Bounded Persistence
Pathwidth

- R. Downey and C. McCartin
 - Pgs 51-56 ACSC

- Background
 - Graph width metrics
 - Treewidth, pathwidth, cliquewidth
 - Restricting width parameter can lead to efficient algorithms
 - E.g. treewidth – gives a measure of how tree-like a graph is

- Persistence
 - New parameter for graphs
Treewidth and tree decomposition

- A graph G has treewidth k if we can associate a tree T such that
 - Each node of T represents a subgraph of G with at most $k+1$ vertices
 - All edges and vertices of G are in at least one of the nodes of T
 - For each vertex v in G the nodes of T where v is represented is a subtree of T
- Such a tree is called a tree decomposition of G

Pathwidth

- A path decomposition of a graph G is a tree decomposition, where the tree is a path
- The pathwidth of G is the minimum width over all possible path decompositions of G
 - Path decomp is also a tree decomp of G
 - Pathwidth is greater than or equal to treewidth
- E.g. for a complete binary tree of height k
 - Pathwidth $= k$
 - Treewidth $= 1$
Bounded persistence pathwidth

- Pathwidth doesn’t always give a true indication of the pathlike nature of a graph
 - There are some pathological cases
 - Introduce persistence to deal with this
- A path decomposition of width k in which every vertex belongs to at most l nodes of the path has pathwidth k and persistence l
 - Graphs with low width and low persistence are pathlike
 - Graphs with low width and high persistence are unnatural
- **BUT:** determining bounded persistence pathwidth is W[t]-hard

Factorising temporal specifications

- Huisman and Trentelman
- CATS pgs 87-96
- Verification of multi-threaded programs
- Aim to lighten the burden of proof
- Show there exists a group of threads that establish the property while the others do not affect it
Programs and specifications

- **Programs**
 - Labelled transition systems (LTS)
 - Composition of threads $T_1 \parallel T_2$
 - Traces
- **Temporal specifications**
 - Represented using specification patterns
 - Semantics defined by mapping patterns to LTL
 - Defined in Isabelle/HOL

Specification patterns

- Describe most of the common constructs in temporal logics (e.g. LTL, CTL, ...)
- For each pattern a mapping into different logics can be defined
- Each pattern describes a property that holds in a certain scope
 - Globally, After, Before, Between, AfterUntil
- Two kinds of properties
- Occurrence
 - Absent, Universal, Exists
- Order
 - RespondsTo, Precedes
Factorisation rules

- Factorisation rules are defined for the different temporal properties
- E.g.

Agent-based distributed software verification

- Hunter, Robinson & Strooper
- ACSC pgs 159-164
- Techniques have been developed for verifying imperative programs
- BUT: Cost of developing proofs is too expensive
 - By hand is tedious and error prone
 - Use interactive provers instead
 - Manual steps for hard bits
 - Automatic proof construction for easy bits
 - But still too expensive
Distributed interactive theorem proving

- *Increase cost-effectiveness*
 - Execution of tactics in the background
 - Manual proof construction in the foreground
 - Active communication between these tasks

Architecture

- User
 - Proof

- Personal Assistant
 - Broker
 - Proof Agent
 - Proof Agent
Architecture (cont)

- **Personal assistant**
 - Monitor proof
 - Use proof agents to construct parts of proof
 - Interface to help user complete problematic subproofs
- **Proof agents**
 - Automated reasoning capabilities
 - Encapsulate particular reasoning style, search strategy or domain
 - Provide estimate of its chance of satisfying particular goal
- **Broker**
 - Puts agents in touch with each other

Stemming Indonesian

- **Asian, Williams & Tahaghoghi**
- **ACSC pgs 307-314**
- **Stemming used in information retrieval, web browsing etc.**
 - Involves finding the root of a word
 - E.g. stemming, stemmer and stems have root word stem
 - The problem is addressed fairly well in English
 - Root word is usually a prefix
 - Other languages not so easy
Stemming Indonesian (cont)

- Indonesian has a more complex class of affixes
 - Prefixes
 - Suffixes
 - Infixes
 - Confixes
- E.g. the word “pemerintah” (meaning government) has the root “perintah” (meaning govern)
- The authors compare 5 stemming algorithms for Indonesian
 - A best algorithm is found
 - Improvements are proposed to increase accuracy

Other papers

- When are two workflows the same?
 - CATS Pgs 3-11
- Concurrent program design in the extended theory of Owicki and Gries
 - CATS pgs 41-50
- A two-pronged attack on the dragon of intractability
 - ACSC pgs 183-192
 - Another parameterised complexity paper