
Genetic Algorithms, Numerical Optimization, and Constraints

Zbigniew Michalewicz�

Department of Computer Science
University of North Carolina

Charlotte, NC 28223

Abstract

During the last two years several methods
have been proposed for handling constraints
by genetic algorithms for numerical optimiza-
tion problems. In this paper we review these
methods, test them on �ve selected problems,
and discuss their strengths and weaknesses.
We provide also some suggestions for further
research.

1 INTRODUCTION

It is a common knowledge that a successful implemen-
tation of an evolutionary technique for a particular
real-world problem requires some additional heuristics.
These heuristic rules may apply to genetic represen-
tation of solutions, to `genetic' operators that alter
their composition, to values of various parameters, to
methods for creating initial populations. Also, the pro-
cess of evaluating an individual in a population may
be quite complex (especially in the presence of feasi-
ble and unfeasible solutions of a constrained problem)
and may lead to di�erent constraint-handling meth-
ods. Recently, eleven approaches (including the use of
specialized operators, repair algorithms, penalty func-
tions, cultural algorithms, etc.) were surveyed [10] in
the context of mathematical programming problems.

Evolutionary computation techniques have received
a lot of attention regarding their potential as opti-
mization techniques for complex numerical functions.
Many di�cult functions were examined; very often
they served as test-beds for selection methods, vari-
ous operators, di�erent representations, etc. However,
evolutionary computation methods did not make a sig-
ni�cant breakthrough in the area of nonlinear pro-

�Institute of Computer Science, Polish Academy of Sci-
ences, ul. Ordona 21, 01-237 Warsaw, Poland.

gramming due to the fact that they did not address
the issue of constraints in a systematic way. Evolution
strategies [1] or evolutionary programming techniques
(modi�ed to handle numerical optimization problems
[5]) just reject unfeasible individuals. Genetic algo-
rithms, on the other hand, penalize unfeasible indi-
viduals, however, there are no guidelines on designing
penalty functions. A few hypotheses were formulated
in [15], but they were not appropriate for generaliza-
tions in continuous domains or/and required a huge
computational overhead. This paper addresses the is-
sue of constrained numerical optimization: it surveys
a few methods proposed recently and examines their
merits.

1.1 THE PROBLEM

The general nonlinear programming problem1 is to
�nd X so as to

optimize f(X ), X = (x1; : : : ; xn) 2 Rn,

where X 2 S \ F . The set S � Rn de�nes the search
space and the set F � Rn de�nes a feasible search
space. Usually, the search space S is de�ned as a
n-dimensional rectangle in Rn (domains of variables
de�ned by their lower and upper bounds):

l(i) � xi � u(i); 1 � i � n,

whereas the feasible set F is de�ned by a set of addi-
tional m � 0 constraints:2

1We consider here only continuous variables.
2The above de�nition of the search space S as an n-

dimensional rectangle applies only for the case of genetic
algorithms. For other methods, such as evolutionary pro-
gramming and evolution strategies, there is no distinction
between the search space and feasible search space, since
only feasible solutions are considered.



gj(X) � 0, for j = 1; : : : ; q, and
hj(X) = 0, for j = q + 1; : : : ;m.

Most research on applications of evolutionary compu-
tation techniques to nonlinear programming problems
was concerned with complex objective functions with
S \ F = S. Several test functions used by various
researchers during the last 20 years considered only
domains of n variables; this was the case with �ve
test functions F1{F5 proposed by De Jong [2], as well
as with many other test cases proposed since then
[3, 5, 19]. Only recently several approaches were re-
ported to handle general nonlinear programming prob-
lems. However, their description is supported by ex-
perimental evidence based on di�erent test cases; some
of them provide results for test cases with very few
variables [11, 16, 7]; some of them did not use func-
tions which have a closed form [14]. Also, they di�er
in details (representation, selection method, operators
and their frequencies, etc.), so it is quite hard to make
any comparisons.

This paper surveys these methods (next Section) and
provides �ve test cases (Section 3) which are used here
to test the methods listed, and can be used in the
future for testing additional methods. These test cases
were selected carefully using several criteria. Section 4
presents experimental results and concludes the paper.

