Visual SLAM: Why Bundle Adjust?

Álvaro Parra¹ Tat-Jun Chin¹ Anders Eriksson²

¹School of Computer Science, The University of Adelaide ²School of Electrical Engineering and Computer Science, Queensland University of Technology

ABSTRACT

Bundle adjustment (BA) is performed to estimate the 6DOF camera trajectory and 3D map from the input feature tracks in many modern SLAM pipelines.

Two fundamental weaknesses plague SLAM systems based on BA:

- The need to carefully initialise BA \rightarrow 3D map maintained over time; it makes the overall algorithm cumbersome.
- Since estimating the 3D structure (which requires sufficient baseline) is inherent in BA, the SLAM algorithm will encounter difficulties during periods of slow motion or pure rotational motion.

We propose a different SLAM optimisation core:

- We conduct **rotation averaging** to incrementally optimise *only camera orientations*.
- *Given* the orientations, we estimate the camera positions and 3D points via a **quasi-convex** formulation that can be solved efficiently and *globally optimally*.

KRot with translation direction constraints (KRot-TDC)

We propose to address loop closure (Step 9 in L-infinity SLAM) over a sample of the input with a formulation that incorporates relative camera translation directions $\mathbf{t}_{i,k}^{(E)}$ in the in KRot problem. We constrained camera positions $\mathbf{C}_{j} = -\mathbf{R}_{i}^{\top}\mathbf{t}_{j}$ to agree up to an angular threshold to the relative translation direction:

$$\angle(\mathbf{t}_{j,k}, \mathbf{C}_k - \mathbf{C}_j) \le \alpha \quad \forall j, k,$$
(5)

where $\mathbf{t}_{j,k} := (\mathbf{K}^{-1}\mathbf{R}_j)^{\top} \mathbf{t}_{j,k}^{(E)}$ is the relative translation direction in world coordinates.

$$P_{2}: \qquad \min_{\{\mathbf{X}_{i}\},\{\mathbf{C}_{j}\}} \gamma \qquad (6a)$$
subject to
$$\left\| \mathbf{B}_{i,j} \begin{bmatrix} \mathbf{X}_{i} \\ \mathbf{C}_{j} \end{bmatrix} \right\|_{2} \leq \gamma \mathbf{c}_{j}^{\top} \begin{bmatrix} \mathbf{X}_{i} \\ \mathbf{C}_{j} \end{bmatrix}, \forall i, j, \qquad (6b)$$

$$\left\| \mathbf{D}_{i,j} \begin{bmatrix} \mathbf{C}_{i} \end{bmatrix} \right\|_{2} \leq \gamma \mathbf{c}_{j}^{\top} \begin{bmatrix} \mathbf{C}_{i} \\ \mathbf{C}_{j} \end{bmatrix}, \forall i, j, \qquad (6b)$$

Our approach:

- Obviates the need to estimate and maintain the camera positions and 3D map at keyframe rate \rightarrow Simpler SLAM systems.
- It is also more capable of handling slow motions or pure rotational motions.

BUNDLE ADJUSTMENT (BA)

Let $\mathbf{z}_{i,j}$ be the coordinates of the *i*-th scene point as seen in the *j*-th image Z_j . Given $\{z_{i,j}\}$, SfM aims to estimate the coordinates $X = \{X_i\}$ of the scene points and poses $\{(\mathbf{R}_j, \mathbf{t}_j)\}$ of the images $\{Z_j\}$. The BA formulation is

$$\min_{\{\mathbf{X}_i\},\{(\mathbf{R}_j,\mathbf{t}_j)\}} \sum_{i,j} \|\mathbf{z}_{i,j} - f(\mathbf{X}_i \mid \mathbf{R}_j,\mathbf{t}_j)\|_2^2, \quad (\mathbf{X}_i \mid \mathbf{X}_j,\mathbf{t}_j) \|_2^2$$

where $f(\mathbf{X}_i \mid \mathbf{R}_j, \mathbf{t}_j)$ is the projection function.

