
A Fast Code Generator for Point
Free Form

Sean Pettge
Department of Computer Science

University of Adelaide

Supervised by Brad Alexander

This Thesis is submitted in partial fulfillment of the requirements for
the Honours Degree in Computer Science

November 7, 2005

Contents

1 Introduction 1

2 Bird-Meertens Formalism 2
2.1 BMF . 2
2.2 Transforming BMF . 4
2.3 Parallelisation of BMF . 5

3 The Baseline Compiler 6
3.1 Program Translation Rules 6
3.2 Implementation of the Baseline Compiler 7

3.2.1 Type System . 7
3.2.2 Type Inferencing . 8

3.3 Example of Translating a BMF Program 8

4 Optimisation Techniques 12
4.1 Routing Functions . 12
4.2 Removal of Routing Functions 13
4.3 Handling Iota . 15

5 The Optimising Compiler 16
5.1 Type System . 16
5.2 Type Inferencing . 16
5.3 Allocation and Initialisation of Memory 17
5.4 Implementation of Optimising Compiler 18
5.5 Example of translating a BMF program 18
5.6 Current State of Optimising Compiler 21

6 Results and Conclusions 22
6.1 Results . 22
6.2 Future Work . 23
6.3 Conclusion . 29

1

CONTENTS 2

A Example 1 Code 30
A.1 Baseline Compiler Output . 30
A.2 Optimising Compiler Output 34
A.3 Hand Coded Program . 38

B Example 3 Code 41
B.1 Baseline Compiler Output . 41
B.2 Optimising Compiler Output 48
B.3 Hand Coded Program . 52

List of Figures

3.1 Abstract Syntax Tree of example program 9
3.2 Structures used in the example program 10
3.3 Listing of main body of (+ · (id, id)◦)∗ 11

4.1 How variables are bound in the baseline compiler for +·(id, id)◦ 13
4.2 How variables are bound in the optimising compiler for + ·

(id, id)◦ . 13
4.3 How variables are bound in the baseline compiler for code in

4.2 . 14
4.4 How variables are bound in the optimising compiler for code

in 4.2 . 14

5.1 Variable mappings and types for program in Equation 5.1 . . 18
5.2 Structure used to store arrays of Integers 19
5.3 Abstract Syntax Tree of example program in equation 5.2 for

optimising compiler . 19
5.4 Main body of code from Optimising compiler for example

program in equation 5.2 . 20

6.1 Optimising compiler generated code for main body of Exam-
ple 2 (equation 6.2). 24

6.2 Hand coded main body of Example 2 (equation 6.2). 24
6.3 Graph of results for example program 1 (equation 6.1) Note

the logarithmic X-scale. 25
6.4 Graph of results for example program 2 (equation 6.2) Note

the logarithmic X-scale. 26
6.5 Graph of results for example program 3 (equation 6.3) Note

the logarithmic X-scale. 27
6.6 Graph of results for example program 3, comparing using -g

and -O3 . 28

3

LIST OF FIGURES 4

Acknowledgements

First, a big thanks to my supervisor, Brad Alexander, for the help and
support throughout the year.

I would also like to thank my fellow honours students, for their friendship
and support.

And, of course, I would like to thank my family for their support.

Abstract

Program-optimisation and program-parallelisation are challenging tasks in
computer science. These tasks are often made more difficult by the proper-
ties of the language used to express program code. Bird-Meertens Formalism
(BMF) is a notation designed to ease the task of program transformation
by enabling changes to a program through the application of simple rewrite
rules. In addition, BMF has many constructs that are readily mapped to
parallel architectures.

Unfortunately, where the target architecture consists of distributed pro-
cessors of conventional design, a naive mapping of BMF code to each con-
ventional processor results in large overheads due to repeated copying of
potentially large data arrays, as well as frequent allocation and deallocation
of memory. There is a need for automated analysis to make this mapping
produce more efficient code.

This project has focused on this automated translation, starting with the
construction of a baseline automated translator that uses a simple mapping,
which suffers from the problems outlined above. A more advanced translator
was then constructed, which focused on moving the evaluation of routing
functions - functions which only change the shape of the data, not the data
itself - into the compiler, rather than having them in the produced program.
This technique has produced improvements in both program execution time
and memory usage over the baseline system.

Chapter 1

Introduction

Program optimisation and program parallelisation are two very challenging
tasks in the field of Computer Science. These tasks are often made more
difficult by the properties of the language used to express the program code.
A program written in an imperative or object-oriented language typically
contains many complicated dependencies, making it difficult to analyse the
flow of data through the program, and to change the way the program
executes without changing its meaning.

Functional languages make these processes easier, through reducing the
number and types of dependencies in the program. Point free form, a type of
functional notation which has no variables, simplifies these processes further,
by explicitly linking the producers and consumers of data.

This means that point free form can be easily transformed through the
application of simple rewrite rules, which can effect wholesale changes to the
structure of a program without changing its meaning. Point free form also
contains many structures, such as maps and scans, that are easily mapped
onto a parallel architecture.

Unfortunately, a naive mapping of point free form code to a non-distri-
buted architecture results in large overheads due to repeated allocation and
copying of large amounts of memory. While point free code can be trans-
formed by hand to produce a more efficient mapping, this is slow, tedious
and error-prone. The automation of this transformation will greatly improve
the usefulness of point free form.

This automation is also desirable because point free form is a difficult
language to program in. This means that its transformational properties
are perhaps best exploited when it is used as an intermediate language,
with another automated system translating a different language into point
free form, optimising it, and then passing on to a system like this one for
conversion to executable code.

1

Chapter 2

Bird-Meertens Formalism

2.1 BMF

Bird-Meertens Formalism (BMF) is a dialect of point free form devised for
program calculation. It is based on a functional language FP, proposed
by Backus [Bac78], and developed by Bird [Bir87], [BdM96] and Meertens
[Mee86]. It consists of a number of constructs which have been chosen for the
power of the algebraic rules associated with them and for their programming
usefulness.

A summary of the constructs in the language is given in 2.1. Our version
of BMF has three base types, these being integers, floating point numbers
and boolean values. The language contains two aggregate data structures.
The first of these are Tuples, which contain a fixed number of elements which
can be of mixed type, and are denoted using curved brackets, for example
(a,b) is a tuple containing two elements. The other aggregate type are
Vectors, which are a single dimensional array of potentially unlimited length,
but containing only one type. These are denoted using square brackets, for
example [a,b,c] is a vector of length three.

Function composition (·) follows normal mathematical semantics, and
this ordering means that BMF programs are read from right to left, with
the input coming in to the right hand side of the program, and output leaving
from the left. Vector map (*) applies its argument function individually to
each element of the input vector.

All applied to for Tuples, also called alltup (◦), constructs a tuple by
applying each of its input functions individually to the entire input data,
and placing the results as the elements of a tuple. The identity function
(id) simply passes its argument through unchanged. Tuple access (πi) is
used to extract individual elements of its input tuple. Constant functions
ignore their input, always returning their constant value.

Binary operators operate on a tuple of two values, while unary arith-
metic operators operate on a single value, and include general mathematical

2

CHAPTER 2. BIRD-MEERTENS FORMALISM 3

Description Symbols(s) Semantics
Function Composition · (f · g) x = f(g x)

Vector Map ∗ f ∗ [x1, . . . , xn−1] =
[f(x1), . . . , f(xn−1)]

Alltup (f1, . . . , fn)◦
(f1, . . . , fn)◦x =
(f1 x, . . . , fn x)

Identity function id idx = x

Tuple access πi πi(a1, . . . , an) = ai

Constant functions K Kx = K
Binary Arithmetic ops +,−,÷,×, and, . . . +(x, y) = x + y etc.
Unary Arithmetic ops −, not, . . . −(x) = −x etc.

Left distribute distl
distl(a, [x0, . . . , xn−1]) =
[(a, x0), . . . , (a, xn−1)]

Zip zip
zip([x0, . . . , xn−1],
[y0, . . . , yn−1]) =

[(x0, y0), . . . , (xn−a, yn−1)]
Vector enumeration iota iota n = [0, 1, . . . , n− 1]
Vector length # #[x0, . . . , xn−1] = n

Vector indexing ! !([x0, . . . , xn−1], i) = xi

Vector selection select
select(v, [x0, . . . , xn−1]) =

[!(v, x0), . . . , !(v, xn−1)]

Table 2.1: Structures in Bird-Meertens Formalism

operators and logical operators. Left distribute (distl) takes a tuple of a
value and a vector, and returns a vector of tuples consisting of the value,
and the corresponding element of the input vector. Zip (zip) takes a tuple
containing two vectors, and returns a vector of tuples formed by pairing
corresponding elements from each vector. If the vectors are not the same
length, zip stops after using all of the values from the shorter vector. Zip
can also be generalised to handle more then two inputs, but this case is not
dealt with in this thesis.

