Control Data Flow Graphs
An experiment using Design/CPN

Sue Tyerman

Outline

• Informal description of CDFGs
• Current proposed general formalism for CDFGs
• Experiment using Design/CPN
• Next phase....
Informal description of CDFGs (1)

- Scheduling is the most popular application area for CDFGs
- Used as an intermediate form to carry out optimisations
- Examples in circuit design
 - Find spare cycles to insert self test circuitry
 - Save resources (components, time)

Informal description of CDFGs (2)

- Captures data and control flow in one graph
- Composed of
 - Vertices
 - Directed edges
- Event driven
 - Data or control event on an edge
- Vertices
 - Transformative operations
 - Cause and detect events
- Edges
 - Communication, storage and precedence
Informal description of CDFGs (3)

- Dynamic behaviour of CDFGs
 - When a vertex fires
 - Consumes inputs
 - Carries out transformation
 - Produces output
 - Vertices must be enabled to be able to fire
 - Vertex has an enabling function
 - The enabling function assesses all inputs
 - Firing may only require a subset of inputs

- Type and order are important in CDFGs
 - Queue vs overwrite semantics

Informal description of CDFGs (4)

- Visualisation

Quiescent Vertex

Enabled Vertex

Firing Vertex

Vertex after firing
Current proposed general formalism for CDFGs (1)

A CDFG is a tuple $C = (V, E, I, O)$, where:

1. (V, E) is a connected, directed graph,
2. I is a function mapping each vertex to an (input) enabling function,
3. O is a function mapping each vertex to a possible set of outputs.

- All vertices in the set of V are uniquely identified
 $V = \{v_0, \ldots, v_n\}$ is a finite set whose elements are nodes

- Each edge captures the relationship between the nodes it connects
 $E \subseteq V \times V$ is an irreflexive flow relation whose elements are directed edges

$V \cap E = \emptyset$

Current proposed general formalism for CDFGs (2)

- The set of edges directed to a vertex w is the pre-set $\bullet w$, or the set of predecessor edges, of that vertex.
- This means that an edge is in the pre-set of the destination of the edge.
- The in-degree of a vertex ($\text{in-deg}(w)$) is the number of elements in the pre-set of that vertex.

$\bullet w = \{(v, w) \in E \mid v \in V, w \in V\}$

$\text{in-deg}(w) = |\bullet w|$
Current proposed general formalism for CDFGs (3)

- The set of edges leading from a vertex \(w \) is the post-set \(w^* \), or the set of successor edges, of that vertex.
- This means that an edge is in the post-set of the source of the edge.
- The out-degree of a vertex (out-deg(w)) is the number of elements in the post-set of that vertex.

\[
\begin{align*}
 w^* &= \{(w, v) \in E | v \in V, w \in V\} \\
 \text{out-deg}(w) &= |w^*|
\end{align*}
\]

Current proposed general formalism for CDFGs (4)

- The function I maps each vertex to an enabling function.
- The enabling function is a set of subsets of the pre-set of a vertex, excluding the empty set.
- If there is only one possible enabling for a vertex, then the single element given by the enabling function must contain all members of the pre-set.
- Where there is more than one possible enabling, each member of the pre-set must contribute to at least one of those possible enablings.
- The possible set of output edges is a subset of the post set, excluding the empty set.

\[
\begin{align*}
 I(v) &= \mathcal{P}(\mathcal{P}(v^*)) - \{\}\ 	ext{where } v \in V \\
 O(v) &= \mathcal{P}(w^*) - \{\}\ 	ext{where } v \in V
\end{align*}
\]
Current proposed general formalism for CDFGs (5)

• The state P of CDFG C is given by a pair (R, F) where R is a function giving the readable status of each edge, and F is a function giving the firing status of each vertex.

\[\forall e \in E : R(e) \in \text{Boolean} \]
\[\forall v \in V : F(v) \in \text{Boolean} \]
\[P = (R, F) \]

• Readable edges in the pre-set of a vertex may contribute to a number of possible enablings. Only one such S will be selected when the vertex fires.

\[S \in I(v) : \forall e \in S : R(e) \]

Current proposed general formalism for CDFGs (6)

• We define $en(V)$, the set of enabled vertices as the vertices whose enabling function returns true.

• The enabling function requires that a vertex not be firing and that there is a set of edges that are readable and satisfy the enabling function for that vertex.

\[en(V) = \{ v \in V \mid \neg F(v) \land \exists S \in I(v) : \forall e \in S : R(e) \} \]
Current proposed general formalism for CDFGs (7)

- A vertex can start firing if it is enabled.
- In doing so, those edges that contribute to the enabling are read and are set to not readable.

A node \(v \) which is enabled on the basis of \(S \in I(v) \) can start firing which causes a change of state from \((R, F) \) to \((R', F') \) where

\[
F'(w) = F(w) \quad \text{if } w \neq v \\
F'(v) = \text{true} \quad \text{otherwise}
\]

and

\[
R'(e) = R(e) \quad \text{if } e \notin S \\
R'(e) = \text{false} \quad \text{if } e \in S
\]

Current proposed general formalism for CDFGs (7)

- A vertex may finish firing and produce outputs if a possible subset \(T \) of the post-set is writeable.
- Those edges that are affected by the completion of firing are written to and are set to readable.