BA-SLAM (ADAPTED FROM [1])

- 1: $X \leftarrow Initialise_points(Z_0)$.
- 2: for each keyframe step $t = 1, 2, \dots$ do
- $s \leftarrow t (\text{window size}) + 1.$ 3:
- if a number of $n \ge 1$ points left field of view then
- $X \leftarrow X \cup initialise_n_new_points(Z_t).$ 5:

ROTATION AVERAGING

Given a set of relative rotations $\{\mathbf{R}_{j,k}\}$ between pairs of overlapping images $\{Z_j, Z_k\}$, estimate the **absolute rotations** $\{\mathbf{R}_i\}$ that are consistent with the relative rotations.

$$\min_{\{\mathbf{R}_j\}} \sum_{j,k\in\mathbb{N}} \left\| \mathbf{R}_{j,k} - \mathbf{R}_k \mathbf{R}_j^{-1} \right\|_F^2, \qquad (2)$$

where N is the covisibility graph.

$$\left\| \mathbf{D}_{j,k} \left[\mathbf{C}_{k}^{*} \right] \right\|_{2} \leq \mathbf{e}_{j,k} \left[\mathbf{C}_{k}^{*} \right], \quad \forall j, \kappa, \tag{6C}$$

$$\gamma \geq 0, \tag{6d}$$

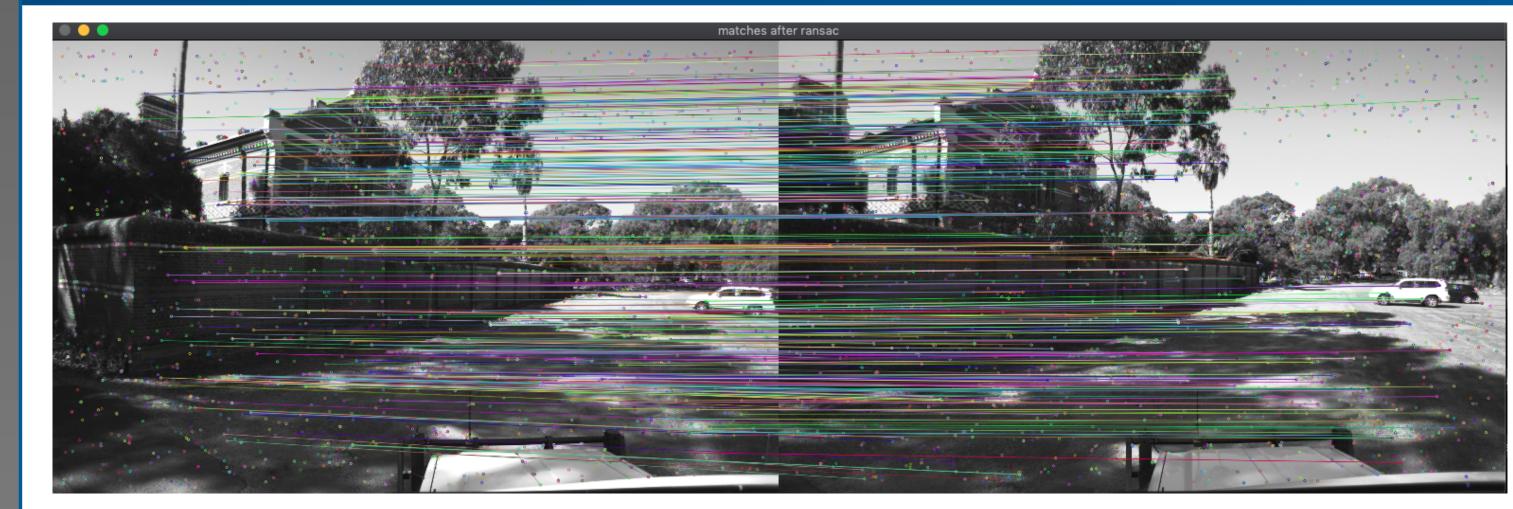
where: Β

