Control Data Flow Graphs
- Enabling Vertices

Sue Tyerman

School of Computer Science
University of Adelaide
Inputs/outputs/data

- The vertex is where choices are made.
- Edges store and transfer data
 - Both *data* and *control*
 - It is all data
- What things can influence choice?
 - Which inputs?
 - What data on the inputs?
 - What transformations by the vertex?
 - What outputs?
What things can influence choice?

- Input edge
 - Connectors: copy, branch, merge, join - no choice
 - Priority: one edge has priority over others

- Data
 - Data affects choice of edge: inspection of values on the edge

- Transformation
 - Vertex computation determines behaviour
What things can influence choice?

- Output edge
 - Connectors - no choice
 - Priority: one edge has priority over others
 - Extreme example is the *hot potato*
 - get rid of the result ASAP
 - so any edge will do
Some new work (1)

∀ e ∈ I(ν) : \[e = [a_1, a_2...a_n] \quad \text{if } R(e) \]
\[e = \bot \quad \text{if } \neg R(e) \]

Head({e}) = \[(a_1) \quad \text{if } R(e) \]
\[\bot \quad \text{if } \neg R(e) \]

Head(X) = (Head(e_1), Head(e_2)...Head(e_n)) \text{ where } X \subseteq I(ν)
Input function

- Input function on a vertex returns sets of sets of edges
- These sets of edges are possible enabling sets
- This is a dynamic activity, with the composition of the set of sets altering as input edges acquire data
- The guard belonging to each I can examine the readability of edges as well as the values on the edges to determine if a particular enabling is valid.
- All input edges of a vertex are candidates for membership of X, not just members of the enabling set.

\[I(v, \text{Head}(X)) \subseteq \mathcal{P}(\bullet v) - \{\{\}\} \text{ where } v \in V, X \subseteq \bullet v \]

\[\forall e \in \bullet v : \exists S \in I(v) : e \in S \]
Example

Figure 1: A Simple CDFG showing a vertex with a single input edge and single output edge
Example

Figure 2: A Simple CDFG showing a vertex with three input edges and a single output edge.
Example

Figure 3: A Simple CDFG showing a vertex with three input edges and three output edges
Example

Figure 4: A Simple CDFG showing a vertex with a single input edge and three output edges
Power sets of inputs and outputs

- $I(v_2) = \{\{e_1\}\}$
- $O(v_2) = \{\{e_2\}\}$
- $I(v_7) = \{\{e_4\}\{e_5\}\{e_6\}\{e_4, e_5\}\{e_4, e_6\}\{e_5, e_6\}\{e_4, e_5, e_6\}\}$
- $O(v_7) = \{\{e_7\}\}$
Power sets of inputs and outputs

- $I(v_{12}) = \{ \{ e_9 \} \{ e_{10} \} \{ e_{11} \} \{ e_9, e_{10} \} \{ e_9, e_{11} \} \{ e_{10}, e_{11} \} \{ e_9, e_{10}, e_{11} \} \}$
- $O(v_{12}) = \{ \{ e_{12} \} \{ e_{14} \} \{ e_{15} \} \{ e_{12}, e_{14} \} \{ e_{12}, e_{15} \} \{ e_{14}, e_{15} \} \{ e_{12}, e_{14}, e_{15} \} \}$
- $I(v_{17}) = \{ \{ e_{16} \} \}$
- $O(v_{17}) = \{ \{ e_{18} \} \{ e_{19} \} \{ e_{20} \} \{ e_{18}, e_{19} \} \{ e_{18}, e_{20} \} \{ e_{19}, e_{20} \} \{ e_{18}, e_{19}, e_{20} \} \}$
Data flow nodes

- Nodes that do not have input or output choice
- Guard evaluates to true if all input edges have values
- $I(v_2) = \{\{e_1\}\}$, $O(v_2) = \{\{e_2\}\}$
- $I(v_7) = \{\{e_4, e_5, e_6\}\}$, $O(v_7) = \{\{e_7\}\}$
- $I(v_12) = \{\{e_9, e_{10}, e_{11}\}\}$, $O(v_12) = \{\{e_{12}, e_{14}, e_{15}\}\}$
- $I(v_{17}) = \{\{e_{16}\}\}$, $O(v_{17}) = \{\{e_{18}, e_{19}, e_{20}\}\}$
End of slide show

Definitions follow
Definitions (1)