Vector enumeration (iota) takes an integer n and returns a vector of
integers with values in order from 0 to n − 1. Vector indexing (!) takes a
tuple of a vector and an integer i, and returns the element at position i in
the vector, with 0 being the first position of the first element.

Vector selection (select) takes a tuple of two vectors, with the second
one consisting of integer indices into the first vector. It returns a vector
consisting of the values in the first vector that are indexed by the indices
of the second. The resulting vector is the same length as the second index
vector.

There are some additional constructs in the language, which are not
covered in the discussions in this thesis. These are summarised below.

CHAPTER 2. BIRD-MEERTENS FORMALISM 4

Value repetition (repeat)takes a tuple of a value and an integer n, and
returns a vector of the value repeated n times. Vector reduction (/) takes an
argument of a function that has input of a tuple of two values with identical
types and returns a value of the same type, and applies this function to
first to the first two elements in its input vector, then to this result and
the next element, and this continues until it reduces the vector to a single
value. Vector scan operates in a similar way, but returns each stage of the
reduction as an element of a vector.

If (if) and While (while) allow conditional evaluation or repetition of
functions. if takes three functions as parameters, the first of which must
return a boolean. The other two functions must both return the same type,
and the if construct will evaluate one of its arguments depending on whether
the first function returns true or false. while takes two functions as pa-
rameters, and repeatedly evaluates the first function as long as the second
function returns true.

2.2 Transforming BMF

As mentioned previously, BMF code can be transformed through the ap-
plication of simple algebraic rewrite rules. These rules allow the program
to be changed in quite major ways without changing its meaning. This can
allow for quite extensive optimisation of a program, as the way an algorithm
works can be changed without changing what it does.

These transformation rules take the form of equalities, with an exam-
ple in equation 2.1 showing a transformation that moves a composition of
functions outside of a map. Note that the function can also be applied in
reverse, moving the composition inside the map.

(f · g)∗ = f ∗ ·g∗ (2.1)

This transformation can, for example, change the type and size of the in-
termediate data structure which passes the results of g into f . Applying it
‘forward’, as shown in the equation, would make the intermediate structure
an entire list, which may make further transformations easier, for exam-
ple, while applying it the other way would make the structure only a single
element, which can conserve memory.

A further example is show in equation 2.2. This rule allows a map to
be moved inside an alltup. This is limited by our restriction of zip to only
work on two input vectors, but if zip was expanded to more vectors, so too
could this rule be expanded.

((f, g)◦)∗ = zip · (f∗, g∗)◦ (2.2)

Repeatedly applying these transformations to a program can produce

CHAPTER 2. BIRD-MEERTENS FORMALISM 5

significant improvements in both execution time and memory usage. For a
more complete description of some of these transformations, refer to [Ale05].

2.3 Parallelisation of BMF

BMF contains many structures that are easily parallelisable, with many con-
structs having direct equivalent calls in many parallel processing APIs, such
as MPI. Constructs such as map, scan and reduce can easily be mapped onto
a parallel architecture, and program transformations can be used to min-
imise communication overheads through changing where parallel constructs
occur in the program, and how much data is routed through them.

This ease of parallelisation is one of the main motivations for using BMF.
It allows for easier automation of this process then in most other languages,
and there has been some success in doing this [Ale04]. This thesis is not
concerned with the parallelisation of BMF, but rather with BMF code that
is run on a conventional processors. This code would arise during the par-
allelisation process as the code to be executed on each node of the parallel
machine.

Chapter 3

The Baseline Compiler

The first stage consists of the construction of a baseline compiler. This
compiler uses a small set of simple rules to specify how to generate C code
from a BMF program. These rules, while simple, produce very inefficient
code, through frequent allocation and deallocation of memory, as well as
copying data to fill this memory. The reason that these rules are used is their
simplicity, as they allow for easy construction of the compiler. This compiler
forms a basis for comparison against which to measure the performance of
the optimising compiler.

3.1 Program Translation Rules

The rules used for the translation define when memory for each constructs
input and output is allocated and deallocated. the rules can be summarised
as follows:

1. Space for the output of scalar valued functions is allocated just prior
to the evaluation of that function.

2. Space for the output of vector valued functions is allocated just prior
to the evaluation of that function

3. Space for a functions input is deallocated at the end of the function
that triggered its allocation.

Using these rules means that each construct will have to create its entire
output anew, with there being no reuse of the input values to any function.
The constructs must allocate space for its output and then fill the data in.
For some constructs, such as id, this entails copying the entire input to the
output. For some others, a slightly changed version of the input will have
to be copied into the output. This is the main source of the inefficiency of
this compiler, and is the issue that the optimising compiler addresses.

6

CHAPTER 3. THE BASELINE COMPILER 7

3.2 Implementation of the Baseline Compiler

The baseline compiler was implemented in Haskell, a popular functional
language [JHH+93]. This language was chosen for its pattern matching
and list handling capabilities, which are useful tools when constructing a
compiler. The compiler produces C code, which was then compiled using
GCC.

The compiler consists of several modules, which are listed below:

• Main: Contains the program entry point, testing functions and han-
dles reading of files.

• Parser: Contains the lexer and parser. These were written from
scratch rather then using a tool due to the simplicity of the BMF
syntax. The lexer takes as input a raw text file and produces a list
of symbols, from which the parser produces an abstract syntax tree
(AST) using recursive descent parsing.

• Types: Contains definitions of the type system (covered in section
3.2.1) and the AST, as well as functions for accessing and modifying
these data structures. This also performs type inferencing (covered in
section 3.2.2), as well as labelling each node of the AST with a unique
number, which is used for variable naming.

• Structs: Contains functions which manage the mapping of BMF types
into C structs

• Code: Contains functions for storing C code templates, which are
loaded from files. These templates are used for the C file start and
end, as well as some of the simpler functions. Many of the other
functions were found to be too complex for a template to be useful.

• Translator: Contains the functions to produce C code from the AST,
by recursively traversing the AST.

These modules were implemented in separate Haskell modules.

3.2.1 Type System

The compiler has three basic types, these being integers, floating point num-
bers and boolean values. A single one of these values is represented as a
struct containing a single value. The two aggregate types in the language
are represented in the typing system as a type containing other types. Tuples
are represented as a tuple structure, which contains a list of the types that
are contained within the tuple. This is mapped into a struct that contains
pointers to structs representing the contained types.

CHAPTER 3. THE BASELINE COMPILER 8

Vectors are represented within the type system as a vector structure,
which contains another type struct representing the type of the elements of
the vectors. This is mapped into a struct which contains a pointer to an
array of structs representing the contained type, as well as an integer which
holds the length of the list.

Both tuples and vectors can be arbitrarily nested within each other, and
much of the complexity in the baseline system comes from dealing with this
potential nesting.

3.2.2 Type Inferencing

The compiler uses a type inferencing system to determine the types used by
each construct in the program being compiled. During the inferencing stage,
each node of the AST is annotated with the type structures representing its
input and output types. The initial type is derived from an annotation at
the start of the BMF program file. The types for the nodes of the AST
is then calculated through a recursive descent traversal of the AST, with
structures passing on appropriate types to their child nodes - e.g. map will
pass on the type contained within its input vector to its children.

3.3 Example of Translating a BMF Program

This section will show how a simple program is mapped into C by the base-
line compiler. The program to be mapped is given in equation 3.1.

(+ · (id, id)◦)∗ (3.1)

This program takes as input a vector of numbers, and doubles each number
by adding it to itself. The functions between the outer brackets are mapped
to each individual element of the input. These functions take a number,
and produce a tuple containing the same number twice. This tuple is then
passed into the plus operator, which adds the two elements of the tuple
together. These results are then recombined into a vector by the map.

The compiler does not operate on the code in this form, rather it must be
changed into a form that is easier to parse (and type). This transformation
is currently performed by hand, but this system is intended to be a ‘back
end’ to a compiler, that would produce this code from a separate language.
Once the program has been transformed into a suitable form, it looks as
follows:

[[int]]
map(comp(op(plus), alltup<id,id>))

The notation on the first line is the initial type notation, in this case it
denotes a vector of integers (the outer square brackets delimit the type

CHAPTER 3. THE BASELINE COMPILER 9

notation). The second line is the program itself. It is mostly the same
as the code above, with the symbols replaced with words, and the map
and function composition changed to be prefix, rather then infix, with their
arguments in a comma separated list in brackets. All functions which have
functions as arguments are specified like this.

map

��
comp

{{vvvvvvvvv

%%JJJJJJJJJ

op

��

alltup

zztttttttttt

##GGGGGGGGG

plus id id

Figure 3.1: Abstract Syntax Tree of example program

The abstract syntax tree for this program is show in 3.1. This does not
show the type annotations that are stored in each node of the tree. As an
example of these annotations, the map at the start of the program has an
input type of a vector of integers, and an output type of the same, while the
alltup’s input type is a single integer, and its output type is a tuple of two
integers.