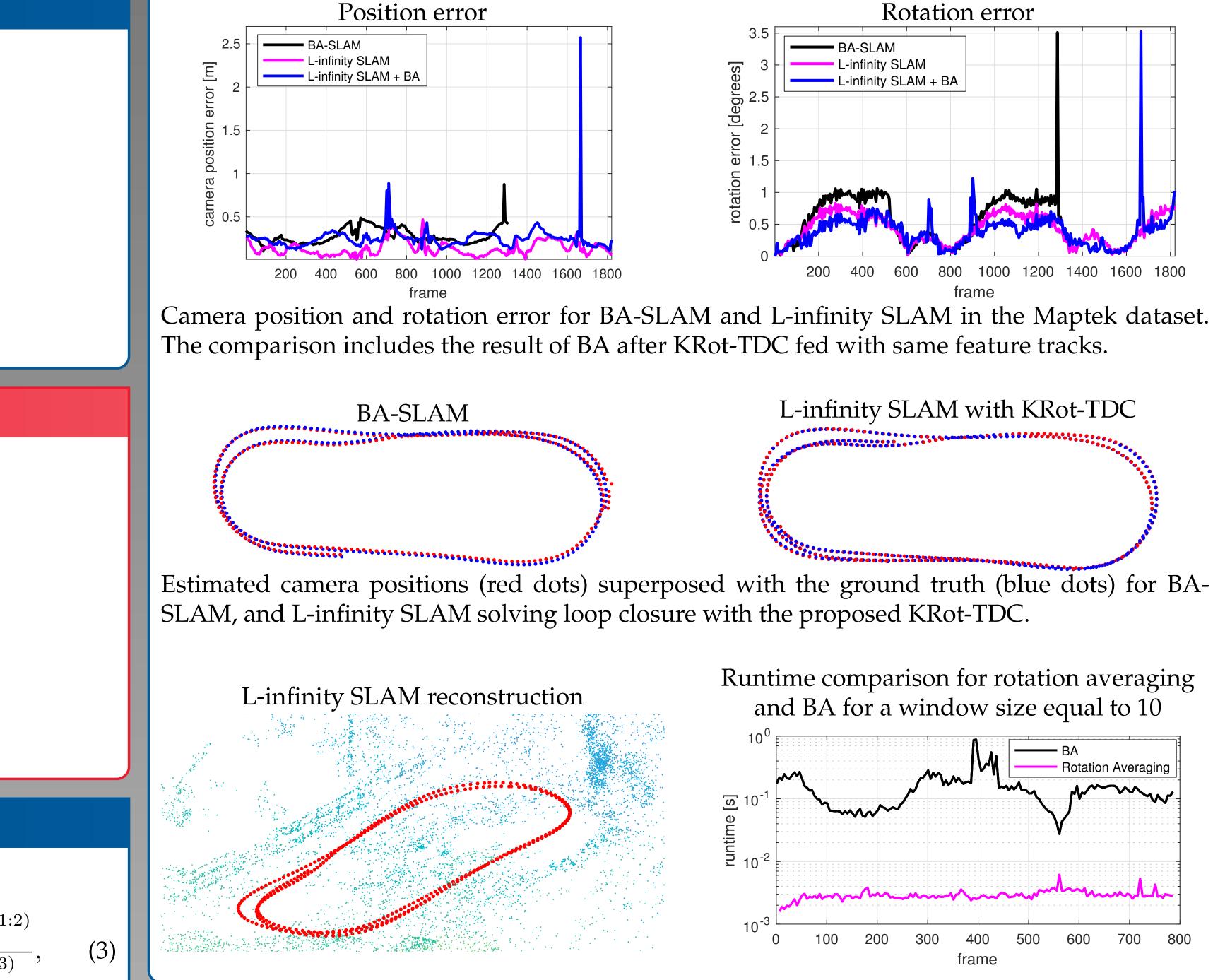
Ian Reid¹

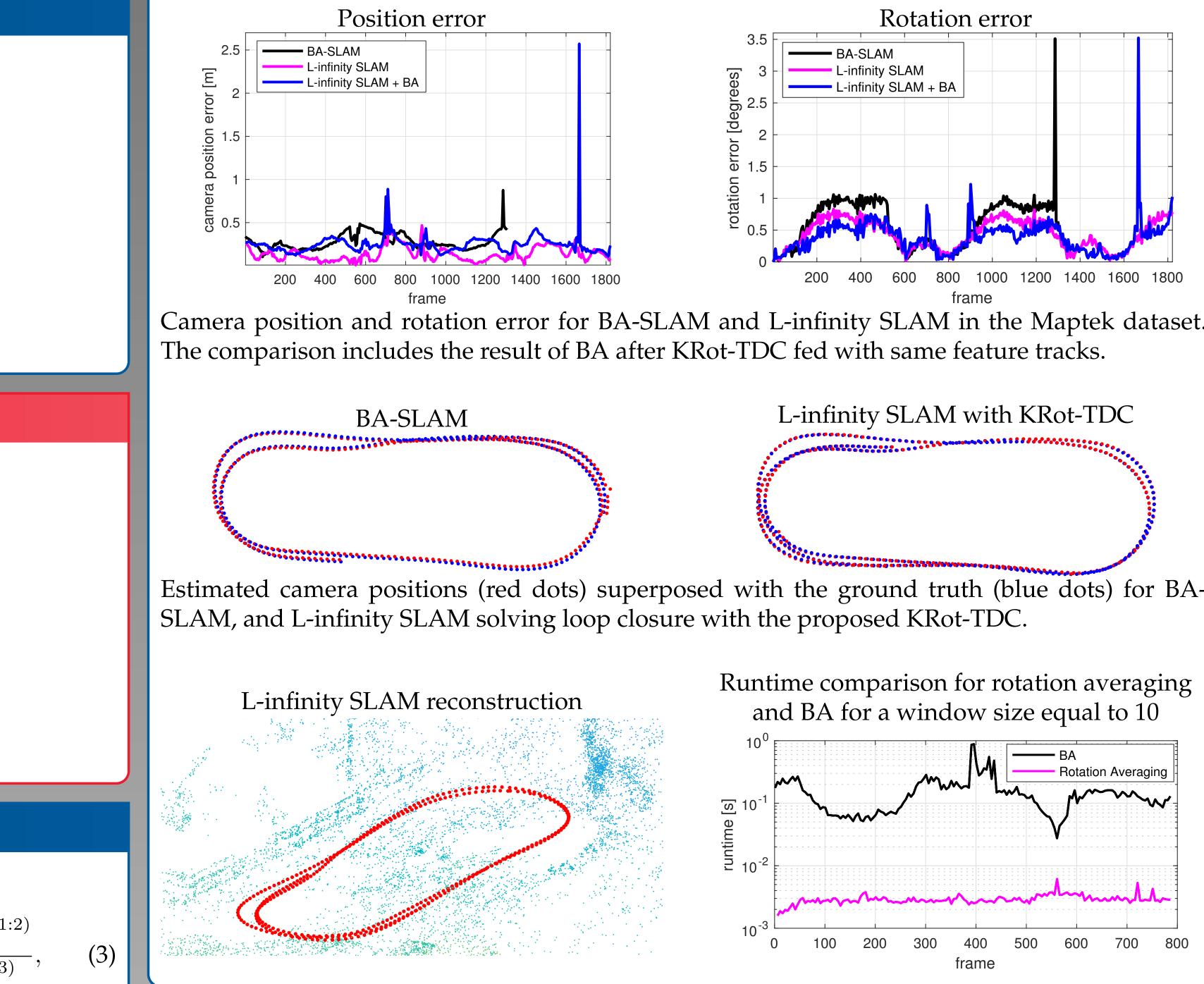
where.

$$\mathbf{B}_{i,j} = \begin{bmatrix} \mathbf{S}_{i,j} - \mathbf{S}_{i,j} \end{bmatrix}, \ \mathbf{c}_j = \begin{bmatrix} \mathbf{R}_j^{(3)} - \mathbf{R}_j^{(3)} \end{bmatrix}, \ \mathbf{D}_{j,k} = \begin{bmatrix} \mathbf{Z}_{j,k}^{(1:2)} - \mathbf{Z}_{j,k}^{(1:2)} \end{bmatrix}, \ \mathbf{e}_{j,k} = \tan(\alpha) \begin{bmatrix} \mathbf{t}_{j,k}^\top - \mathbf{t}_{j,k}^\top \\ \text{and } \mathbf{Z}_{j,k} \text{ is a rotation matrix such that } \mathbf{Z}_{j,k} \mathbf{t}_{j,k} = \begin{bmatrix} 0 \ 0 \ 1 \end{bmatrix}^\top.$$

RESULTS







- end if
- $\mathbf{R}_{s:t}, \mathbf{t}_{s:t}, \mathsf{X} \leftarrow \mathrm{BA}(\mathbf{R}_{s:t}, \mathbf{t}_{s:t}, \mathsf{X}, \mathsf{Z}_{0:t}).$
- if loop is detected in Z_t then
- $\mathbf{R}_{1:t}, \mathbf{t}_{1:t}, \mathsf{X} \leftarrow \mathrm{BA}(\mathbf{R}_{1:t}, \mathbf{t}_{1:t}, \mathsf{X}, \mathsf{Z}_{0:t}).$