2 CONSTRAINT-HANDLING

METHODS

During the last two years several methods were pro-
posed for handling constraints by genetic algorithms
for numerical optimization problems. Most of them
are based on the concept of penalty functions, which
penalize unfeasible solutions, i.e.,3

eval(X) =

�
f(X); if X 2 F \S

f(X) + penalty(X ); otherwise;

where penalty(X ) is zero, if no violation occurs, and
is positive, otherwise. In most methods a set of func-
tions fj (1 � j � m) is used to construct the penalty;
the function fj measures the violation of the j-th con-
straint in the following way:

fj(X) =

�
maxf0; gj(X)g; if 1 � j � q
jhj(X)j; if q + 1 � j � m:

However, these methods di�er in many important de-
tails, how the penalty function is designed and applied

3In the rest of the paper we assume minimization
problems.

to unfeasible solutions. In the following subsections
we discuss them in turn; the methods are sorted in
decreasing order of parameters they require.

2.1 METHOD #1

This method was proposed by Homaifar, Lai, and Qi
[7]. The method assumes that for every constraint we
establish a family of intervals which determine appro-
priate penalty coe�cient. It works as follows:

� for each constraint, create several (`) levels of vi-
olation,

� for each level of violation and for each constraint,
create a penalty coe�cient Rij (i = 1; 2; : : : ; `,
j = 1; 2; : : : ;m); higher levels of violation require
larger values of this coe�cient.

� start with a random population of individuals
(feasible or unfeasible),

� evolve the population; evaluate individuals using
the following formula

eval(X ) = f(X ) +
Pm

j=1Rijf
2
j (X).

The weakness of the method is in the number of pa-
rameters: for m constraints the method requires: m
parameters to establish number of intervals for each
constraint (in [7], these parameters are the same for all
constraints equal to ` = 4), ` parameters for each con-
straint (i.e., ` �m parameters in total); these param-
eters represent boundaries of intervals (levels of viola-
tion), ` parameters for each constraint (` �m param-
eters in total); these parameters represent the penalty
coe�cients Rij. So the method requires m(2`+1) pa-
rameters in total to handle m constraints. In particu-
lar, for m = 5 constraints and ` = 4 levels of violation,
we need to set 45 parameters! Clearly, the results are
parameter dependent. It is quite likely that for a given
problem there exist the optimal set of parameters for
which the system returns feasible near-optimum solu-
tion, however, it might be quite hard to �nd it.

2.2 METHOD #2

The second method was proposed by Joines and Houck
[8]. As opposed to the previous method, the authors
assumed dynamic penalties. Individuals are evaluated
(at the iteration t) by the following formula:

eval(X ) = f(X ) + (C � t)�
Pm

j=1 f
�
j (X),

where C, � and � are constants. A reasonable choice
for these parameters (reported in [8]) is C = 0:5,



� = � = 2. The method requires much smaller number
(independent of the number of constraints) of param-
eters than the �rst method. Also, instead of de�ning
several levels of violation, the pressure on unfeasible
solutions is increased due to the (C � t)� component
of the penalty term: towards the end of the process
(for high values of the generation number t), this com-
ponent assumes large values.

2.3 METHOD #3

The third method was proposed by Schoenauer and
Xanthakis [16]; it works as follows:

� start with a random population of individuals
(feasible or unfeasible),

� set j = 1 (j is a constraint counter),

� evolve this population with eval(X ) = fj(X), un-
til a given percentage of the population (so-called

ip threshold �) is feasible for this constraint,4

� set j = j + 1,

� the current population is the starting point for
the next phase of the evolution, where eval(X ) =
fj(X). During this phase, points that do not sat-
isfy one of the 1st, 2nd, ... ,or (j � 1)-th con-
straint are eliminated from the population. The
stop criterion is again the satisfaction of the j-th
constraint by the 
ip threshold percentage � of
the population.

� if j < m, repeat the last two steps, otherwise
(j = m) optimize the objective function, i.e.,
eval(X ) = f(X ), rejecting unfeasible individuals.

