
A Simple Programming Model for New-Generation
Hardware

Brad Alexander Andrew Wendelborn∗

January 3, 2006

Abstract

A large abstraction gap is emerging between new highly parallel hardware architectures
and the von-Neumann model that underpins most software. Better compiler technologies or
new programming models are needed to bridge this gap. In this paper, we propose a software
architecture for an implementation of a compiler mapping a simple functional programming
language to highly parallel FPGA hardware.

1 Introduction

At their core, most programming languages present programmers with the abstract model of a
von-Neumann machine. This model is simple for the programmer and, historically at least, has
mapped well to commodity hardware. However, in recent times, in order to achieve rapid growth
in processing speed, hardware has evolved away from the von-Neumann model. Today, the simple
model that programmers see is a fiction maintained by a combination of sophisticated compilers
and extraordinarily complex and highly-tuned hardware. Unfortunately, this fiction is becoming
increasingly difficult to maintain on the hardware side. It is now clear that current techniques,
such as deep pipelining, dynamic out-of-order issue, and aggressive caching, will not be enough
to sustain rapid growth in processor speed in years to come[1, 11].

In future, rapid increases in processing speed will have to come from different approaches to
hardware design. A number of new, highly parallel, hardware designs have been posited[4, 13,
6]. These general-purpose designs can deliver substantially better performance than conventional
architectures.

Another interesting approach to increasing processing speed is to specialise the hardware ar-
chitecture to the application at hand. Inexpensive Field-Programmable-Gate-Array’s (FPGA’s)
combined with sophisticated tools and libraries to abstract from details of specifying, and optimis-
ing, low-level functionality and layout[5, 8, 12, 3] make such specialisation increasingly acces-
sible. It is this approach, applied to the targetting of high-performance applications to hardware,
that we canvass in this article.

∗Department of Computer Science, University of Adelaide, Adelaide 5005, Australia. Phone: +61 8 303-5681,
E-mail: brad@cs.adelaide.edu.au, andrew@cs.adelaide.edu.au

1

1.1 Our approach

This article presents a software architecture for automatically translating programs, written in a
simple functional programming language, to FPGA hardware. The source language, Adl, abstracts
over almost all aspects of parallelism and communications while still being general enough to
easily express a broad range of applications. The novelty of our approach lies in our use of point-
free code, a highly transformable notation with explicit communication, to bridge the wide gap
between the source language and the concrete notation used to target the FPGA.

It should be noted that the core, front-end, components of this architecture are taken from
an existing implementation targetting distributed parallel machines described in[2]. The architec-
ture proposed in this article refines the optimisation stage of this implementation and outlines the
structure of a new back-end.

We start by giving a short overview of our architecture and follow with a description of each
of its parts.

2 Architectural Overview

Figure 1 illustrates the software architecture for the compiler described in this work. The boxes
represent stages in the compilation process. The bold boxes denote stages that have an existing
implementation1. The dashed lines in the diagram represent programming interfaces. The heavy
dashed line represents the, already implemented, application programming interface. The labels
on each arc in the diagram represent programming notations. The internal interfaces of the system
are dominated by point-free code. The choice of point-free form is, in part, due to its innate
transformability and, in part, due to its support for parallelism and explicit communication.

In the following, we describe each stage of the architecture in turn. Starting with the source
language, Adl.

3 Adl

Adl is a small strict functional language designed, primarily, for writing parallel numerical appli-
cations. Parallelism in Adl is expressed through operations on vectors including,map, reduce
andscan . The functional model was chosen to avoid artificial temporal dependencies between
operations, which can obscure the meaning of the program and limit scope for transformation.

To illustrate what Adl code looks like, figure 2 shows a short program that adds two to every
element of a nested input vector by the use of nestedmap functions. Themap operation applies
the function in its first argument, in parallel, to every element in the vector in its second argument.
As can be seen from the example, vectors can be nested. Adl permits arbitrary nesting of vectors,
and tuples, its other aggregate structure.

As well as the features above, Adl also supports vector indexing, which supports arbitrary
communication, and dynamically bounded iteration. The current implementation of Adl does not

1The top two bold boxes have been implemented by us and the bottom box, hardware mapping, is vendor software
from Xilinx corp. http://www.xilinx.com/

Optimisation

Refinement

Shape Propagation

Control-dataflow
graph

Translation

Point-free
code

Adl

Application interface

Module Composition
Interface

Modules +
Interfaces

Rerfinement
interfaceValid

refinement
rules.

Shape
interface

Shape
information

Hardware Mapping

Point-free
code

Point-free
code

Figure 1: Overview of a software architecture for mapping Adl into hardware. Programming
interfaces are denoted with dashed lines. The heavy dashed line denotes the existing applications
programming interface.

main a:vof vof int :=
let

f x :=
let

g y := y + 2
in

map (g,x)
endlet

in
map (f,a)

endlet

Figure 2: An Adl program that adds two to every element of a nested input vector.

support recursion2.
Adl’s functional model and the nature of its parallel operations combine to avoid issues of

interference, deadlock, and starvation that face programmer in settings where the expression of
parallelism is more explicit. The reader is referred to [2] for a further introduction to Adl language.
Next, we describe the components of our software architecture, starting with the translator.