- end if 10:
- 11: **end for**

L-infinity SLAM

- 1: for each keyframe step $t = 1, 2, \ldots$ do
- $s \leftarrow t (\text{window size}) + 1.$ 2:
- $\{\mathbf{R}_{j,k}\}_{j,k\in\mathbb{N}_{win}} \leftarrow relative_rotation(\mathsf{Z}_{(s-1):t}).$
- $\mathbf{R}_{s:t} \leftarrow \text{rotation}_{\text{averaging}}(\{\mathbf{R}_{j,k}\}_{j,k\in\mathsf{N}_{win}}).$
- $\mathbf{t}_{s:t}, \mathsf{X} \leftarrow \text{known_rotation_prob}(\mathbf{R}_{s:t}, \mathsf{Z}_{0:t}).$ 5:
- if loop is detected in Z_t then
- $\{\mathbf{R}_{j,k}\}_{j,k\in\mathsf{N}_{\mathrm{sys}}} \leftarrow \mathrm{relative_rotation}(\mathsf{Z}_{0:t}).$ 7:
- $\mathbf{R}_{1:t} \leftarrow \text{rotation}_\text{averaging}(\{\mathbf{R}_{j,k}\}_{j,k\in\mathsf{N}_{\text{sys}}}).$ 8:
- $\mathbf{t}_{1:t}, \mathsf{X} \leftarrow \text{known_rotation_prob}(\mathbf{R}_{1:t}, \mathsf{Z}_{0:t}).$ 9:
- end if 10:
- 11: **end for**