The method requires a linear order of all constraints
which are processed in turn. It is unclear what is the
in
uence of the order of constraints on the results of
the algorithm; our experiments indicated that di�erent
orders provide di�erent results (di�erent in the sense
of the total running time and precision).

In total, the method requires 3 parameters: the shar-
ing factor �, the 
ip threshold �, and a particular order
of constraints. The method is very di�erent to the pre-
vious two methods, and, in general, is di�erent than
other penalty approaches, since it considers only one
constraint at the time. Also, in the last step of the al-
gorithm the method optimizes the objective function
f itself without any penalty component.

4The method suggests the use of a sharing scheme (to
maintain diversity of the population).

2.4 METHOD #4

The fourth method was described by Michalewicz and
Attia [11]; its modi�ed version works as follows:

� divide all constraints into four subsets: linear
equations LE, linear inequalities LI, nonlinear
equations NE, and nonlinear inequalities NI,

� select a random single point as a starting point
(the initial population consists of copies of this
single individual). This initial point satis�es lin-
ear constraints (LE and LI),

� set the initial temperature � = �0,

� evolve the population using the following formula:

eval(X; � ) = f(X) + 1

2�

Pm

j=1 f
2
j (X),

� if � < �f , stop, otherwise

{ decrease temperature � ,

{ the best solution serves as a starting point of
the next iteration,

{ repeat the previous step of the algorithm.

This is the only method described here which distin-
guishes between linear and nonlinear constraints. The
algorithmmaintains feasibility of all linear constraints
using a set of closed operators, which convert a fea-
sible solution (feasible in terms of linear constraints
only) into another feasible solution. At every itera-
tion the algorithm considers active constraints only,
the pressure on unfeasible solutions is increased due
to the decreasing values of temperature � .

The method has an additional unique feature: it starts
from a single point.5 Consequently, it is relatively
easy to compare this method with other classical op-
timization methods whose performance are tested (for
a given problem) from some starting point.

The method requires a starting and `freezing' temper-
atures, �0 and �f , respectively, and the cooling scheme
to decrease temperature � . Standard values (reported
in [11]) are �0 = 1, �i+1 = 0:1 � �i, with �f = 0:000001.

2.5 METHOD #5

The �fth method was developed by Powell and Skol-
nick [14]. The method is a classical penalty method
with one notable exception. Each individual is evalu-
ated by the formula:

5This feature, however, is not essential. The only im-
portant requirement is that the next population contains
the best individual from the previous population.



eval(X ) = f(X ) + r
Pm

j=1 fj(X) + �(t;X),

where r is a constant; however, there is also a compo-
nent �(t;X). This is an additional iteration dependent
function which in
uences the evaluations of unfeasible
solutions. The point is that the method distinguishes
between feasible and unfeasible individuals by adopt-
ing an additional heuristic rule (suggested earlier in
[15]): for any feasible individual X and any unfeasible
individual Y : eval(X ) < eval(Y ), i.e., any feasible so-
lution is better than any unfeasible one. This can be
achieved in many ways; one possibility is to set

�(t;X) =

8>><
>>:

0; if X 2 F \ S

maxf0;max
X2F\S

ff(X)g�
min

X2S�F
ff(X) + r

Pm

j=1 fj(X)gg;

otherwise

In other words, unfeasible individuals have in-
creased penalties: their values cannot be better
than the value of the worst feasible individual (i.e.,
max

X2F\S
ff(X)g).6

2.6 METHOD #6

The �nal method rejects unfeasible individuals (death
penalty); the method has been used by evolution
strategies [1], evolutionary programming adopted for
numerical optimization [5], and simulated annealing.

3 FIVE TEST CASES

In the selection process of the following �ve test cases
we took into account (1) the type of the objective func-
tion, (2) the number of variables, (3) the number of
constraints, (4) the types of constraints, (5) the num-
ber of active constraints at the optimum, and (6) the
ratio � between the sizes of the feasible search space
and the whole search space jF \ Sj=jSj. We do not
make any claims on the completeness of the proposed
set of these test cases G1{G5, however, it may consti-
tute a handy collection for preliminary tests for other
constraint handling methods.