\(T \in O(v) : \forall e \in T : \neg R(e) \)

A node \(v \) may complete firing on the basis of \(T \in O(v) \) and cause a change of state from \((R, F) \) to \((R', F') \) where

\[
F'(w) = F(w) \quad \text{if } w \neq v \\
F'(v) = \text{false} \quad \text{otherwise}
\]

and

\[
R'(e) = R(e) \quad \text{if } e \notin T \\
R'(e) = \text{true} \quad \text{if } e \in T
\]
Experiment using Design/CPN (1)

- Use Petri Nets as a denotational semantics
 - One safe nets have limited capacity to model CDFGs
 - Single type of token
 - Modeling queues is difficult
 - Use colored Petri Nets
 - Support types and queues (lists)
 - Use Design/CPN to model and simulate CDFGs

Experiment using Design/CPN (2)

- When a CDFG executes, the order of events must be maintained
 - Cannot use a bag as this is not ordered
- A FIFO queue is a useful representation of a CDFG edge
- A CDFG node behaves atomically
 - This is problematic once we start looking at hierarchy and efficiency but will leave this as is for the moment
- A CDFG node takes time to execute
 - While not looking at time in the formalism it is still useful to consider
Experiment using Design/CPN (3)

- Simple Petri Net model of a CDFG
- Each edge maps to a single place
- Each node maps to a net comprising 2 transitions and two places
 - Enabling transition
 - Place invariant
 - Data place
 - Completion of firing transition
- Place invariant ensures only one set of inputs are processed per CDFG node execution cycle
- Does not prevent multiple tokens building up in CDFG edges
- Allows us to think about duration (between start and end of firing)

Experiment using Design/CPN (4)

- Alternative CPN model of a CDFG
 - Sequence
 - Uses an edge invariant to limit storage on the edge to one element
 - Limitations and difficulties using this model
Experiment using Design/CPN (5)

- Alternative CPN model of a CDFG
 - Sequence
 - Node modeled as a single transition
 - Edge modeled as a FIFO queue

- Input and output to the environment
 - Edges have elements added and removed in order
Experiment using Design/CPN (6)

- **Basic node**
 - All nodes based on this model
 - Interacts with connecting edges for input and output
 - Only wait if input not available
 - Note the guard on StartFiring
 - Initialisation of Invariant limits number of inputs
 - Set to one in all cases
 - Need to implement queues

- **Null Node**

- **Simple Branch**
Experiment using Design/CPN (8)

- **Simple Join**
 - Note altered guard
 - In this example, the function `hd(plist01)` is used. Other functions can replace it to achieve different results.

Experiment using Design/CPN (9)

- **Simple Merge**
 - Non-deterministic
Experiment using Design/CPN (10)

- Top level model of a trivial example

Experiment using Design/CPN (11)

- Top level model of a trivial example
Experiment using Design/CPN (12)

- Top level model of a trivial example
Experiment using Design/CPN (14)

- Top level model of a trivial example

Experiment using Design/CPN (15)

- Model of the GCD example
 - Edges behave as FIFO queues
 - Input and Output ports behave as interface with the environment so GCD has a consistent interface with the edges
Experiment using Design/CPN (16)

- GCD node

Experiment using Design/CPN (17)

- Original GCD model
 - Looks less cluttered but is a less suitable/accurate model for CDFG

```.scheme
(* OUTSIDE WORLD *)
val Edgelimit = 1;
color AI = int;
color Token = with present;
var a, b, c, plain, is01 : AI;
var token : Token;
```
Experiment using Design/CPN (18)

- Original GCD node

Nexy phase....

- Some interesting observations have been made during this experiment
- If a queue is used the definition of a readable or writeable edge has to be modified
 - An edge is readable if the queue is not empty
 - An edge is writeable if the queue is not full
 - This also has an effect on whether a node can fire
 - Removes the potential for a graph to stall because a node cannot output a result
Next phase....

- The enabling function can be very complex when lists are used in CPN to model the queue
 - CPN permits an empty queue to participate in a transition
 - CDFG nodes only become enabled and fire if there is input ie an empty input cannot participate in an enabling or firing
 - Guards and inscriptions on arcs are all part of the enabling and firing conditions

Next phase....

- CPN does not make it easy if we wish to build nodes with n-ary inputs or outputs out of simpler components while retaining semantics (possible opportunity?)
Next phase....

- **Control and data information on edges is fundamentally the same**
 - data
 - The difference is how it is used by the nodes
 - The difference between control-flow nodes and purely data-flow nodes is the element of choice
 - Purely data-flow nodes are deterministic
 - No cycles, no branching based on choice
 - Purely data-flow graphs behave deterministically, with all nodes firing and all arcs utilised in any execution cycle.

Next phase....

- **If only one set of inputs is processed by a node at any given time is it possible to simplify the general graph?**
 - Change lists to single elements of the list
 - Remove feedback arcs
 - Certainly if the graph is a data-flow graph ie deterministic
 - Not sure if the graph contains some element of control
 - Might be possible if the control is restricted to a sub-graph
Next phase....

• Current CDFG model does not allow
 — Nodes that do not produce output
 — A node to have an arc to itself