Each of the types that occurs in the AST is mapped to a C struct that
can hold data of the correct type and form. The type definitions for this
program are shown in Figure 3.2.

These structs are used during the translation process to access the pro-
grams data. The translator translates the AST into C through a recursive
descent of the AST, and the body of the program produced is shown in Fig-
ure 3.3. The listing is missing the code which loads the input data (from a
file), and places it into ‘input’, as well as the code which times the programs
execution.

The inefficiencies of the baseline system can be seen in this code. It has
produced numerous allocations, with several of them allocating variables
that are only used to hold an unmodified copy of the current working value,
and are only read from in the addition line. Eliminating these variables
and allocations is the main focus of the optimisation techniques used in the
second part of the project, covered in Chapter 4.

CHAPTER 3. THE BASELINE COMPILER 10

// Represents a single integer
typedef struct _B_Int0
{

int var1;
} B_Int0;

// Represents a vector of integers - the pointer points to an array
typedef struct _B_Vector1
{

B_Int0 *var1;
int size;

} B_Vector1;

// Represents a tuple containing two integers
// these pointers point to a single struct of the type above
typedef struct _B_Tuple2
{

B_Int0 *var1;
B_Int0 *var2;

} B_Tuple2;

Figure 3.2: Structures used in the example program

CHAPTER 3. THE BASELINE COMPILER 11

/////////////////Start of Map
output = (B_Vector1 *) malloc(sizeof(B_Vector1));
output->size = input->size;
output->var1 =

(B_Int0 *) malloc (sizeof(B_Int0) * input->size);
B_Int0 *map1;
B_Int0 *mapo1;
int loop1;
for(loop1 = 0; loop1 < input->size; loop1++)
{

map1 = (&input->var1[loop1]);
B_Tuple2 *cmp11;
//////////// start of alltup template
cmp11 = (B_Tuple2 *)malloc (sizeof(B_Tuple2));

///////////Start of ID template

cmp11->var1 = (B_Int0*)malloc(sizeof(B_Int0));
cmp11->var1->var1 = (int)map1->var1;

/////////// End of ID
///////////Start of ID template

cmp11->var2 = (B_Int0*)malloc(sizeof(B_Int0));
cmp11->var2->var1 = (int)map1->var1;

/////////// End of ID
//////////////End of Alltup

/////////////// Start of binary op(+) template

mapo1 = (B_Int0 *) malloc(sizeof(B_Int0));
mapo1->var1 =

(cmp11->var1->var1) + (cmp11->var2->var1);

//////////// End of binary op (+) template
//////////// End of Comp

(&output->var1[loop1])->var1 = mapo1->var1;
free(mapo1);

}

//////////////////End of map

Figure 3.3: Listing of main body of (+ · (id, id)◦)∗

Chapter 4

Optimisation Techniques

This chapter covers the optimisation techniques used to attempt to improve
the performance of the baseline compiler. Initially, the aim was to implement
update in place analysis. This involves detecting when a function’s input
variable is not being used again in a program, and thus can be reused for
the functions output [HB85]. However, after following the observations in
[WB94], it was felt that focusing on eliminating routing functions would
provide better results in the time available. Routing functions are functions
that change the way in which data is addressed, rather then the data itself,
and these changes in addressing can often be evaluated at compile time,
rather then run time.

4.1 Routing Functions

Routing functions are functions that change the shape of data, or the way
it is addressed, without changing the values of the data. These functions,
such as id, repeat, πi, and distl, as well as functions with routing like
behaviours, such as alltup, perform transformations to the shape of the
data.These transformations can be computed at compile time, rather than
at run time.

+ · (id, id)◦ (4.1)

As an example, consider the simple BMF code in 4.1. This code takes
its input, and produces a tuple consisting of two copies of the input. It
then adds these two copies, to produce its result, which is double the initial
number. In the baseline system, this is literally what will happen, that two
copies of the input will be created despite the fact that on a conventional
processor such copying is unnecessary, as the input data can be read twice
from where it is. The baseline compiler will produce code that maps the
variables as shown in Figure 4.1, with a, b, and c being the variables. All

12

CHAPTER 4. OPTIMISATION TECHNIQUES 13

three of these variables would contain exactly the same data after this code
is executed.

+

��

· (id

��

, id

��

)◦ input

��

oo

d c b a

Figure 4.1: How variables are bound in the baseline compiler for + ·(id, id)◦

4.2 Removal of Routing Functions

Eliminating routing functions entails evaluating these functions in the com-
piler, and producing appropriate mappings so that functions that use the
results of the routing functions can find the data they need. For the sim-
ple program in 4.1, these mappings are not very complex - each variable is
simply mapped to point to the original input. The plus must create a new
variable to store its output, as we are not performing analysis to determine
whether it is safe to destructively update one of its input variables. The
result of this mapping can be seen in Figure 4.2.

+

��

· (id

''NNNNNNNNNNNNNN , id

��

)◦ input

vvmmmmmmmmmmmmmmm
oo

b a

Figure 4.2: How variables are bound in the optimising compiler for + ·
(id, id)◦

These mappings can become more complex when functions such as distl
and zip are used, as they change the way in which the original data is
addressed. When these functions are mapped, their mappings will contain
information on how to transform the data request so that it matches the
shape of the data being pointed to. Consider the code in 4.2.

(+) ∗ ·distl · (id, iota ·#)◦ (4.2)

This program takes a vector as input, and first makes a tuple containing
the input and another vector containing the numbers from 0 to the length
of the input - 1. The distl then makes this into a vector of tuples, each
containing the input and a single number. The addition is then mapped

CHAPTER 4. OPTIMISATION TECHNIQUES 14

across this vector, resulting in a vector containing the numbers from the
input to the input∗2− 1.

The map and plus is not central to this discussion, but is included be-
cause otherwise the distl would have to produce its output directly, negating
some of the routing elimination. The discussion below will not refer to the
map and plus, rather it will just refer to the second part of the program.
How the baseline compiler would map this is shown in Figure 4.3. Note that
the b− 1 in the iota and distl results is the value of b− 1, not a reference
to the variable b. Also note how many copies of the original input a are
required to be created - one for the id, and then one copy for each element
of the iota output vector. Since the output of the iota will have a length
equal to the length of the input vector, this program has a space and time
complexity of O(n2), where n is the length of the input vector.

distl · (

��

id,

��

iota·

��

#)◦

��

input

��

oo

[(d, 0), (e, 1), . . . , (y, b− 1)] c [0, 1, . . . , b− 1] b a

Figure 4.3: How variables are bound in the baseline compiler for code in 4.2

When the routing functions in this code are removed, all of this unneces-
sary copying is eliminated. The result of this mapping can be seen in Figure
4.4. The meaning of the iota(b) will be explained below in 4.3.

Note that the distl now contains numerous references to the original
value a. This version performs no copying of the input, and the only part of
this code which cannot be computed at compile time is the length operation.
As vectors store their length as a part of their data, this is constant, giving
a reduction in running time to O(1), and reduction in space complexity to
O(n).

distl · (

��

id,

��

iota·

��

#)◦

��

input

��

oo

[(a, iota(b)), . . . , (a, iota(b))] a iota(b) b a

Figure 4.4: How variables are bound in the optimising compiler for code in
4.2

CHAPTER 4. OPTIMISATION TECHNIQUES 15

4.3 Handling Iota

The iota function, while not a routing function as such, has a structure
that makes it amenable to a similar style of optimisation that improves its
time and space performance. The iota function takes in an integer n, and
returns a vector consisting of numbers running from 0 to (n − 1) inclusive.
Given that the only difference between the output of different occurrences
of iota is the length of the vector, it makes sense to only store this length,
and to simply compute the appropriate number when it is requested.

The value to be returned can easily be calculated from the index re-
quested - the index is simply returned (indexes in BMF are 0-based). The
length is needed only when the iota is iterated over or its length is requested.
This effectively reduces the time and space complexity of the iota from O(n)
to O(1). So in the examples above, the iota(b) refers to an iota with length
b. Note that this b would be the value of b, not a reference.

Chapter 5

The Optimising Compiler

This chapter describes the optimising compiler. This compiler uses the
routing elimination methods described above to produce more efficient code
from BMF.