THE KNOWN ROTATION PROBLEM (KROT)

Given $\{\mathbf{R}_i\}$, KRot [2] optimises the camera positions $\{\mathbf{t}_i\}$ and 3D points $\{\mathbf{X}_i\}$ as

$$\min_{\{\mathbf{X}_i\},\{\mathbf{t}_j\}} \quad \max_{i,j} \ \|\mathbf{z}_{i,j} - f(\mathbf{X}_i \mid \mathbf{R}_j, \mathbf{t}_j)\|_2, \quad \text{where} \quad f(\mathbf{X}_i \mid \mathbf{R}_j, \mathbf{t}_j) := \frac{\mathbf{R}_j^{(1:2)} \mathbf{X}_i + \mathbf{t}_j^{(1:2)}}{\mathbf{R}_j^{(3)} \mathbf{X}_i + \mathbf{t}_j^{(3)}},$$

subject to cheirality constraints.

CONCLUSIONS

(3) can be rewritten by adding an extra variable γ as

$$P_{1}: \qquad \min_{\{\mathbf{X}_{i}\},\{\mathbf{t}_{j}\}} \gamma \qquad (4a)$$
subject to
$$\left\| \mathbf{A}_{i,j} \begin{bmatrix} \mathbf{X}_{i} \\ \mathbf{t}_{j} \end{bmatrix} \right\|_{2} \leq \gamma \mathbf{b}_{j}^{\top} \begin{bmatrix} \mathbf{X}_{i} \\ \mathbf{t}_{j} \end{bmatrix}, \forall i, j, \qquad (4b)$$

$$\gamma \geq 0, \qquad (4c)$$
where:
$$\mathbf{A}_{i,j} = \begin{bmatrix} \mathbf{S}_{i,j} \ \mathbf{I}_{2\times 2} \ -\mathbf{z}_{i,j} \end{bmatrix}, \quad \mathbf{b}_{j} = \begin{bmatrix} \mathbf{R}_{j}^{(3)} \ 0 \ 0 \ 1 \end{bmatrix}^{\top}, \quad \mathbf{S}_{i,j} = \mathbf{R}_{j}^{(1:2)} - \mathbf{z}_{i,j} \mathbf{R}_{j}^{(3)}.$$

• (3) is **quasi-convex** \rightarrow it is amenable to *efficient global solution* [2, 3].

- We use **Res-Int** [4] as the KRot routine in Line 5 in L-infinity SLAM. It outperformed existent methods by alternating between pose estimation and triangulation to efficiently partition the problem into small sub-problems - About 3 s in around 15 images and 3000 3D points.
- We use **KRot-TDC** as the KRot routine for loop closure in Line 9 in L-infinity SLAM. Res-Int performance is still inadequate for loop closure (> 10,000 3D points, > 100 images).

- We presented L-infinity SLAM to be a simpler alternative to SLAM systems based on BA.
- Globally optimal quasi-convex optimisation \rightarrow No need to maintain an accurate map and camera motions at key-frame rate as demanded by systems based on BA.
- The online effort is devoted to estimating camera orientations through rotation averaging.
- To efficiently solve loop closure, we proposed a variant of KRot which incorporates relative translation directions to accurately solve camera drifts over a sample of feature tracks.
- L-infinity SLAM is a simple and efficient alternative for applications requiring estimating slow motions or only rotational motions.

REFERENCES

- 1. H. Strasdat, J. Montiel, and A. Davison, "Visual SLAM: why filter?," Image and Vision Computing, vol. 30, no. 2, 2012.
- 2. F. Kahl, "Multiple view geometry and the L_{∞} -norm," in ICCV, 2005.
- 3. C. Olsson, A. Eriksson, and F. Kahl, "Efficient optimization for L_{∞} -problems using pseudoconvexity," in ICCV, 2007.
- 4. Q. Zhang, T.-J. Chin, and H. M. Le, "A fast resection-intersection method for the known rotation problem," in CVPR, 2018.