3.1 TEST CASE #1

The problem [4] is to minimize a function:

G1(X) = 5x1+5x2+5x3+5x4�5
P4

i=1 x
2
i�P13

i=5
xi,

6Powell and Skolnick achieved the same result by map-
ping evaluations of feasible solutions into the interval
(�1; 1) and unfeasible solutions into the interval (1;1).
For ranking and tournament selections this implementa-
tional di�erence is not important.

subject to

2x1 + 2x2 + x10 + x11 � 10,
2x1 + 2x3 + x10 + x12 � 10,
2x2 + 2x3 + x11 + x12 � 10,
�8x1 + x10 � 0, �8x2 + x11 � 0,
�8x3 + x12 � 0, �2x4 � x5 + x10 � 0,
�2x6� x7+ x11 � 0, �2x8 �x9+ x12 � 0,
0 � xi � 1, i = 1; : : : ; 9, 0 � xi � 100,
i = 10; 11; 12, 0 � x13 � 1.

The problem has 9 linear constraints; the function G1
is quadratic with its global minimum at

X
�
= (1; 1; 1; 1; 1;1;1; 1; 1;3;3;3; 1),

where G1(X
�
) = �15. Six (out of nine) constraints are

active at the global optimum (all except the following
three: �8x1+ x10 � 0, �8x2 + x11 � 0, �8x3+ x12 �
0).

3.2 TEST CASE #2

The problem [6] is to minimize a function:

G2(X) = x1 + x2 + x3,

where

1� 0:0025(x4+ x6) � 0,
1� 0:0025(x5+ x7 � x4) � 0,
1� 0:01(x8� x5) � 0,
x1x6�833:33252x4�100x1+83333:333 � 0,
x2x7 � 1250x5 � x2x4 + 1250x4 � 0,
x3x8 � 1250000� x3x5 + 2500x5 � 0,
100 � x1 � 10000, 1000 � xi � 10000,
i = 2; 3, 10 � xi � 1000, i = 4; : : : ; 8.

The problem has 3 linear and 3 nonlinear constraints;
the function G2 is linear and has its global minimum
at

X
�
= (579:3167; 1359:943; 5110:071;182:0174;

295:5985; 217:9799; 286:4162; 395:5979),

where G2(X
�
) = 7049:330923. All six constraints are

active at the global optimum.

3.3 TEST CASE #3

The problem [6] is to minimize a function:

G3(X) = (x1� 10)2+5(x2� 12)2+x43+3(x4� 11)2+
10x65 + 7x26 + x47 � 4x6x7 � 10x6 � 8x7,



where

127� 2x21 � 3x42 � x3 � 4x24 � 5x5 � 0,
282� 7x1 � 3x2 � 10x23 � x4 + x5 � 0,
196� 23x1 � x22 � 6x26 + 8x7 � 0,
�4x21 � x22 + 3x1x2 � 2x23 � 5x6 + 11x7 � 0
�10:0 � xi � 10:0, i = 1; : : : ; 7.

The problem has 4 nonlinear constraints; the function
G3 is nonlinear and has its global minimum at

X
�
= (2:330499; 1:951372;�0:4775414;

4:365726;�0:6244870; 1:038131;1:594227),

where G3(X
�
) = 680:6300573. Two (out of four) con-

straints are active at the global optimum (the �rst and
the last one).

3.4 TEST CASE #4

The problem [6] is to minimize a function:

G4(X) = ex1x2x3x4x5 ,

subject to

x21+x
2
2+x

2
3+x

2
4+x

2
5 = 10, x2x3�5x4x5 = 0,

x31 + x32 = �1, �2:3 � xi � 2:3, i = 1; 2,
�3:2 � xi � 3:2, i = 3; 4; 5.

The problem has 3 nonlinear equations; nonlinear
function G4 has its global minimum at

X
�
= (�1:717143; 1:595709;1:827247;

�0:7636413;�0:7636450),

where G4(X
�
) = 0:0539498478.