5.1 Type System

The optimising compiler accomplishes much of its routing function elimi-
nation through an expanded typing system. This typing system has the
location of a variable stored in the type information, allowing each type to
know exactly how it is to be accessed. Changing this information is how
most of the routing elimination is accomplished. The types also store a list
of ‘loop variables’, which are used to index into vectors. These loop variables
are assigned during type inferencing (5.2).

An additional type is also introduced, that being an iota type. This is
used for the mapping of iota to a single variable representing size. The iota
type is contained within a vector type, to prevent it requiring special cases
whenever a function operates on a vector in the compiler.

5.2 Type Inferencing

The optimising compiler has a much expanded type inferencing section over
the baseline compiler. Most of the work involved in routing function elim-
ination takes place in this component of the compiler. As in the baseline
system, this performs a recursive descent traversal of the AST, filling in in-
put and output types. In addition, it now also fills in the information in the
type trees about where their information is stored. In doing so, it also allo-
cates the variables used in the program, as well as the loop variables used.
This was done in a combined step to allow the routing function elimination
code to know where new variables are declared, without requiring possibly
complex analysis or tree annotations.

16

CHAPTER 5. THE OPTIMISING COMPILER 17

5.3 Allocation and Initialisation of Memory

Owing to the introduction of variable reuse in the optimising compiler, the
allocation and initialisation of memory must now behave in a different way.
The use of flat C arrays for vector memory storage means that it is not
possible to allocate a vector one element at time, which would allow for
functions to do their own allocation. For the sake of efficiency, vectors are
allocated whole. One logical place for this allocation is at the first function
that ‘enters’ the vector. By this I mean that a function like map, which
allows the functions inside of it to access the elements of the vector.

To this end, map, and similar functions, examine their input and output
type structures, and determine what variables are in the output but not in
the input. These variables are then allocated and initialised. This, however,
introduces a problem with ‘intermediate’ variables, such as those that might
be produced by a composition when both of its functions must create new
output structures. If the output of the first function is not used in the output
of the second function, they will not be detected as needing allocation by
the map. This then causes these variables to not be allocated.

One approach to fixing this is through special code to handle composi-
tion, which detects these variables, and then redeclares them as variables
‘local’ to the composition. These variables are changed so that they have
none of the structure that exists in the other variables outside of the compo-
sition. So a composition with an intermediate value of an integer, which is
inside a map, would have the local value as purely a integer, while the input
and output would consist of a vector of integers. These intermediate values
would be reused in this case, with the same variable used in each iteration
of the map. This is safe, as the fact it is an intermediate variable means
it cannot possibly be carried through in a reference in the output. As an
example, consider the program in Equation 5.1.

(iota ·+ · (id, 5)◦)∗ (5.1)

The interior function takes a number as input, adds 5 to it, and then
uses this as an argument to iota. This is mapped over an array of integers.
The mappings to variables in this program is shown in Figure 5.1. Note
that constants are inserted directly into the produced code, and thus are
not stored as variables. The variable b, which is the result of the plus is the
intermediate value that needs to be properly detected. It is not present in
the input of the function, and nor will it be present in the output, as iota
takes a copy of its input for its vector length. In this case b can be mapped
to a variable local to the loop, of type integer. Note that the references
to a and c are actually values indexed into a vector (c is a vector of iota
vectors).

CHAPTER 5. THE OPTIMISING COMPILER 18

output

��

(iota·

��

oo +·

��

(id

��

5)∗

��

input

��

oo

c c b a 5 a

V ector(int) V ector(int) int int int

Figure 5.1: Variable mappings and types for program in Equation 5.1

5.4 Implementation of Optimising Compiler

The optimising compiler was written in Haskell, with a target language of
C, the same as the baseline compiler. It consists of the following modules:

• Main: Contains the program entry point, testing functions and han-
dles reading of files.

• Parser: Contains the lexer and parser. This was reused from the
baseline compiler, with minor changes to accommodate the new type
system.

• Types: Contains definitions of the type system (covered in section
5.1) and the AST, as well as functions for accessing and modifying
these data structures.

• Inferencing: Contains the type inferencing system, covered in section
5.2.

• Translator: Contains the functions to produce C code from the AST,
by recursively traversing the AST.

5.5 Example of translating a BMF program

This section demonstrates how the simple program shown in equation 5.2,
the same program used in section 3.3, is translated by the optimising com-
piler. The optimising compiler uses a simpler system of structs to store the
variables, with single scalars simply stored as a variable of the appropriate
type - eg. an integer stored in int var1. Vectors of scalars are stored in
structs of the form shown in Figure 5.2, this being the struct for a vector of
integers.

(+ · (id, id)◦)∗ (5.2)

CHAPTER 5. THE OPTIMISING COMPILER 19

typedef struct _Vint
{
int *contents;
int size;
} Vint;

Figure 5.2: Structure used to store arrays of Integers

Structs for other types are similar. Vectors of vectors are represented
using void pointers in a similar struct. Tuples are not directly represented,
rather they are just accessed through the mapping of types and variables. As
an example, a vector of tuples, would have each element of the tuple stored
in a vector, which are accessed together in a similar fashion to the way
FORTRAN represents ‘records’. The input program needs some manual
normalisation, a requirement which simplifies the design of the compiler.
This normalisation pushes compositions upwards in the program, outside of
maps and alltups, to avoid intermediate values. These are covered in more
detail in section 5.6. These will change the program’s AST into the shape
shown in Figure 5.3

comp

%%KKKKKKKKK

zzuuuuuuuuu

map

��

map

��
op

��

alltup

##GGGGGGGGG

zztttttttttt

plus id id

Figure 5.3: Abstract Syntax Tree of example program in equation 5.2 for
optimising compiler

The optimising compiler then transforms this through a similar process
to in the baseline system into a C program. The main body of the C program
is shown in Figure 5.4. Again this is missing code that reads in the input
from a file, does timekeeping, and output printing. The input has been
read into var0, a struct of type Vint, as shown above. As can be seen, the
alltup and id functions have been reduced to comments. The empty map
loop that contains them is still in the program, but this can be removed
through post-processing or analysis of map contents.

CHAPTER 5. THE OPTIMISING COMPILER 20

////******B_comp
int mapLoop11;
for(mapLoop11 = 0;

mapLoop11 < ((Vint *)var0)->size; mapLoop11++)
{

////******B_alltup
////******B_id
////******B_id

}

((Vint *)var1)->size = ((Vint *)var0)->size;
((Vint *)var1)->contents =

(int *) malloc(sizeof(int) * ((Vint *)var0)->size);
int mapLoop21;
for(mapLoop21 = 0;

mapLoop21 < ((Vint *)var0)->size; mapLoop21++)
{

(var1)->contents[mapLoop21] =
(var0)->contents[mapLoop21]
+ (var0)->contents[mapLoop21];

}

Figure 5.4: Main body of code from Optimising compiler for example pro-
gram in equation 5.2

CHAPTER 5. THE OPTIMISING COMPILER 21

5.6 Current State of Optimising Compiler

The optimising compiler is currently implemented on a subset of the BMF
language - these being id, map, ◦, iota, +, distl, comp, and πi. The
programs also require the manual normalisation mentioned in section 5.5,
before the program is entered into the compiler to enable the programs to
be translated successfully. Currently, the detection of temporary variables,
as mentioned in section 5.3 is not implemented, and code that results in this
situation must be avoided through the application of transformations, such
as those given in section 2.2. Code that causes this is currently compositions
inside of maps. The transformations given in section 2.2 can be used to move
the compositions outside of the maps, where the temporary variables are the
output of the first map, where the map can initialise them.

While this normalisation of the program is currently manual, it can be
automated without great difficulty, due to the simple nature of the trans-
formations required. Alternatively, implementation of the temporary vari-
able detection given in section 5.3 would allow the compiler to work on
un-normalised BMF.

Chapter 6

Results and Conclusions

This chapter covers the results obtained from the optimising compiler, com-
paring them to the baseline compiler and hand coded C. Three example
programs are used to illustrate the performance gains made by the optimis-
ing compiler over the baseline compiler.

6.1 Results

The performance of code produced by the optimising compiler was compared
to two other sources - code produced by the baseline compiler (covered
in chapter 3), and hand coded C versions of the same programs. The C
code has identical input loading and timekeeping code to the other two
implementations. The timekeeping code in all three versions only times the
actual program - it does not cover reading the input or any output of the
program.

Three programs were used for the comparison. The first is the program
given in equation 6.1, which is the program used as an example in sections
3.1 and 5.2. The second program is given in equation 6.2, and creates an
iota vector of length n, and then adds n to each element. This program
uses distl, and demonstrates the large saving the optimising compiler can
generate on this type of structure. The third program is given in equation
6.3. This program is similar to the second program, but contains another
distl that distributes the output of the first one. This program produces
an iota vector of length n, and adds n ∗ 2 to each element. This nested
distribution further demonstrate the space and time savings over the baseline
compiler.