A CDFG is a tuple $C = (V, E, I, O)$ where

(V, E) is a connected, directed graph,
I is a function mapping each vertex to an (input) enabling function,
O is a function mapping each vertex to a possible set of outputs.
Definitions (2)

\[V = \{v_1, \ldots, v_n\} \]

is a finite set whose elements are nodes

\[E \subset V \times V \text{ is an irreflexive flow relation, } \]

whose elements are directed edges

\[V \cap E = \emptyset \]
Definitions (3)

\[w = \{(v, w) \in E \mid v \in V, w \in V\} \]

\[\text{in-deg}(w) = |w| \]

\[w\bullet = \{(w, v) \in E \mid v \in V, w \in V\} \]

\[\text{out-deg}(w) = |w\bullet| \]
Definitions (4)

\[I(v) \subseteq \mathcal{P}(\bullet v) - \{\{\}\} \quad \text{where} \quad v \in V \]
\[\forall e \in \bullet v : \exists S \in I(v) : e \in S \]

\[O(v) \subseteq \mathcal{P}(v\bullet) - \{\{\}\} \quad \text{where} \quad v \in V \]
\[\forall e \in v\bullet : \exists T \in O(v) : e \in T \]

\[\forall e \in E : R(e) \in \text{Boolean}, W(e) \in \text{Boolean} \]
\[\forall v \in V : F(v) \in \text{Boolean} \]

\[P = (R, W, F) \]
Definitions (5)

\[I(v) = \{ \bullet v \} \text{ where } v \in V \]
\[O(v) = \{ v\bullet \} \text{ where } v \in V \]

For any node \(v \) that is a pure data flow node
\[|I(v)| = 1 \]
\[|O(v)| = 1 \]

For any node \(v \) that is not a pure data flow node
\[|I(v)| > 1 \lor |O(v)| > 1 \]
Definitions (6)

An edge may hold multiple values and so we define
\(\text{Size}(e) \) and \(\text{Capacity}(e) \). Then
\[
R(e) = \text{Size}(e) > 0 \quad \text{and} \quad W(e) = \text{Size}(e) < \text{Capacity}(e)
\]
If \(\text{Capacity}(e) \) is 1, then \(R(e) \neq W(e) \)

\[
S \in I(v) : \forall e \in S : R(e)
\]

\[
en(V) = \\
\{ v \in V \mid \neg F(v) \wedge \exists S \in I(v) : \forall e \in S : R(e) \}
\]

\[
T \in O(v) : \forall e \in T : W(e)
\]
A node v which is enabled on the basis of $S \in I(v)$ can start firing which causes a change of state from (R, W, F) to (R', W', F')

where

$$
F'(w) = \begin{cases}
F(w) & \text{if } w \neq v \\
true & \text{if } w = v
\end{cases}
$$

and

$$
\begin{align*}
R'(e) &= R(e), W'(e) = W(e) & \text{if } e \notin S \\
Size'(e) &= Size(e) - 1, \\
W'(e) &= Size'(e) < Capacity(e), \\
R'(e) &= Size'(e) > 0 & \text{if } e \in S
\end{align*}
$$
Definitions (8)

A node \(v \) may complete firing on the basis of \(T \in O(v) \) which causes a change of state from \((R, W, F)\) to \((R', W', F')\)

where

\[
\begin{align*}
F'(w) &= F(w) \quad \text{if } w \neq v \\
F'(v) &= \text{false} \quad \text{if } w = v
\end{align*}
\]

and

\[
\begin{align*}
R'(e) &= R(e), \quad W'(e) = W(e) \quad \text{if } e \notin T \\
\text{Size}'(e) &= \text{Size}(e) + 1, \quad \text{if } e \in T \\
W'(e) &= \text{Size}'(e) < \text{Capacity}(e), \\
R'(e) &= \text{Size}'(e) > 0
\end{align*}
\]
Definitions (9)

\[\forall e \in E : Type(e) \in \Delta, \]

where \(\Delta \) is an infinite set of types

\[queue(e) = [a_1, a_2...a_n] \]

\[Size(e) = n \text{ where } n \leq Capacity(e) \]
Definitions (10)

if $\text{Size}(e) > 0$ then $\text{Read}(e)$ transforms $\text{queue}(e)$ to $\text{queue}'(e)$

where $\text{queue}'(e) = [a_2 \ldots a_n]$

if $\text{Size}(e) < \text{Capacity}(e)$ then $\text{Write}(e, x)$ transforms $\text{queue}(e)$

to $\text{queue}'(e)$ where $\text{queue}'(e) = [a_1, a_2 \ldots a_n, x]$
Definitions (11)

When a vertex \((v)\) begins firing, the values on the edges in \(S\) are read and initialise the value on the vertex \((\text{Val}(v))\) where

\[
\text{Val}(v) = \text{init}_S(\text{Read}_S(e_1), \text{Read}_S(e_2), \ldots, \text{Read}_S(e_n))
\]

where \(S = \{e_1, e_2, \ldots, e_n\}\)
When a vertex (v) completes firing, the initial value of the vertex (Val(v)) is transformed by the operation X to Val'(v) and this is used to produce the outputs on the edges of T

\[Val'(v) = ((Write_T(e_1, Val'(v)), Write_T(e_2, Val'(v))...Write_T(e_n, Val'(v))) \]

where \(T = \{e_1, e_2, \ldots e_n\} \)
Definitions (13)

\[O(v, \text{Val}(v)) \subseteq \mathcal{P}(v\bullet) - \{\{\}\} \text{ where } v \in V \]

\[| O(v, \text{Val}'(v)) | > 0 \]