (5)

where `(φci ) returns the signed distance map of the elliptical
shape approximation of φci . The fourth term in (1), EO, lim-
its the overlapping between two neighbouring cytoplasms and
penalizes the common area between two neighbouring cells
and is defined as

EO(φci , φ
c
j) =

∫
Ω

ξ(x)H(φci (x))H(φcj(x))dx. (6)

The last term in (1) is the regularization term. Here, we adopt
the total variation regularization

R(φci , φ
n
i ) =

∫
Ω

ξ(x)

(
|∇H(φci (x))|+ |∇H(φni (x))|

)
dx.

(7)

To minimize (1), we follow the approach of Chan and Vese [4]
and derive the Euler-Lagrange update equation.

2. RESULTS

We train our method on the training set provided by the ISBI
2014 challenge to obtain the regional models (gbg , gc and
gn) as well as weighting parameters λ1 to λ4 and evaluated
the performance of our method using the provided evalua-
tion code. The results of our method on the training and the
test sets are reported in Table I (bold numbers indicates su-
perior results). TP an FP reported in Table 1 are calculated
for “well-segmented” cells (segmented cells with JI above a
certain threshold). The FNR in Table 1 is due to inaccurate
segmentation and/or missing cells. Note that our method has
less FNR compared to [2]. In addition, Table 2 compares our
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Fig. 1: Adaptive weighted distance prior. (a) Weighting map.
Segmentation (b) without and (c) with adaptive weight.

nuclei detection rate with two recently proposed methods. Us-
ing non-optimized MATLAB code on a 3.4 GHz CPU with 16
GB RAM, our method segment each cell in∼4 seconds which
is ∼14 times faster than Lu et al. [2] (56 sec. per cell).

Table 2: Nuclei detection results

Methods Recall Precision
Lue et al. [2] 0.90 0.69

Gençtav et al. [5] 0.93 0.74
Our method 0.98 0.99
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