(+ · (id, id)◦)∗ (6.1)

(+) ∗ ·distl · (id, iota)◦ (6.2)

((+) · (π2 ·π2, (+) · (π1, π1 ·π2)◦)◦) ∗ ·distl · (id, distl · (id, iota)◦)◦ (6.3)

22

CHAPTER 6. RESULTS AND CONCLUSIONS 23

Each program was translated by the baseline compiler and the optimising
compiler, and a hand coded version was produced. The full code produced
for examples one and three can be found in the appendices. The results
for each example can be found in tables 6.1, 6.2, and 6.3, with graphs of
these results in Figures 6.3, 6.4 and 6.5. Note that the baseline compiler
was unable to run on the larger data sets for program 3, as it ran out of
memory, and that all results are from averages of five runs.

The results are what would be expected - the hand coded examples per-
form best, the baseline compiler’s code worst, and the optimising compiler
in-between. The performance of the optimising compiler’s code comes quite
close to the hand coded programs, especially in the second example. In the
second example, the produced code is almost identical to the hand code, as
can be seen comparing the code in Figure 6.1 with that in Figure 6.2.

The hand coded program has a bigger margin over the optimising com-
piler in the third example. This is due to the optimising compiler requiring
a third data structure to store the intermediate result of the computation,
as well as the extra pointer referencing needed to access the intermediate
structure. In all three cases, the difference between the optimising com-
piler code and the hand coded program appears to be a linear factor, most
probably caused by the extra pointer accesses.

To investigate this difference further, as well as see if the optimising
compiler’s results could be further improved, the optimising compilers code
and the hand coded program were compiled with some different options.

First the -g option in GCC, which disables optimisations, was used to
get a base for comparison, and then the -O3 option, which enables various
optimisation techniques. This was done to see if the C compiler could im-
prove the memory accesses of the optimising compiler, as it was suspected
that there are locality problems with the linear accessing of the two arrays
used. While there was the expected improvement in performance, the linear
factor was still there, albeit smaller. The small variations from linear in
some of the results are suspected to be testing artifacts, but further work is
required to check this.

6.2 Future Work

There is still work to be done on the optimising compiler. An obvious
direction for work in the future is extending the compiler to work on a
larger subset of BMF, or perhaps the entire language. There is also work
to be done on improving the way it works, with issues like the intermediate
variable detection mentioned in section 5.3 needing to be resolved.

On a bigger scale, there is work to be done looking at update in place
analysis for BMF, and potentially its integration with routing elimination.
Update in place analysis is concerned with detecting when the results of a

CHAPTER 6. RESULTS AND CONCLUSIONS 24

((Vint *)var1)->size = var0;
((Vint *)var2)->size = ((Vvoid *)var1)->size;
((Vint *)var2)->contents =

(int *) malloc(sizeof(int) * ((Vvoid *)var1)->size);
int mapLoop21;
for(mapLoop21 = 0;

mapLoop21 < ((Vvoid *)var1)->size; mapLoop21++)
{

(var2)->contents[mapLoop21] = var0 + mapLoop21;
}

Figure 6.1: Optimising compiler generated code for main body of Example
2 (equation 6.2).

output = (int *)malloc(sizeof(int) * input);
for(i = 0; i < input; i++)
{

output[i] = input + i;
}

Figure 6.2: Hand coded main body of Example 2 (equation 6.2).

Execution time (ms)
Size of input array Baseline Optimising Hand Coded

50 14 1 1
100 30 2 1
200 60 3 2
500 145 5 3

1000 286 16 7
5000 1467 63 50

10000 2961 129 100
50000 19875 1294 1522

100000 32341 1329 1113
500000 152161 6589 5540

1000000 293728 13304 11210
5000000 1471206 69451 57024

Table 6.1: Results for example program 1 (equation 6.1)

CHAPTER 6. RESULTS AND CONCLUSIONS 25

Figure 6.3: Graph of results for example program 1 (equation 6.1) Note the
logarithmic X-scale.

Execution time (ms)
Size of input array Baseline Optimising Hand Coded

10 4 1 0
50 14 1 1

100 26 1 1
500 120 3 3

1000 236 10 5
5000 1867 44 36

10000 2423 91 78
50000 16251 472 467

100000 29276 1030 900
500000 128681 4947 4734

1000000 256616 13232 12755
5000000 1256998 54580 51807

Table 6.2: Results for example program 2 (equation 6.2)

CHAPTER 6. RESULTS AND CONCLUSIONS 26

Figure 6.4: Graph of results for example program 2 (equation 6.2) Note the
logarithmic X-scale.

Execution time (ms)
Size of input array Baseline Optimising Hand Coded

10 14 1 0
50 71 1 1

100 150 2 1
500 745 9 3

1000 2136 18 5
5000 10890 84 33

10000 19165 165 72
50000 81894 909 418

100000 158676 1866 883
500000 773281 12982 4564

1000000 1539961 22895 12573
5000000 - 98473 49711

Table 6.3: Results for example program 3 (equation 6.3)

CHAPTER 6. RESULTS AND CONCLUSIONS 27

Figure 6.5: Graph of results for example program 3 (equation 6.3) Note the
logarithmic X-scale.

Execution time (ms)
Size of input array Optimising Hand Coded

500 9 3
1000 17 8
5000 80 36

10000 163 79
50000 911 422

100000 1880 846
500000 11535 4485

1000000 21905 13237
2000000 42310 20637
3000000 60403 30410
4000000 80140 39550
5000000 99448 48726

Table 6.4: Results for example program 3 (equation 6.3) using -g option

CHAPTER 6. RESULTS AND CONCLUSIONS 28

Execution time (ms)
Size of input array Optimising Hand Coded

500 6 2
1000 10 5
5000 41 21

10000 95 44
50000 528 267

100000 1079 549
500000 7744 3023

1000000 14279 7479
2000000 31763 14709
3000000 39038 21438
4000000 51270 27844
5000000 63582 33898

Table 6.5: Results for example program 3 (equation 6.3) using -O3 option

Figure 6.6: Graph of results for example program 3, comparing using -g and
-O3

CHAPTER 6. RESULTS AND CONCLUSIONS 29

function can be written over its input, rather then then being written into a
new piece of memory. This would produce reductions in memory usage, as
well as execution time through less allocation and deallocation of memory.

6.3 Conclusion

This thesis has covered the translation of point-free BMF code into an imper-
ative language, through two methodologies. The first was using some simple
rules relating to memory allocation and deallocation, which were simple to
implement but produced inefficient code. The second improves the perfor-
mance through the elimination of routing functions, that is functions that
only change the way data is addressed, not the values of the data. It has
been shown that using these methods to move the evaluations of these func-
tions to compile time, rather then evaluating them at run time, improves
the performance of the resulting programs, both in terms of execution time
and memory usage.

Appendix A

Example 1 Code

This chapter contains the code produced by the baseline compiler and the
optimising compiler, as well as the hand coded version, of the program given
in equation A.1. Note that the code for example 2, given in equation 6.2, is
similar to the code in example 3, and has been omitted.

(+ · (id, id)◦)∗ (A.1)

A.1 Baseline Compiler Output

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdlib.h>
#include <sys/time.h>

typedef struct _B_Int0
{

int var1;
} B_Int0;

typedef struct _B_Vector1
{

B_Int0 *var1;
int size;

} B_Vector1;

typedef struct _B_Tuple2
{

30

APPENDIX A. EXAMPLE 1 CODE 31

B_Int0 *var1;
B_Int0 *var2;

} B_Tuple2;

#define TRUE 1
#define true 1
#define false 0
#define FALSE 0

#define PRINT 0
//#define DEBUG

#ifdef DEBUG
#define dprint(x,y) printf(x,y)
#else
#define dprint(x,y)
#endif

/*
Format of input file:
first number an integer representing the number of entries in the file
next a number of doubles, equal to the above int.
*/

int main(int argv, char **argc)
{

long loop;
if(argv < 2)
{

printf("no argument found\n");
exit(-1);

}

FILE *fd = fopen (argc[1], "r");
if(fd == NULL)
{

printf("error opening input file");
exit(-1);

}
struct timeval starttime;
struct timeval endtime;
struct timezone dummy;

APPENDIX A. EXAMPLE 1 CODE 32

char* rinputfile;

fseek(fd, 0, SEEK_END);
long filesize = ftell(fd);
//printf("filesize: %li", filesize);

fseek(fd, 0, SEEK_SET);
rinputfile = (char *) malloc(filesize + 1);

int numread = fread(rinputfile, 1, filesize, fd);

rinputfile[filesize] = ’\0’;

//printf("read data: %i\n", numread);
//printf(rinputfile);
char* current;
char* point;