3.5 TEST CASE #5

The problem [6] is to minimize a function:

G5(X) = x21 + x22 + x1x2 � 14x1 � 16x2 + (x3 � 10)2

+4(x4 � 5)2 + (x5 � 3)2 + 2(x6 � 1)2 + 5x27+
7(x8 � 11)2 + 2(x9 � 10)2 + (x10 � 7)2 + 45,

where

105� 4x1 � 5x2 + 3x7 � 9x8 � 0,
�10x1 + 8x2 + 17x7 � 2x8 � 0,
8x1 � 2x2 � 5x9 + 2x10+ 12 � 0,
�3(x1�2)

2�4(x2�3)
2�2x23+7x4+120 � 0,

�5x21 � 8x2 � (x3 � 6)2 + 2x4 + 40 � 0,

�x21 � 2(x2 � 2)2 + 2x1x2 � 14x5 + 6x6 � 0,
�0:5(x1�8)2�2(x2�4)2�3x25+x6+30 � 0,
3x1 � 6x2 � 12(x9 � 8)2 + 7x10 � 0,
�10:0 � xi � 10:0, i = 1; : : : ; 10.

The problem has 3 linear and 5 nonlinear constraints;
the function G5 is quadratic and has its global mini-
mum at

X
�
= (2:171996; 2:363683; 8:773926;5:095984;

0:9906548; 1:430574;1:321644; 9:828726;
8:280092; 8:375927),

where G5(X
�
) = 24:3062091. Six (out of eight) con-

straints are active at the global optimum (all except
the last two).

3.6 SUMMARY

All test cases are summarized in Table 1; for each test
case (TC) we list number n of variables, type of the
function f , the ratio � = jF \ Sj=jSj, the number
of constraints of each category (linear inequalities LI,
nonlinear equations NE and inequalities NI), and the
number a of active constraints at the optimum.

TC n Type of f � LI NE NI a

#1 13 quadratic 0.0111% 9 0 0 6
#2 8 linear 0.0010% 3 0 3 6
#3 7 polynomial 0.5121% 0 0 4 2
#4 5 nonlinear 0.0000% 0 3 0 3
#5 10 quadratic 0.0003% 3 0 5 6

Table 1: Summary of �ve test cases. The ratio
� = jF\Sj=jSjwas determined experimentally by gen-
erating 1,000,000 random points from S and checking
whether they belong to F . LI, NE, and NI represent
the number of linear inequalities, and nonlinear equa-
tions and inequalities, respectively.

4 EXPERIMENTS, RESULTS, AND

CONCLUSIONS

In all experiments we assumed 
oating point repre-
sentation, nonlinear ranking selection, Gaussian mu-
tation, arithmetical and heuristic crossovers; the prob-
abilities of all operators were set at 0.08, and the pop-
ulation size was 70. For all methods the system was
run for 5,000 generations.7

7Modi�ed versions of Genocop system [9] were used
for all experiments; the code was updated accordingly
for each method. Genocop is available from anonymous,
ftp.uncc.edu, directory coe/evol, �le genocop3.0.tar.Z.



TC Exact Method Method Method
opt. #1 #2 #3

b �15:002 �15:000 �15:000
#1 �15:000 m �15:002 �15:000 �15:000

w �15:001 �14:999 �14:998
c 0, 0, 4 0, 0, 0 0, 0, 0
b 2282.723 3117.242 7485.667

#2 7049.331 m 2449.798 4213.497 8271.292
w 2756.679 6056.211 8752.412
c 0, 3, 0 0, 3, 0 0, 0, 0
b 680.771 680.787 680.836

#3 680.630 m 681.262 681.111 681.175
w 689.660 682.798 685.640
c 0, 0, 1 0, 0, 0 0, 0, 0
b 0.084 0.059

#4 0.054 m 0.955 0.812 �
w 1.000 2.542
c 0, 0, 0 0, 0, 0
b 24.690 25.486

#5 24.306 m 29.258 26.905 |
w 36.060 42.358
c 0, 1, 1 0, 0, 0

Table 2: Experimental results. For each method (#1,
#2, and #3) we report the best (b), median (m), and
the worst (w) result (out of 10 independent runs) and
the number (c) of violated constraints at the median
solution: the sequence of three numbers indicate the
number of violations by more than 1.0, more than 0.1,
and more than 0.001, respectively. The symbols `�'
and `|' stand for `the method was not applied to this
test case' and `the results were not meaningful', re-
spectively.

