
Genetic Programming to Generate Better
Compilers

Brad Alexander and Michael Gratton

Alexander/Gratton

Outline

• Background and Context
• Current Approaches
• Experimental Aim
• Design Choices
• Experimental Setup
• Experimental Results
• Conclusions/Future Work

Alexander/Gratton

Background

• This talk is about making computers
write programs for themselves.
– Using Genetic Programming (GP)

• This is not new
– GP is nearly 20 years old.

• The new part is what we do with GP
– We get the computer to program a tricky

part of a compiler.
– This task is usually challenging for

humans.

• What is a compiler?

Alexander/Gratton

Background: Programs

• Computing is the art of creating software to do new
things.

• Software is generally expressed as a program e.g.

#include <stdio.h>
int main(){
 printf(“Hello World”);
}

Alexander/Gratton

Background: Machine code

• Unfortunately computers can’t directly understand our
programs.

• They only understand machine code.
– Sequences of instructions expressed as ones an zeros.

#include <stdio.h>
int main(){
 printf(“Hello World”);
}

Alexander/Gratton

Background: Compilers

• Compilers are programs that translate our programs
into machine code that a computer can understand.

#include <stdio.h>
int main(){
 printf(“Hello World”);
}

Alexander/Gratton

Anatomy of a compiler

• A basic compiler contains two main parts.
– A Front End and a Back End

Alexander/Gratton

Anatomy of a Compiler

• The front end takes program code and converts it to
an intermediate code.

• The back end takes intermediate code and converts it
to machine code.

Alexander/Gratton

Anatomy of a Compiler

• Unfortunately, for certain applications compilers
consisting only of a front and back end will produce
slow code.

Alexander/Gratton

Background: The Optimiser

• An Optimiser can be used to transform intermediate
code to make it more efficient:

Alexander/Gratton

Background: Optimiser Internals

• Optimisers are not monolithic
– Instead, they often consist of 20 or more self contained

optimisation phases.

Alexander/Gratton

Background: Optimiser Internals(2)

• Intermediate code is pushed through these phases
one after the other.

Alexander/Gratton

Optimising the Optimiser

• How do we know that our optimiser’s sequence of
phases is the best for our applications?
– We don’t…

• So why not automatically adapt the optimiser to the
set of programs we use?

• Problem:
– The design space is huge and chaotic.
– however, can search this space using heuristic methods.

Problem

Alexander/Gratton

Current Approaches

• Phase seqencing

Loop Invariant Hoisting

Common Subexpression Elimination

Dead Code Elimination

Block Reordering

Current Approaches

Alexander/Gratton

Current Approaches

• Phase seqencing

Loop Invariant Hoisting

Common Subexpression Elimination

Dead Code Elimination

Block Reordering

Current Approaches

Alexander/Gratton

Current Approaches

• Phase seqencing

Loop Invariant Hoisting

Common Subexpression Elimination

Dead Code Elimination

Block Reordering

Current Approaches

Alexander/Gratton

Current Approaches

• Phase seqencing

Loop Invariant Hoisting

Common Subexpression Elimination

Dead Code Elimination

Block Reordering

Current Approaches

Alexander/Gratton

Current Approaches

• Phase seqencing

Loop Invariant Hoisting

Common Subexpression Elimination

Dead Code Elimination

Block Reordering

Current Approaches

Alexander/Gratton

Current Approaches

• Parameter Tuning

Loop unroll factor:
Loop tiling factor:

3

2

Current Approaches

loop tiling/unrolling phase

Alexander/Gratton

Current Approaches

• Parameter Tuning

Loop unroll factor:
Loop tiling factor:

4

3

Current Approaches

Loop unroll factor:
Loop tiling factor:

4

3

loop tiling/unrolling phase

Alexander/Gratton

Current Approaches

• Evolution of Control Code

Register Allocation

Current Approaches

Alexander/Gratton

Current Approaches

• Evolution of Control Code

if(reg_size > &
spill_cost …)

Register Allocation

Current Approaches

Alexander/Gratton

Current Approaches

• Evolution of Control Code

Register Allocation if(reg_size > &
spill_cost …)

Current Approaches

Alexander/Gratton

The Story So Far

• Thus far we have shown the following:
– Programs need compilers.
– Compilers are made of front-ends, back-ends and optmisers.
– Optimisers help compilers produce fast machine-code.
– Optimisers have many stages.
– There have been successful experiments in using computers

to automatically:
• Reorder optimisation phases.
• Control optimisation phases using parameters

Alexander/Gratton

What’s Missing?

• All current work assumes that optimisation phases
are pre-existing and atomic or parametric.

• Currently no work on the construction of these
phases from smaller building blocks.

• Our Research Question:
– Can we use Genetic Programming (GP) to build a non trivial

optimisation phase?