//long numEntries = strtol(rinputfile, ¤t, 10);
current = rinputfile;
//printf("numEntries: %li\n", numEntries);
B_Vector1* input;
input = (B_Vector1 *) malloc(sizeof(B_Vector1));
//input->var1 = (B_Int0*) malloc(sizeof(B_Int0) * numEntries);
//input->size = numEntries;
//long num = 0;

//for(num = 0; num < numEntries; num++)
//{
// input->var1[num].var1 = (int) strtod(current, &point);
// current = point;
// //printf("read: %f \n", i[num]);
// //printf(current);
// //printf("\n");
//}
B_Vector1 *output;
//gettimeofday(&starttime, &dummy);

long readnum1 = strtol(current, &point, 10);
current = point;
dprint("read in vector size %i\n", readnum1);
input->var1 =

(B_Int0 *)malloc(sizeof(B_Int0) * readnum1);

APPENDIX A. EXAMPLE 1 CODE 33

input->size = readnum1;
int loopip1;
for(loopip1 = 0; loopip1 < readnum1; loopip1++)
{
(&input->var1[loopip1])->var1 =

strtol(current, &point, 10);
current = point;
dprint("read in int %i\n", (&input->var1[loopip1])->var1);
}

printf("Starting...\n")
; gettimeofday(&starttime, &dummy);

/////////////////Start of Map
output = (B_Vector1 *) malloc(sizeof(B_Vector1));
output->size = input->size;
output->var1 =

(B_Int0 *) malloc (sizeof(B_Int0) * input->size);
B_Int0 *map1;
B_Int0 *mapo1;
int loop1;
for(loop1 = 0; loop1 < input->size; loop1++)
{
map1 = (&input->var1[loop1]);
B_Tuple2 *cmp11;
//////////// start of alltup template
cmp11 = (B_Tuple2 *)malloc (sizeof(B_Tuple2));

///////////Start of ID template

cmp11->var1 = (B_Int0*)malloc(sizeof(B_Int0));
cmp11->var1->var1 = (int)map1->var1;

/////////// End of ID
///////////Start of ID template

cmp11->var2 = (B_Int0*)malloc(sizeof(B_Int0));
cmp11->var2->var1 = (int)map1->var1;

/////////// End of ID
//////////////End of Alltup

/////////////// Start of binary op(+) template

APPENDIX A. EXAMPLE 1 CODE 34

mapo1 = (B_Int0 *) malloc(sizeof(B_Int0));
mapo1->var1 =

(cmp11->var1->var1) + (cmp11->var2->var1);

//////////// End of binary op (+) template
//////////// End of Comp

(&output->var1[loop1])->var1 = mapo1->var1;
free(mapo1);
}

//////////////////End of map

gettimeofday(&endtime, &dummy);
printf("\nFinished...\n");
long timeElapsed = ((endtime.tv_sec - starttime.tv_sec) *

1000000L) + (endtime.tv_usec - starttime.tv_usec);
printf("Time elapsed: %li\n", timeElapsed);
if(PRINT)
{
printf("[");
int prloop1;
for (prloop1 = 0; prloop1 < output->size; prloop1++)
{
printf(" ");

printf("%i", (&output->var1[prloop1])->var1);
printf("");
}
printf("]");
free(output);
}
}

A.2 Optimising Compiler Output

////example.bmf
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdlib.h>
#include <sys/time.h>

APPENDIX A. EXAMPLE 1 CODE 35

#define TRUE 1
#define true 1
#define false 0
#define FALSE 0

#define PRINT 0
//#define DEBUG

#ifdef DEBUG
#define dprint(x,y) printf(x,y)
#else
#define dprint(x,y)
#endif

typedef struct _Vint
{

int *contents;
int size;

} Vint;

typedef struct _Vfloat
{

float *contents;
int size;

} Vfloat;

typedef struct _Vdouble
{

double *contents;
int size;

} Vdouble;

typedef struct _Vbool
{

int *contents;
int size;

} Vbool;

typedef struct _Vvoid
{

void *contents;
int size;

APPENDIX A. EXAMPLE 1 CODE 36

} Vvoid;

int main(int argv, char **argc)
{

long loop;
long tempsize;
if(argv < 2)
{

printf("no argument found\n");
exit(-1);

}

FILE *fd = fopen (argc[1], "r");
if(fd == NULL)
{

printf("error opening input file");
exit(-1);

}
struct timeval starttime;
struct timeval endtime;
struct timezone dummy;

char* rinputfile;

fseek(fd, 0, SEEK_END);
long filesize = ftell(fd);
//printf("filesize: %li", filesize);

fseek(fd, 0, SEEK_SET);
rinputfile = (char *) malloc(filesize + 1);

int numread = fread(rinputfile, 1, filesize, fd);

rinputfile[filesize] = ’\0’;

//printf("read data: %i\n", numread);
//printf(rinputfile);
char* current;
char* point;

current = rinputfile;

Vint *var0 = (Vint *) malloc(sizeof(Vint));

APPENDIX A. EXAMPLE 1 CODE 37

Vint *var1 = (Vint *) malloc(sizeof(Vint));

int input0loop0;
tempsize = strtol(current, ¤t, 10);
((Vint *)var0)->size = tempsize;
((Vint *)var0)->contents =

(int *) malloc(sizeof(int) * tempsize);
for(input0loop0 = 0;

input0loop0 < ((Vint *)var0)->size; input0loop0++)
{
(var0)->contents[input0loop0] = strtol(current, ¤t, 10);
}

printf("Starting...\n");
gettimeofday(&starttime, &dummy);

////******B_comp
int mapLoop11;
for(mapLoop11 = 0;

mapLoop11 < ((Vint *)var0)->size; mapLoop11++)
{

////******B_alltup
////******B_id

////******B_id

}

((Vint *)var1)->size = ((Vint *)var0)->size;
((Vint *)var1)->contents =

(int *) malloc(sizeof(int) * ((Vint *)var0)->size);
int mapLoop21;
for(mapLoop21 = 0;

mapLoop21 < ((Vint *)var0)->size; mapLoop21++)
{
(var1)->contents[mapLoop21] =

(var0)->contents[mapLoop21] +
(var0)->contents[mapLoop21];

}
gettimeofday(&endtime, &dummy);
printf("\nFinished...\n");
long timeElapsed = ((endtime.tv_sec - starttime.tv_sec)

APPENDIX A. EXAMPLE 1 CODE 38

* 1000000L) + (endtime.tv_usec - starttime.tv_usec);
printf("Time elapsed: %li\n", timeElapsed);
if(PRINT)
{
printf("[");
int output0loop0;
for(output0loop0 = 0;

output0loop0 < ((Vint *)var1)->size; output0loop0++)
{
printf("%i\t", (var1)->contents[output0loop0]);
}
printf("]\n");
}

}

A.3 Hand Coded Program

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdlib.h>
#include <sys/time.h>

#define PRINT 0

int main(int argv, char **argc)
{

long loop;
long tempsize;
if(argv < 2)
{

printf("no argument found\n");
exit(-1);

}

FILE *fd = fopen (argc[1], "r");
if(fd == NULL)
{

printf("error opening input file");
exit(-1);

}
struct timeval starttime;

APPENDIX A. EXAMPLE 1 CODE 39

struct timeval endtime;
struct timezone dummy;

char* rinputfile;

fseek(fd, 0, SEEK_END);
long filesize = ftell(fd);
//printf("filesize: %li", filesize);

fseek(fd, 0, SEEK_SET);
rinputfile = (char *) malloc(filesize + 1);

int numread = fread(rinputfile, 1, filesize, fd);

rinputfile[filesize] = ’\0’;

//printf("read data: %i\n", numread);
//printf(rinputfile);
char* current;
char* point;

current = rinputfile;

int *input;
int *output;

int size = strtol(current, ¤t, 10);
int i;

input = (int *)malloc(sizeof(int) * size);

for(i = 0; i < size; i++)
{

input[i] = strtol(current, ¤t, 10);
}

printf("Starting...\n");
gettimeofday(&starttime, &dummy);

output = (int *)malloc(sizeof(int) * size);

for(i = 0; i < size; i++)
{

APPENDIX A. EXAMPLE 1 CODE 40

output[i] = input[i] + input[i];
}

gettimeofday(&endtime, &dummy);
printf("\nFinished...\n");
long timeElapsed =

((endtime.tv_sec - starttime.tv_sec) * 1000000L) +
(endtime.tv_usec - starttime.tv_usec);

printf("Time elapsed: %li\n", timeElapsed);

if(PRINT)
{

printf("[");
for(i = 0; i < size; i++)
{

printf("%i\t", output[i]);
}

}
free(output);
free(input);

}

Appendix B

Example 3 Code

This chapter contains the code produced by the baseline compiler and the
optimising compiler, as well as the hand coded version, of the program given
in equation B.1.