The results are summarized in Tables 2 and 3, which
report (for each method) the best (row b), median (row
m), and the worst (row w) result (out of 10 indepen-
dent runs) and numbers (row c) of violated constraints
at the median solution: the sequence of three num-
bers indicate the number of violations with violation
amount between 1.0 and 10.0, between 0.1 and 1.0,
and between 0.001 and 0.1, respectively (a sequence of
three zeros indicates a feasible solution). If at least one
constraint was violated by more than 10.0 (in terms
of functions fj), the solution was considered as `not
meaningful'. In some cases it was hard to determine
\the best" solution due to a relationship between the
objective value and the number of violated constraints;
the tables report the smallest objective value (for the
best solution); consequently, some values are \better"
than the value at the global minimum.

It is di�cult to provide a complete analysis of all

Method Method Method Method
#4 #5 #6 #6(f)

�15:000 �15:000 �15:000
�15:000 �15:000 | �14:999
�15:000 �14:999 �13:616
0, 0, 0 0, 0, 0 0, 0, 0

7377.976 2101.367 7872.948
8206.151 2101.411 | 8559.423
9652.901 2101.551 8668.648
0, 0, 0 1, 2, 0 0, 0, 0
680.642 680.805 680.934 680.847
680.718 682.682 681.771 681.826
680.955 685.738 689.442 689.417
0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0
0.054 0.067
0.064 0.091 � �
0.557 0.512
0, 0, 0 0, 0, 0
18.917 17.388 25.653
24.418 22.932 | 27.116
44.302 48.866 32.477
0, 1, 0 1, 0, 0 0, 0, 0

Table 3: Continuation of the Table 2; experimental
results for methods #4, #5, and #6. The results
for method #6 report also the results of experiments
(method #6(f)) where the initial population was fea-
sible.

six methods on the basis of �ve test cases,8 however,
it seems that method #1 can provide good results
only if violation levels and penalty coe�cients Rij

are tuned to the problem (e.g., our arbitrary choice
of 4 violation levels with penalties of 100, 200, 500,
and 1,000, respectively, worked well for the test cases
#1 and #3, whereas it did not work well for other
test cases, where some other values for these param-
eters are required). Also, these violation levels and
penalty coe�cients did not prevent the system from
violating 3 constraints in the test case #2, since the
`reward' was too large to resist (i.e., the optimum
value outside the feasible region is 2,100 for X =
(100:00; 1000:00;1000:00; 128:33; 447:95;336:07;527:85;
578:08) with relatively small penalties). In all test
cases (except test case #4) the method returned so-
lutions which were unfeasible by a relatively small
margin, which is an interesting characteristic of this
method.

Method #2 provided better results than the previ-
ous method for almost all test cases: for test case #1

8Future work would extend the test suite to 25 test
cases.



(where all returned solutions were feasible), test cases
#2 and #4 (where constraint violations were much
smaller), and test case #3 (the standard deviation of
results was much smaller). On the other hand, method
#2 seems to provide too strong penalties: often the
factor (C � t)� grows too fast to be useful. The sys-
tem has little chances to escape from local optima:
in most experiments the best individual was found in
early generations. It is also worth mentioning that this
method gave very good results for test cases #1 and
#5, where the objective functions were quadratic.

Method #3 was not applied to test case #4, and it
did not give meaningful results for test case #5, which
has a very small ratio � (the smallest apart from the
test case #4). Clearly, the method is quite sensitive to
the size of the feasible part of the search space. Also,
some additional experiments indicated that the order
of constraints to be considered in
uenced the results
in a signi�cant way. On the other hand, the method
performed very well for test cases #1 and #3, and for
test case #2 it gave reasonable results.

