Gekko: A Metalayer for Adaptation in Nexus

Darren Webb and Andrew L. Wendelborn
Department of Computer Science
University of Adelaide
South Australia 5005, Australia

{darren,andrew}@cs.adelaide.edu.au
Introduction

• Gekko: an experiment in metalevel programming
 – Disciplined approach to adaptation

• Architecture for adaptable communication using metalevel techniques
Outline

• Metalevel Programming and Reification
• Nexus and Multi-Method Communication
• The Gekko Metalayer
Metalevel Programming

- Disciplined Software Engineering technique
- Seeks to separate functional and non-functional concerns
 - Functional concerns (purpose) implemented as baseobjects at the baselevel
 - Non-functional concerns (fitness for purpose) implemented as metaobjects at the metalevel
- Metaobject Protocol documents a metalevel
Reification

• Process of converting some component of baselevel state into a value
 – Metalevel intercepts baselevel behaviour
 – Compute upon the reified value to control baselevel behaviour
• Opens the baselevel to customization
Nexus

- Communications library for Globus
- Low-level, asynchronous message passing
Multi-Method Communication

• Automatic and manual selection of communication method
Gekko

• Take advantage of relative strengths of communication method
 – Application decides which resources to use
• Nexus code is difficult to customize
• Experimental, adaptive metalayer for Nexus
 – Fix broken MMC in NexusJava
 – Extend MMC model to distinguish the relative strengths of communication method
Gekko Metalayer

- Intercept by proxy
- Reify RSR method call to Channel object
 - Compute on the size, source and destination
- Heuristic object encodes select algorithm
Preliminary Results

• Tested on an emulated grid environment
 – NISTNet to tune network attributes

• Difficult to interpret!
 – Quality of test environment
 – Quality of selected network attributes

<table>
<thead>
<tr>
<th></th>
<th>S1(ms)</th>
<th>S2(ms)</th>
<th>S3(ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nexus</td>
<td>26538</td>
<td>25157</td>
<td>-</td>
</tr>
<tr>
<td>Gekko</td>
<td>26670</td>
<td>25398</td>
<td>23506</td>
</tr>
</tbody>
</table>

A Carefully Constructed Example…

S1: 800bps, 1500ms
S2: 80bps, 300ms
S3: S1+S2
Experimental Architecture
Related Work

• Proactive
 INRIA Sophia Antipolis
 • MOP for distributed, asynchronous processing

• Welch and Stroud
 Newcastle on Tyne
 • MOP for security policies

• Channel Reification
 DSI, Uni Genova
 • Reflective model for distributed environments

• NWS and NwsAlarm
 Uni Tennessee, Kentucky
 • Sensing, forecasting and alarms for resource degradation
Summary

• Architecture for adaptable communication using metalevel techniques
 – Metalevel provides an interface that “opens up” the Nexus baselevel to customization
 – All customization separated from Nexus

• Apply similar techniques to other adaptation