((+) · (π2 ·π2, (+) · (π1, π1 ·π2)◦)◦) ∗ ·distl · (id, distl · (id, iota)◦)◦ (B.1)

B.1 Baseline Compiler Output

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdlib.h>
#include <sys/time.h>

typedef struct _B_Int0
{

int var1;
} B_Int0;

typedef struct _B_Vector1
{

B_Int0 *var1;
int size;

} B_Vector1;

typedef struct _B_Tuple2
{

B_Int0 *var1;

41

APPENDIX B. EXAMPLE 3 CODE 42

B_Int0 *var2;
} B_Tuple2;

typedef struct _B_Tuple3
{

B_Int0 *var1;
B_Tuple2 *var2;

} B_Tuple3;

typedef struct _B_Vector4
{

B_Tuple3 *var1;
int size;

} B_Vector4;

typedef struct _B_Vector5
{

B_Tuple2 *var1;
int size;

} B_Vector5;

typedef struct _B_Tuple6
{

B_Int0 *var1;
B_Vector5 *var2;

} B_Tuple6;

typedef struct _B_Tuple7
{

B_Int0 *var1;
B_Vector1 *var2;

} B_Tuple7;

#define TRUE 1
#define true 1
#define false 0
#define FALSE 0

#define PRINT 0
//#define DEBUG

#ifdef DEBUG
#define dprint(x,y) printf(x,y)

APPENDIX B. EXAMPLE 3 CODE 43

#else
#define dprint(x,y)
#endif

/*
Format of input file:
first number an integer representing the number of entries in the file
next a number of doubles, equal to the above int.
*/

int main(int argv, char **argc)
{

long loop;
if(argv < 2)
{

printf("no argument found\n");
exit(-1);

}

FILE *fd = fopen (argc[1], "r");
if(fd == NULL)
{

printf("error opening input file");
exit(-1);

}
struct timeval starttime;
struct timeval endtime;
struct timezone dummy;

char* rinputfile;

fseek(fd, 0, SEEK_END);
long filesize = ftell(fd);
//printf("filesize: %li", filesize);

fseek(fd, 0, SEEK_SET);
rinputfile = (char *) malloc(filesize + 1);

int numread = fread(rinputfile, 1, filesize, fd);

rinputfile[filesize] = ’\0’;

//printf("read data: %i\n", numread);

APPENDIX B. EXAMPLE 3 CODE 44

//printf(rinputfile);
char* current;
char* point;

//long numEntries = strtol(rinputfile, ¤t, 10);
current = rinputfile;
//printf("numEntries: %li\n", numEntries);
B_Int0* input;
input = (B_Int0 *) malloc(sizeof(B_Int0));
//input->var1 = (B_Int0*) malloc(sizeof(B_Int0) * numEntries);
//input->size = numEntries;
//long num = 0;

//for(num = 0; num < numEntries; num++)
//{
// input->var1[num].var1 = (int) strtod(current, &point);
// current = point;
// //printf("read: %f \n", i[num]);
// //printf(current);
// //printf("\n");
//}
B_Vector1 *output;
//gettimeofday(&starttime, &dummy);

input->var1 = strtol(current, &point, 10);
current = point;
dprint("read in int %i\n", input->var1);
printf("Starting...\n")

; gettimeofday(&starttime, &dummy);
B_Vector4 *cmp1;
B_Tuple6 *cmp11;
//////////// start of alltup template
cmp11 = (B_Tuple6 *)malloc (sizeof(B_Tuple6));

///////////Start of ID template

cmp11->var1 = (B_Int0*)malloc(sizeof(B_Int0));
cmp11->var1->var1 = (int)input->var1;

/////////// End of ID
B_Tuple7 *cmp2111;
//////////// start of alltup template
cmp2111 = (B_Tuple7 *)malloc (sizeof(B_Tuple7));

APPENDIX B. EXAMPLE 3 CODE 45

///////////Start of ID template

cmp2111->var1 = (B_Int0*)malloc(sizeof(B_Int0));
cmp2111->var1->var1 = (int)input->var1;

/////////// End of ID
cmp2111->var2 = (B_Vector1 *) malloc(sizeof(B_Vector1));
cmp2111->var2->size = input->var1;
cmp2111->var2->var1 =

(B_Int0 *)malloc(sizeof(B_Int0) * cmp2111->var2->size);
int loopiota212111;
for(loopiota212111 =

0; loopiota212111 < cmp2111->var2->size; loopiota212111++)
{

cmp2111->var2->var1[loopiota212111].var1 = loopiota212111;
}//////////////End of Alltup

cmp11->var2 = (B_Vector5 *) malloc(sizeof(B_Vector5));
cmp11->var2->size = cmp2111->var2->size;
cmp11->var2->var1 =

(B_Tuple2 *) malloc(sizeof(B_Tuple2) * cmp2111->var2->size);
int loop22111;
for(loop22111 = 0;

loop22111 < cmp2111->var2->size; loop22111++)
{
(&cmp11->var2->var1[loop22111])->var1 =
(B_Int0 *) malloc(sizeof(B_Int0));
(&cmp11->var2->var1[loop22111])->var1->var1 =
cmp2111->var1->var1;
(&cmp11->var2->var1[loop22111])->var2 =
(B_Int0 *) malloc(sizeof(B_Int0));
(&cmp11->var2->var1[loop22111])->var2->var1 =
(&cmp2111->var2->var1[loop22111])->var1;
}

//////////// End of Comp

//////////////End of Alltup

cmp1 = (B_Vector4 *) malloc(sizeof(B_Vector4));
cmp1->size = cmp11->var2->size;
cmp1->var1 =

APPENDIX B. EXAMPLE 3 CODE 46

(B_Tuple3 *) malloc(sizeof(B_Tuple3) * cmp11->var2->size);
int loop211;
for(loop211 = 0; loop211 < cmp11->var2->size; loop211++)
{
(&cmp1->var1[loop211])->var1 =
(B_Int0 *) malloc(sizeof(B_Int0));
(&cmp1->var1[loop211])->var1->var1 =
cmp11->var1->var1;
(&cmp1->var1[loop211])->var2 =
(B_Tuple2 *) malloc(sizeof(B_Tuple2));
(&cmp1->var1[loop211])->var2->var1 =
(B_Int0 *) malloc(sizeof(B_Int0));
(&cmp1->var1[loop211])->var2->var2 =
(B_Int0 *) malloc(sizeof(B_Int0));
(&cmp1->var1[loop211])->var2->var1->var1 =
(&cmp11->var2->var1[loop211])->var1->var1;
(&cmp1->var1[loop211])->var2->var2->var1 =
(&cmp11->var2->var1[loop211])->var2->var1;
}

//////////// End of Comp

/////////////////Start of Map
output = (B_Vector1 *) malloc(sizeof(B_Vector1));
output->size = cmp1->size;
output->var1 = (B_Int0 *) malloc (sizeof(B_Int0) * cmp1->size);
B_Tuple3 *map21;
B_Int0 *mapo21;
int loop21;
for(loop21 = 0; loop21 < cmp1->size; loop21++)
{
map21 = (&cmp1->var1[loop21]);
B_Tuple2 *cmp121;
//////////// start of alltup template
cmp121 = (B_Tuple2 *)malloc (sizeof(B_Tuple2));

B_Tuple2 *cmp11121;
cmp11121 = (B_Tuple2 *) malloc(sizeof(B_Tuple2));
cmp11121->var1 = (B_Int0 *) malloc(sizeof(B_Int0));
cmp11121->var2 = (B_Int0 *) malloc(sizeof(B_Int0));
cmp11121->var1->var1 = map21->var2->var1->var1;
cmp11121->var2->var1 = map21->var2->var2->var1;
cmp121->var1 = (B_Int0 *) malloc(sizeof(B_Int0));

APPENDIX B. EXAMPLE 3 CODE 47

cmp121->var1->var1 = cmp11121->var2->var1;
//////////// End of Comp

B_Tuple2 *cmp21121;
//////////// start of alltup template
cmp21121 = (B_Tuple2 *)malloc (sizeof(B_Tuple2));

cmp21121->var1 = (B_Int0 *) malloc(sizeof(B_Int0));
cmp21121->var1->var1 = map21->var1->var1;
B_Tuple2 *cmp2121121;
cmp2121121 = (B_Tuple2 *) malloc(sizeof(B_Tuple2));
cmp2121121->var1 = (B_Int0 *) malloc(sizeof(B_Int0));
cmp2121121->var2 = (B_Int0 *) malloc(sizeof(B_Int0));
cmp2121121->var1->var1 = map21->var2->var1->var1;
cmp2121121->var2->var1 = map21->var2->var2->var1;
cmp21121->var2 = (B_Int0 *) malloc(sizeof(B_Int0));
cmp21121->var2->var1 = cmp2121121->var1->var1;

