Compilation of Parallel Applications via Automated
Transformation of BMF Programs
(Summary of Thesis)

Brad Alexander
January 12, 2006

Transformation is crucial to any program improvement process. Highly transformable
notations pave the way for the application of deep and pervasive program improvement
techniques. Functional programming languages are more amenable to transformation than
their more traditional imperative counterparts. Moreover, functional programs specify only
true dependencies between values, making improvements that reveal and exploit parallelism
much easier. Some functional programming notations are more transformable than others.
Bird-Meertens-Formalism (BMF) is a functional notation that evolved as a medium for trans-
formational program development. A substantial, and growing, body of work has created
novel tools and techniques for the development of both sequential and parallel applications
in BMF.

Formal program development is at its most useful when it can be carried out automat-
ically. Point-Free BMF, where programs are expressed purely as functions glued together
with higher-order operators, provides enhanced scope for automated development because
many useful transformations can be expressed as easily-applied rewrite rules. In addition,
BMF contains primitives with highly parallel implementations and, with its direct linking
of producers and consumers of data, exposes the communication, implicit in these links,
to further processing. Realistic sequential and parallel static cost models can be attached
to BMF code so the relative merits of applying various transformations can be accurately
assessed.

In spite of its potential merits there has been little work that has utilised point-free
BMF, in a pervasive manner, as a medium for automated program improvement. This thesis
describes a prototype implementation that maps a simple point-wise functional language into
point-free BMF which is then optimised and parallelised by the automated application of,
mostly simple, rewrite rules in a fine-grained and systematic manner. The implementation
is shown to be successful in improving the efficiency of BMF code and extracting speedup in
a parallel context. The report provides details of the techniques applied to the problem and
shows, by experiment and analysis, how reductions in high data-transport costs are achieved.
We also describe techniques used to keep the optimisation task tractable by alleviating the
hazard of case-explosion.

The report is structured according to the stages of the compilation process, with related
work described at the end of each chapter. We conclude with our main finding, namely,
the demonstrated feasibility and effectiveness of optimisation and parallelisation of BMF
programs via the automated application of transformation rules. We also restate techniques
useful in achieving this end, the most important of which is the substantial use of nor-
malisation during the optimisation process to prepare code for the application of desirable



transformations. We also present a brief summary of potential future work including the
introduction of more formally described interfaces to some of the transformative rule-sets,
the automatic production of annotated proofs and a facility to display static estimates of
the efficiency code during transformation.