• From our experiments the answer is a clear yes!
– But as in all GP exercises, careful design is required.

Experimental Aim

Alexander/Gratton

Experimental Design Choices

• In designing an experiment we need to make the
following design choices:
– Application Domain
– Intermediate Language for candidate optimisers to

transform.
– Raw ingredients to build the candidate optimisation phases

out of.
– Choosing a GP Framework
– Choosing an Evaluation Function.

• I cover each of these in turn.

Alexander/Gratton

Choose an Application Domain

• The optimisation phase we used is part of a compiler
mapping a simple language, Adl, to programmable
hardware.

• The optimisation phase we want to build is
responsible for reducing the amount of data flowing
through intermediate code.
– Less data == Less wires!!

• This is a parallel high-performance application so we
have more to gain from optimisation than we would in
most application domains.
– But optimisers for parallel programs harder to build.

Alexander/Gratton

Choose an Intermediate Langauge

• The language used to express intermediate code is
important.
– We chose Point-Free-Form (functional programming without

variables)

• Three advantages:
1. Point-Free-Form is easy to transform -

– makes it easier for our compiler to make progress.
2. Point-Free-Form has explicit flows of data between

operations.
– We can see what we’re optimising.

3. Point-Free-Form is naturally parallel.
– Easy to map to a parallel machine.

Alexander/Gratton

Choose Ingredients

• As much as we’d like, we can’t just say to our computer:
 “Build Me an Optimisation Phase!”
– GP wouldn’t know where to start!

• We need to provide a carefully selected set of ingredients.
• For this application our ingredients are:

1. Small sets of rewrite rules for changing point-free code.
2. Strategies for applying these rules to different parts of point-free

programs.
• We borrowed these ingredients from a hand-written optimiser.
• Both are expressed in Stratego

– An amazing language for writing optimisers and other program
transformers using rewriting.

Alexander/Gratton

Ingredients: Choosing Rewriting

There is no great writing, only great rewriting.
(Louis Brandeis)

• Rewriting is the transformation of system through a series of
small local changes.

• Rewriting is a great basis for program transformation.
– If your rewrite rules are correct then you cannot use them to

produce an incorrect program.
– This gives you a lot of freedom to experiment with how you apply

these rules without worrying about breaking the user’s program.
• In our experiments we keep the rewriting rules fixed

– The GP algorithm experiments with how these rules are applied.
• The how is important - rewriting systems can be hard to control..

Alexander/Gratton

An Aside: The Importance of Rewriting

• The most beautiful and
important things we know are
rewriting systems or are
products of rewriting systems:
– Mathematics
– Fractals
– Nuclear Physics
– Chemistry
– Life….

• Rewriting systems are often
chaotic and hard to control but..

• Rewriting works!

Alexander/Gratton

Choosing a GP Framework

• The genetic programming framework is responsible
for:
– Generating an initial population of candiate optimisers

(individuals).
– and then, over many generations:

• Applying the evaluation function to each new individual.
• Selecting individuals that did well enough.
• Applying genetic operators to some surviving individuals

– Deciding when to stop.

• We chose Grammatical Evolution, using LibGE as a
framework because it generates, mostly, viable
individuals, which makes it work faster.

Alexander/Gratton

GP Framework (in pictures)

• Generate an initial population:
– We used between 100 and 300 individuals.
– These individuals are not very good to start with
– But our population will get better over many generations.

Alexander/Gratton

GP Framework: Evaluation(1)

• Applying an evaluation function to measure the
fitness of individuals in each generation.
– The fitter ones are given a better chance of surviving.

Alexander/Gratton

GP Framework: Evaluation(2)

• We feed it a small number of benchmark intermediate
codes and measure the average performance of
these.
– We used the results from the hand-coded optimiser as a

basis for comparison.

Alexander/Gratton

GP Framework: Evaluation(3)

• Special treatment is needed when individuals fail.
– Four failure modes:

• DOA (fail to compile individual), Optimiser blows stack,
Optimiser takes too long, A benchmark takes too long.

• These are all detected and minimum fitness is assigned.

Alexander/Gratton

GP Framework: Genetic Operators:
Crossover

• Fitter individuals are randomly selected for breeding
using crossover.
– Crossover mixes the genes of individuals in the hope that

good traits will combine.

Alexander/Gratton

GP Framework: Genetic Operators:
Mutation

• Randomly selected individuals will be mutated in
each generation.
– Not all mutations are beneficial!!

Alexander/Gratton

GP Framework: Deciding When to Stop
• The framework stops after a certain amount of time

or when a certain number of generations have been
reached.
– We stopped at times between 20 and 60 hours of runtime on

a single 2.5GHz Intel processor (50 to 80 generations).
– After stopping the fittest individuals can selected for use.

Alexander/Gratton

Experimental Setup

• All grammar elements pre-compiled into stratego
libraries for faster running.