4 The Translator

The translator converts Adl code to point-free code. Point-free code cannot contain variables as a
means to store temporary values. Without the support of an implicit store, data must be explicitly
routed between operations. A primary task of the translator is to produce code that ensures that
data is routed to where it needs to be. In performing this task, the translator is very conservative. It
routes all data that was originally in the scope of each operation in the Adl source to the doorstep
of the corresponding operation in the point-free code. In most cases, not all of this data is required.
It is the task of the next stage, the optimiser, to reduce this flow of redundant data.

5 The Optimiser

The optimiser systematically applies rewrite rules to the point-free code produced by the translator
to produce code which has been shown, in our previous experiments, to be of comparable effi-
ciency to hand-written point-free code. The rewrite rules are semantics-preserving which means
that at every stage of the optimisation process we have semantically valid program.

Point-free code does not lend itself to the complex global analyses often found in traditional
approaches to program optimisation. Instead, rewrite rules typically have only a very localised
impact. Global changes are wrought by applying rules in a manner that propagates changes, in
waves, through the whole program. In our optimiser, code which expresses the precise data needs
of the latter part of the program is propagated back toward the start of the program, leaving more
efficient code in its wake.

The biggest problem to overcome in defining the optimisation process is the great diversity
of code to be handled. It is impossible to collate enough rewrite rules to apply, directly, to the
variations of code that occur. The approach we use is to have a very small number of high-
impact rules which can significantly increase the efficiency of the program where they are applied.
These high-impact rules are only rarely applicable to unprocessed code so we apply sets of simple
normalisation rules to shape the code to normal forms where high-impact rules can be applied. In
other words, we change the code to fit our rules.

The benefit of our approach is that we achieve effective optimisation without the use complex
rules or difficult analyses. The trade-off is the extra compute-time required to perform normalisa-
tion. We are of the opinion that, for most numerically intensive applications, this trade-off is well
worthwhile.

2Though we leave the way open for the introduction of recursion in a future version of the language we have not
found this restriction an impediment in the range of applications we have written so far.

5.1 Module composition

The optimiser is made up of modules in the form of sets of rules. Most modules are dedicated
to some form of normalisation3. These modules are reused quite heavily in different parts of the
optimiser.

Though this heavy reuse is a very positive outcome, it is tempered by the occasional error
arising from incompatibilities in the grammars produced by the normalisation modules and the
grammars expected by subsequently applied transformation modules. Without automated check-
ing for compatibility between modules, such errors are difficult to track down and remedy. One
part of our proposed architecture is the formalisation of interfaces to our modules and the intro-
duction of static checking for compatibility4 of grammars. We envisage that the development of
interfaces will lead to a system that is much easier, and safer, to reconfigure by changing the way
modules are composed5. An ability to reconfigure the system is valuable because, in our experi-
ence, optimisation is an open-ended process, where new applications can expose new opportunities
for improvement. Ultimately, we plan to develop a formal interface for such reconfiguration such
as that shown on the top-left of figure 1.

Our optimiser produces efficient point-free code with explicit communication between all op-
erations. Some of this communication is expressed using general-purpose operations which are
quite demanding of hardware. A stage of refinement to specialise these operations to a more
efficient form is outlined next.

6 Refinement

The optimisation process produces efficient point-free code given the information that is available
in the source program. One thing that the optimiser does to achieve this outcome is collapse mul-
tiple invocations of vector indexing functions into a single bulk-communications function called
select.

Parallel versions of general communications operations, analogous toselect, have worked ef-
ficiently on large-scale distributed architectures[9]. Unfortunately, the scalable, dynamic parallel
access required byselect is more difficult to implement within the constrained environment of an
FPGA. The proposed refinement stage of the compiler provides a partial remedy to this problem
by substituting more specialised communications operations forselect. This substitution process
is driven by refinement rules indicating where such substitution is allowable, given the user user-
supplied assumptions about input data. The refinement stage of the compiler will produce point
free code with specialised communication constructs inserted where possible. This code contains
no information about the size of any vectors that it operates on. Such information needs to be em-
bedded in the code before it can be translated to hardware. We describe this stage of compilation,
called Shape Propagation, next.

3Examples of this include associating all function compositions to the left or right, minimising the length of com-
position sequences and removing redundant identity functions.

4Static checking of grammar interfaces in compilation systems has been used before, in a different setting and on a
smaller scale in [7].

5Also note, that because each module consists of semantics-preserving rewrite rules, such reconfiguration cannot
cause the optimiser to start producing incorrect programs.

(). id ,

2

id
+

2

id
+

2

id
+

2

id
+

2

id
+

)*)*2((+

Figure 3: The code from figure 2 specialised with shape information of(2, [3, 2]) for the input
vector.