Method #4 performed very well for the test cases #1,
#3 and #4, where it provided the best results. It
also gave a reasonable performance in test case #2
(where linear constraints were responsible for the fail-
ure of the methods #1 and #2). However, for test
case #5 the method gave quite poor results in com-
parison with methods #1, #2, and #6(f); it seems
that linear constraints of this problem prevented the
system from moving closer to the optimum. This is an
interesting example of the damaging e�ect of limiting
the population to the feasible (with respect to linear
constraints) region only. Additional experiments indi-
cated that the method is very sensitive to the cooling
scheme. For example, the results of the test case #5
were improved in a signi�cant way for di�erent cooling
scheme (�i+1 = 0:01 � �i).

Method #5 had di�culties in locating a feasible so-
lution for test case #2: similarly to methods #1 and
#2 the algorithm settled for unfeasible solution. In all
other test cases the method gave a stable, reasonable
performance, returning feasible solutions (test cases
#1, #3, and #5), or slightly unfeasible solutions (test
case #4). Additional experiments (not reported in the
tables) included runs of the method #5 with a feasible
initial population. For test case #2, the results were
almost identical to these of method #6(f)). However,
for test case #5, the results were excellent (the best of
all methods).

The method #6 (apart from test case #3) did not
produce any meaningful results. To test this method
properly it was necessary to initialize a population

by feasible solutions (method #6(f)). This di�erent
initialization scheme makes the comparison of these
methods even harder. However, an interesting pat-
tern emerged: the method generally gave a quite poor
performance. The method was not as stable as other
methods on the easiest test case #1 (this was the only
method to return a solution of �13:616, far from the
optimum), and for the test case #2 only in one run
the returned value was below 8000.

No single parameter (number of linear, nonlinear, ac-
tive constraints, the ratio rho, type of the function,
number of variables) proved their signi�cance as a
measure of di�culty of the problem for the evolution-
ary techniques. For example, all methods approached
the optimum quite closely for the test cases #1 and
#5 (with � = 0:0111% and � = 0:0003%, respec-
tively), whereas most of the methods experienced dif-
�culties for the test case #2 (with � = 0:0010%). Two
quadratic functions (test cases #1 and #5) with a sim-
ilar number of constraints (9 and 8, respectively) and
an identical number (6) of active constraints at the
optimum, gave a di�erent challenge to most of these
methods. It seems that other properties (the char-
acteristic of the objective function together with the
topology of the feasible region) constitute quite signif-
icant measures of the di�culty of the problem. Also,
several methods were quite sensitive to the presence of
a feasible solution in the initial population.

All of the methods presented here (except method #3)
penalized unfeasible individuals. The penalty func-
tions were based on the amount of violation (functions
fj). It might be worthwhile to experiment also with
penalties (as suggested in [15]) which incorporate ad-
ditional information about the objective function: the
estimation of its trend and maximum derivative. Ad-
ditionally, other constraint handling methods deserve
some attention. One of them (currently being imple-
mented) is based on repair algorithms: an unfeasible
solution X is \forced" into the feasible region and its
repaired version is evaluated. The question, whether
the repaired version should replace the original vector
in the population (and, if yes, with what probabil-
ity) remains open.9 An additional possibility would
include the use of the values of objective function f
and penalties fj as elements of a vector and apply-
ing multi-objective techniques to minimize all compo-
nents of the vector [18] (however, analysis of Schaf-
fer's VEGA system indicated the equivalence between

9For discrete cases, Orvosh and Davis reported so-called
5% rule [12], which states that in many combinatorial opti-
mization problems, an evolutionary computation technique
with a repair algorithm provides the best results while 5%
of repaired individuals replace their unfeasible originals.



multiobjective optimization and linear combination of
f and fj 's [15]). Also, an interesting approach was
recently reported by Paredis [13]. The method (de-
scribed in the context of constraint satisfaction prob-
lems) is based on a co-evolutionary model, where a
population of potential solutions co-evolves with a
population of constraints: �tter solutions satisfy more
constraints, whereas �tter constraints are violated by
more solutions. It would be interesting to adopt this
method for numerical optimization problems and com-
pare this approach with the penalty methods.

Acknowledgments:

This material is based upon work supported by the Na-
tional Science Foundation under Grant IRI-9322400.

References

[1] B�ack, T., Ho�meister, F., and Schwefel, H.-P., A
Survey of Evolution Strategies, Proceedings of the
Fourth ICGA, Morgan Kaufmann Publishers, Los
Altos, CA, 1991, pp.2{9.

