P4 - Encryption Scheme

Most text encryption schemes use a secret key string to convert the plain text to the enciphered text in some way. A novel method being tested by the Australian Security Service consists of a transformation of a key string \(K \) into a target string \(P \) using block moves. Each block move is of the form \(\text{copy}(\text{start}, \text{length}) \), where \(\text{start} \) indicates a position in \(K \) and \(\text{length} \) is the number of characters to be copied from \(K \) to \(P \). Since the idea is to eventually transmit only the block moves, the principle is to use as few block moves as possible. For example if:

\[
\begin{align*}
K & : \text{abaabba} \\
P & : \text{aaabbabbbbaaa}
\end{align*}
\]

Assuming that here string positions start with 1, two shortest block move sequences would be:

\[
\text{copy}(3,2);\text{copy}(4,3);\text{copy}(2,2);\text{copy}(5,2);\text{copy}(2,3);\text{copy}(1,1)
\]

or

\[
\text{copy}(7,1);\text{copy}(3,3);\text{copy}(5,2);\text{copy}(4,2);\text{copy}(5,3);\text{copy}(3,2)
\]

The actual shortest block move sequences are not unique but the minimum number is, 6 in this case. If the moves are now transmitted, then it is possible to construct the plaintext message \(P \) from the key string \(K \).

The Australian Security Service is now automating this procedure, so given \(K \) and \(P \) they need to count the minimum number of block moves from \(K \) to \(P \). To make things simple at the beginning, they are considering strings comprised of lowercase letters and digits. The set of characters within string \(P \) is a subset of the set of characters of the key string \(K \).

You are to help the Australian Security Service by writing a program to get two strings \(K \) and \(P \) as above, and print the minimum number of block moves from \(K \) to \(P \). Your code will be tested with a sequence of lines. Odd lines are to be used as the key strings \(K \), and even lines to be used as target strings \(P \). The output will consist solely of the minimum number of block moves for each pair. The input will be terminated by a ‘#’ by itself in the place of a \(K \) string.

Assume that each of \(K \) and \(P \) is made up of 1 to 120 characters (\(K \) is allowed to be longer than \(P \)).
SAMPLE INPUT

abaabba
aaabbbabbbaaa
xy0z
zzz0yyy0xxx
#

SAMPLE OUTPUT

6
10

COMMENTS

The first sample is discussed on the first page. Here follows a minimal sequence of block moves for the second sample:

\[
copy(4,1); copy(4,1); copy(4,1); copy(3,1);
copy(2,1); copy(2,1); copy(2,2);
copy(1,1); copy(1,1); copy(1,1)
\]