7 Shape Propagation

Shape propagation takes information about the scale of vector data entering the point-free program
and transmits this information through the point-free program. The shape information consists of
the length of the input vector, or, in the case of nested vectors, a pair with the first element being the
number of sub-vectors and the second element being a vector of shapes of sub-vectors. The result
of shape propagation is a graph of individual operations and the communications links between
them.

Figure 3 shows such a graph for the Adl program from figure 2, after propagation of the shape
of a very small nested input vector. It is worth noting that Shape propagation a specialisation of
the more general concept of Shape inference[10].

The graph produced by shape propagation still needs substantial translation to be mapped into
hardware. We describe this stage next.

8 Mapping to Parallel Hardware

We have chosen to target our language to the moderately high-level notation of Control/Data Flow
Graphs (CDFG’s)6. The CDFG’s we generate will be fed into tools, developed by Xilinx, for
mapping to the FPGA. These tools will deal with most low-level details of hardware including,

6Another viable option is the Caltrop Actor Language (CAL)[8]. CAL allows operations to be expressed as actors.
Actors can encapsulate internal state and can communicate with each other via explicit input and output ports. This
framework is sufficient to capture the operations expressed in our point free code but, because our operations are purely
functional, we do not have any a-priori need for internal state. If the maintenance of internal state exacts a penalty in
terms of runtime performance then it is desirable to opt for a less powerful notation such as CDFG’s.

the types of components to use and layout, leaving us free to concentrate on encoding operations
and communications.

The target hardware platform is the Xilinx XUP Virtex II Pro Development System7. We
expect to implement the constructs in our point-free code incrementally, starting with simple el-
ements, of the type shown in figure 3, and working our way toward more complex constructs.
We expect to find the implementation of constructs supporting random access to vector elements
especially interesting.

9 Summary

A large gap is emerging between new highly parallel hardware architectures and the von Neumann
model currently used to program them. Better compiler technologies or new programming models
are needed to bridge this gap. We described a software architecture for an implementation of
a programming model which provides generality and ease of use to the programmer whilst still
allowing for efficient and effective targetting to an FPGA platform. The key to this process is
the transformability of the point-free intermediate notation used in this implementation and the
freedom it provides in the design of architecture components.

Acknowledgments We would like to thank Rob Esser and Xilinx for their invaluable guidance
on the proposed research.

References

[1] Vikas Agarwal, M. S. Hrishikesh, Stephen W. Keckler, and Doug Burger. Clock rate versus
IPC: the end of the road for conventional microarchitectures. InISCA, pages 248–259, 2000.

[2] B. Alexander and A. Wendelborn. Automated transformation of BMF programs. InThe
First International Workshop on Object Systems and Software Architectures., pages 133–
141, 2004.

[3] W. Böhm, J. Hammes, B. Draper, M. Chawathe, C. Ross, R. Rinker, and W. Najjar. Mapping
a single assignment programming language to reconfigurable systems.J. Supercomputing.,
21(2):117–130, 2002.

[4] Doug Burger, Stephen W. Keckler, Kathryn S. McKinley, Mike Dahlin, Lizy K. John,
Calvin Lin, Charles R. Moore, James Burrill, Robert G. McDonald, William Yoder, and the
TRIPS Team. Scaling to the end of silicon with edge architectures.Computer, 37(7):44–55,
2004.

[5] Katherine Compton and Scott Hauck. Reconfigurable computing: a survey of systems and
software.ACM Comput. Surv., 34(2):171–210, 2002.

7See:http://www.xilinx.com/univ/xupv2p.html .

[6] W. Dally and P. Hanrahan. Merrimac: Supercomputing with streams. InSupercomputing
’03, 2003.

[7] Merijn de Jonge and Joost Visser. Grammars as contracts.Lecture Notes in Computer
Science, 2177, 2001.

[8] Johan Eker and Jrn W. Janneck. An introduction to the caltrop actor language (whitepaper).
URL: http://embedded.eecs.berkeley.edu/caltrop/docs/CaltropWhitePaper.pdf.

[9] Jonathan M.D. Hill and David B. Skillicorn. Lessons learned from implementing BSP.Fu-
ture Gener. Comput. Syst., 13(4-5):327–335, 1998.

[10] C. Barry Jay.Research Directions in Parallel Functional Programming, K. Hammond and
G.J. Michaelson (eds), chapter 9: Shaping Distributions, pages 219–232. Springer-Verlag,
1999.

[11] Kunle Olukotun and Lance Hammond. The future of microprocessors.Queue, 3(7):26–29,
2005.

[12] Roger M.A. Peel and Wong Han Feng. Using csp to verify aspects of an occam-to-fpga
compiler. In Ian East, Jeremy Martin, Peter Welch, David Duce, and Mark Green, editors,
Communicating Process Architectures 2004. IOS Press, 2004.

[13] Steven Swanson, Ken Michelson, Andrew Schwerin, and Mark Oskin. Dataflow: The road
less complex. InIn Workshop on Complexity-effective Design (WCED) in conjunction with
the 30th Annual International Symposium on Computer Architecture (ISCA), 2003.