• Several runs conducted to tune fitness function.
• Final two runs:

– Population approximately 250 individuals
– Run for 80 generations and 63 generations respectively.
– LibGE settings: Max tree depth 15. Read of genome can

wrap-around twice.
– Mostly default LibGA settings (for GE): Roulette wheel

selection, 90% probability of crossover, 1% mutation
probability, 1% replacement ratio and elitism switched on.

Experimental Setup

Alexander/Gratton

Experimental Setup (2)

• Hand Coded Benchmark:

Ingredients

Alexander/Gratton

Experimental Results (1)

• Both runs evolved individuals at least as good as the
handwritten DMO’s on the benchmarks.

Experimental Results

Alexander/Gratton

Experimental Results (2)

• Robustness
– Take the fittest individuals and expose them to thirty benchmarks

and measure their performances.
– Most did not generalise well but the fittest did slightly better than

hand coded optimiser.
• Benchmark Choice

– Need at least one that makes even mediocre individuals look good.
• Correctness

– 500 fittest individuals collected and tested.
– None produced semantic errors.

• Code Size
– Best individuals very large with much redundancy.

Experimental Results

Alexander/Gratton

Conclusions and Future Work

• Evolving a non-trivial optimisation phase is feasible
– Good results for effectiveness, robustness and correctness.

• Future work includes:
– Pushing evolutionary process down to individual rules
– Controlling code-size and efficiency.
– Extending work to rewriting systems in other languages.

Conclusions

Alexander/Gratton

Questions?

Alexander/Gratton

Experimental Application

• Evolution of a phase of a compiler mapping a functional
language (Adl) to a hardware definition language (Bluespec).

• The target phase is the Data Movement Optimiser (DMO) that
reduces data flowing through a functional intermediate form
(point-free code).

• There is an extant hand-written DMO that:
– was non-trivial to construct.
– can be used as a source of building blocks.
– can be used as a benchmark

• The DMO is written in Stratego, a term-rewriting language
consisting of rewrite rules and strategies for their application.

Experimental Aim

Alexander/Gratton

Ingredients

• Three ingredients in any GP exercise:
1. The grammar for building individuals consisting of:

• terminals
• non terminals

2. The evolutionary framework.
3. The evaluation function

• We look at these in turn.

Ingredients

Alexander/Gratton

The Language Grammar (1)
• All individuals are expressed in Stratego
• Terminals

– Consist of simple rewrite rules e.g.
CompIntoMap: f* g* → (f g)*
MapIntoComp: (f g)* → f* g*
RemoveId: id f → f

– grouped together using the left choice (<+) operator e.g.
CompIntoMap <+ RemoveId

– Semantics: try applying CompIntoMap to current node and, if
that fails, try applying RemoveId.

• We use the same terminals as the handwritten DMO

Ingredients

Alexander/Gratton

The Language Grammar (2)

• Actual terminals include:
pushDownMap (vectorise)
pushDownComp (fuse loops)
simp (apply simplifying rules)
leftAssociate (left associate binary composition)
– In most contexts, the order of rules within a group is of minor

consequence
• If they can be applied they eventually will be applied.

– These terminals have little impact without strategies to apply
them.

Ingredients

Alexander/Gratton

The Language Grammar (3)

• Non-terminals are strategies for rule application.
– These take strategies or rule-groups as parameters and

apply the them to the target AST in some order.

• Examples include:
bottomup(s) : apply s to the current sub-tree bottomup
innermost(s) : apply s to the current sub-tree bottomup until it

can no longer be applied (fixpoint strategy)
s ; t : apply s to current sub-tree followed by t
repeatUntilCycle(s) : apply s to the current sub-tree until a result

seen before in this invocation is detected.

• Example:
bottomup(leftAssociate;innermost(simp))

Ingredients

Alexander/Gratton

The Evolutionary Framework

• We used LibGE in our experiments.
– A popular framework for developing GE applications.

• LibGE (based on LibGA) takes:
– A grammar definition and,
– A evaluation function
– Some parameter settings

and handles:
– Population initialisation, application of the evaluation function

to individuals, application of genetic operators, collection of
statistics and, genotype to phenotype mapping.

• The mapping works by using 8-bit numbers in the
genotype string to select productions in the language
grammar.

Ingredients

Alexander/Gratton

• Fitness is calculated by running evolved optimisers
against up to six benchmark programs and their data
against a dynamic cost-model.
– Benchmarks needed to be carefully chosen to require

multiple strategies and have a gradual gradient of difficulty.
• Fitness calculated relative to cost of hand-coded

DMO on each benchmark i (cost_opti):

• Average fitness evaluation takes 5 seconds. Zero
fitness for timeout or stack-overflow error.

Evaluation Function(1)

Ingredients