[2] De Jong, K.A., An Analysis of the Behavior of

a Class of Genetic Adaptive Systems, (Doctoral
dissertation, University of Michigan), Disserta-
tion Abstract International, 36(10), 5140B. (Uni-
versity Micro�lms No 76-9381).

[3] Eshelman, L.J. and Scha�er, J.D, Real-Coded Ge-
netic Algorithms and Interval Schemata, Founda-
tions of Genetic Algorithms { 2, Morgan Kauf-
mann, Los Altos, CA, 1993, pp. 187{202.

[4] Floudas, C.A. and Pardalos, P.M.,A Collection of

Test Problems for Constrained Global Optimiza-

tion Algorithms, Springer-Verlag, Lecture Notes
in Computer Science, Vol.455, 1987.

[5] Fogel, D.B. and Stayton, L.C., On the E�ective-

ness of Crossover in Simulated Evolutionary Op-

timization, BioSystems, Vol.32, 1994, pp.171{182.

[6] Hock, W. and Schittkowski K., Test Examples for
Nonlinear Programming Codes, Springer-Verlag,
Lecture Notes in Economics and Mathematical
Systems, Vol.187, 1981.

[7] Homaifar, A., Lai, S. H.-Y., Qi, X., Constrained
Optimization via Genetic Algorithms, Simulation,
Vol.62, No.4, 1994, pp.242{254.

[8] Joines, J.A. and Houck, C.R., On the Use of Non-
Stationary Penalty Functions to Solve Nonlinear

Constrained Optimization Problems With GAs,
Proceedings of the IEEE ICEC 1994, pp.579{584.

[9] Michalewicz, Z., Genetic Algorithms + Data

Structures = Evolution Programs, Springer-
Verlag, New York, 2nd edition, 1994.

[10] Michalewicz, Z., A Survey of Constraint Handling

Techniques in Evolutionary Computation Meth-

ods, Proceedings of the 4th Annual Conference
on Evolutionary Programming, MIT Press, Cam-
bridge, MA, 1995.

[11] Michalewicz, Z., and Attia, N., Evolutionary Op-
timization of Constrained Problems, Proceedings
of the 3rd Annual Conference on Evolutionary
Programming, World Scienti�c, 1994, pp.98{108.

[12] Orvosh, D. and Davis, L., Shall We Repair?

Genetic Algorithms, Combinatorial Optimization,

and Feasibility Constraints, Proceedings of the
Fifth ICGA, Morgan Kaufmann, 1993, p.650.

[13] Paredis, J., Co-evolutionary Constraint Satisfac-

tion, Proceedings of the 3rd PPSN Conference,
Springer-Verlag, 1994, pp.46{55.

[14] Powell, D. and Skolnick, M.M., Using Genetic

Algorithms in Engineering Design Optimization

with Non-linear Constraints, Proceedings of the
Fifth ICGA, Morgan Kaufmann, 1993, pp.424{
430.

[15] Richardson, J.T., Palmer, M.R., Liepins, G., and
Hilliard, M., Some Guidelines for Genetic Al-

gorithms with Penalty Functions, in Proceedings
of the Third ICGA, Morgan Kaufmann, 1989,
pp.191{197.

[16] Schoenauer, M., and Xanthakis, S., Constrained
GA Optimization, Proceedings of the Fifth ICGA,
Morgan Kaufmann, 1993, pp.573{580.

[17] Schwefel, H.-P., Numerical Optimization for

Computer Models, Wiley, Chichester, UK, 1981.

[18] Surry, P.D., Radcli�e, N.J., and Boyd, I.D.,
A Multi-objective Approach to Constrained Op-

timization of Gas Supply Networks, presented at
the AISB-95 Workshop on Evolutionary Comput-
ing, She�eld, UK, April 3-4, 1995.

[19] Wright, A.H., Genetic Algorithms for Real Pa-

rameter Optimization, First Workshop on the
Foundations of Genetic Algorithms and Classi�er
Systems, Morgan Kaufmann Publishers, Los Al-
tos, CA, 1991, pp. 205{218.