//////////// End of Comp

//////////////End of Alltup

/////////////// Start of binary op(+) template

cmp121->var2 = (B_Int0 *) malloc(sizeof(B_Int0));
cmp121->var2->var1 =

(cmp21121->var1->var1) + (cmp21121->var2->var1);

//////////// End of binary op (+) template
//////////// End of Comp

//////////////End of Alltup

/////////////// Start of binary op(+) template

mapo21 = (B_Int0 *) malloc(sizeof(B_Int0));
mapo21->var1 =

(cmp121->var1->var1) + (cmp121->var2->var1);

//////////// End of binary op (+) template
//////////// End of Comp

(&output->var1[loop21])->var1 = mapo21->var1;
free(mapo21);

APPENDIX B. EXAMPLE 3 CODE 48

}

//////////////////End of map

//////////// End of Comp

gettimeofday(&endtime, &dummy);
printf("\nFinished...\n");
long timeElapsed = ((endtime.tv_sec - starttime.tv_sec) *

1000000L) + (endtime.tv_usec - starttime.tv_usec);
printf("Time elapsed: %li\n", timeElapsed);
if(PRINT)
{
printf("[");
int prloop1;
for (prloop1 = 0; prloop1 < output->size; prloop1++)
{
printf(" ");

printf("%i", (&output->var1[prloop1])->var1);
printf("");
}
printf("]");
free(output);
}
}

B.2 Optimising Compiler Output

////example3.bmf
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdlib.h>
#include <sys/time.h>

#define TRUE 1
#define true 1
#define false 0
#define FALSE 0

APPENDIX B. EXAMPLE 3 CODE 49

#define PRINT 0
//#define DEBUG

#ifdef DEBUG
#define dprint(x,y) printf(x,y)
#else
#define dprint(x,y)
#endif

typedef struct _Vint
{

int *contents;
int size;

} Vint;

typedef struct _Vfloat
{

float *contents;
int size;

} Vfloat;

typedef struct _Vdouble
{

double *contents;
int size;

} Vdouble;

typedef struct _Vbool
{

int *contents;
int size;

} Vbool;

typedef struct _Vvoid
{

void *contents;
int size;

} Vvoid;

int main(int argv, char **argc)
{

long loop;
long tempsize;
if(argv < 2)

APPENDIX B. EXAMPLE 3 CODE 50

{
printf("no argument found\n");
exit(-1);

}

FILE *fd = fopen (argc[1], "r");
if(fd == NULL)
{

printf("error opening input file");
exit(-1);

}
struct timeval starttime;
struct timeval endtime;
struct timezone dummy;

char* rinputfile;

fseek(fd, 0, SEEK_END);
long filesize = ftell(fd);
//printf("filesize: %li", filesize);

fseek(fd, 0, SEEK_SET);
rinputfile = (char *) malloc(filesize + 1);

int numread = fread(rinputfile, 1, filesize, fd);

rinputfile[filesize] = ’\0’;

//printf("read data: %i\n", numread);
//printf(rinputfile);
char* current;
char* point;

current = rinputfile;

int var0;
Vint *var1 = (Vint *) malloc(sizeof(Vint));
Vint *var2 = (Vint *) malloc(sizeof(Vint));
Vint *var3 = (Vint *) malloc(sizeof(Vint));

var0 = strtol(current, ¤t, 10);

APPENDIX B. EXAMPLE 3 CODE 51

printf("Starting...\n");
gettimeofday(&starttime, &dummy);

////******B_comp
////******B_comp
////******B_alltup
////******B_id

////******B_comp
////******B_alltup
////******B_id

((Vint *)var1)->size = var0;

//distl

//distl

((Vint *)var2)->size = ((Vvoid *)var1)->size;
((Vint *)var2)->contents =

(int *) malloc(sizeof(int) * ((Vvoid *)var1)->size);
((Vint *)var3)->size = ((Vvoid *)var1)->size;
((Vint *)var3)->contents =

(int *) malloc(sizeof(int) * ((Vvoid *)var1)->size);
int mapLoop21;
for(mapLoop21 = 0;

mapLoop21 < ((Vvoid *)var1)->size; mapLoop21++)
{

////******B_comp
////******B_alltup
////******B_comp

//addr

//addr

////******B_comp
////******B_alltup

//addr

////******B_comp
//addr

APPENDIX B. EXAMPLE 3 CODE 52

//addr

(var2)->contents[mapLoop21] = var0 + var0;

(var3)->contents[mapLoop21] =
mapLoop21 + (var2)->contents[mapLoop21];

}
gettimeofday(&endtime, &dummy);
printf("\nFinished...\n");
long timeElapsed = ((endtime.tv_sec - starttime.tv_sec) *

1000000L) + (endtime.tv_usec - starttime.tv_usec);
printf("Time elapsed: %li\n", timeElapsed);
if(PRINT)
{
printf("[");
int output0loop0;
for(output0loop0 = 0;

output0loop0 < ((Vint *)var3)->size; output0loop0++)
{
printf("%i\t", (var3)->contents[output0loop0]);
}
printf("]\n");
}

}

B.3 Hand Coded Program

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdlib.h>
#include <sys/time.h>

#define PRINT 0

int main(int argv, char **argc)
{

long loop;
long tempsize;
if(argv < 2)

APPENDIX B. EXAMPLE 3 CODE 53

{
printf("no argument found\n");
exit(-1);

}

FILE *fd = fopen (argc[1], "r");
if(fd == NULL)
{

printf("error opening input file");
exit(-1);

}
struct timeval starttime;
struct timeval endtime;
struct timezone dummy;

char* rinputfile;

fseek(fd, 0, SEEK_END);
long filesize = ftell(fd);
//printf("filesize: %li", filesize);

fseek(fd, 0, SEEK_SET);
rinputfile = (char *) malloc(filesize + 1);

int numread = fread(rinputfile, 1, filesize, fd);

rinputfile[filesize] = ’\0’;

//printf("read data: %i\n", numread);
//printf(rinputfile);
char* current;
char* point;

current = rinputfile;

int input;
int *output;

int i;

input = strtol(current, ¤t, 10);

APPENDIX B. EXAMPLE 3 CODE 54

printf("Starting...\n");
gettimeofday(&starttime, &dummy);
output = (int *)malloc(sizeof(int) * input);

for(i = 0; i < input; i++)
{

output[i] = input + input + i;
}

gettimeofday(&endtime, &dummy);
printf("\nFinished...\n");
long timeElapsed =

((endtime.tv_sec - starttime.tv_sec) * 1000000L) +
(endtime.tv_usec - starttime.tv_usec);

printf("Time elapsed: %li\n", timeElapsed);

if(PRINT)
{

printf("[");
for(i = 0; i < input; i++)
{

printf("%i\t", output[i]);
}

}
free(output);

}

Bibliography

[Ale04] Brad Alexander. Automated transformation of bmf programs. In
Proceedings of the 1st International Workshop on Object Systems
and Software Architectures, pages 11–14, 2004.

[Ale05] Brad Alexander. Compilation of Parallel applications via auto-
mated transformation of BMF Progams. PhD thesis, School of
Computer Science, University of Adelaide, 2005.

[Bac78] John Backus. Can programming be liberated from the von neu-
mann style? a functional style and its algebra of programs. Com-
munications of the ACM, 21(8):613 – 641, August 1978.

[BdM96] R. Bird and O. de Moor. The Algebra of Programming. Prentice
Hall, 1996.

[Bir87] Richard Bird. A calculus of functions for program derivation.
Technical Report 64, Programming Research Group, Oxford Uni-
versity, 1987.

[HB85] Paul Hudak and Adrienne Bloss. The aggregate update problem
in functional programming systems. In POPL ’85: Proceedings
of the 12th ACM SIGACT-SIGPLAN symposium on Principles
of programming languages, pages 300–314, New York, NY, USA,
1985. ACM Press.

[JHH+93] Simon L. Peyton Jones, Cordelia V. Hall, Kevin Hammond, Will
Partain, and Philip Wadler. The glasgow haskell compiler: a
technical overview. In Proc. UK Joint Framework for Information
Technology (JFIT) Technical Conference, 93.

[Mee86] Lambert Meertens. Algorithmics — towards programming as a
mathematical activity. In Proceedings of the CWI Symposium on
Mathematics and Computer Science, pages 289–334, 1986.

[WB94] Clifford Walinsky and Deb Banerjee. A Data-Parallel FP Com-
piler. Journal of Parallel and Distributed Computing, 22:138–153,
1994.

55

