Lightweight Consistency Analysis of Dataflow Process Networks

Yan Jin Robert Esser Charles Lakos

Department of Computer Science, University of Adelaide, Adelaide, SA 5005, Australia
Email: {yan, esser, charles}@cs.adelaide.edu.au

Abstract

Process networks are a popular modelling technique for distributed computing and signal processing applications. The ability to support various parallelism or communication patterns also makes them suitable for modelling multi-processor architectures. At the architecture description level, the language provides the flexibility to model actual processes using various formalisms. This is especially important when the systems are comprised of parts with distinct characteristics, e.g., control-based or dataflow-oriented. However, this heterogeneity of processes poses a challenge for the consistency analysis of process networks. This research proposes a lightweight method for analyzing the consistency of such networks. The method employs interface automata as a bridge between the architectural model and heterogeneous components representing concrete models of processes. Utilising interface automata, consistency is determined by a series of small tasks at both the architecture level and the component level. This separation of concerns simplifies the handling of heterogeneous components and alleviates the potential state space explosion problem when analyzing large systems.

Keywords: component-based systems, consistency analysis, dataflow process networks

1 Introduction

In recent years, component-based development has emerged as a significant factor in the production of large-scale software applications. By building systems from independently developed components, a promising means of achieving software reuse, rapid development and quality improvement is provided.

Typically, components are black-box entities that encapsulate services behind their interfaces. The specifications of these interfaces tend to be rather limited, often capturing only the signatures of components. Even with additional informal descriptions, such specifications are not adequate for designing reliable and evolving software systems. Instead, what is needed are more rigorous specifications which capture interface behaviours of components, including what services a component provides, how it is properly deployed, and the dependencies between its inputs and outputs. Naturally these specifications must not disclose implementation details of their associated components.

Having suitable specifications for the components is only part of the story — it is also necessary to provide flexible composition schemes. Direct composition is often difficult and sometimes impossible. Instead, it is preferable to provide flexible connectors so that component-based systems can be constructed using various design strategies (Bachman, Bass, Buhman, Comella-Dorda, Long, Robert, Seacord & Wallnau 2000), where suitable architectural styles, e.g., pipe-and-filter and client/server architectures, can be employed. These styles describe the types of components and the allowable interaction patterns at a high level of abstraction. The major challenge is then to ensure that the resulting systems are consistent (namely, all components are deployed properly in the design) and that these systems meet global functional and non-functional requirements such as structural invariants, reliability and security. This problem is even more important when designing hierarchical systems comprising of components with internal architectures, where different styles may be applied at different levels.

This paper presents a step towards the component-based development and modular analysis of dataflow process networks. Here, components (or processes) communicate through their input and output ports and the interconnection of components specifies a causality relation between data flow through input and output ports of the components.

Usually, the consistency of such a network is described by some safety properties over communications among components. To prove consistency, model checkers have to be employed which construct the whole state space of the network and check it against these properties. However, this approach suffers from the state space explosion problem as the state space of the network grows exponentially with the number of its components (or processes).

In order to avoid this problem, the composition of components is not analysed directly in this approach. Instead, interface automata (de Alfarò & Henzinger 2001) are associated with components, specifying the external interaction protocol of the components at a high level of abstraction. The protocols can capture not only how components react to their inputs but also the assumptions of components on when or what inputs are expected. Acting as the contracts between components, these protocols are the key for enabling modular analysis of process networks. Also, with the ability of interface automata to capture the input assumptions of components, we obviate the need for explicitly specifying the consistency properties of process networks (de Alfarò & Henzinger 2001).

The consistency check is now a two-stage process. Firstly, each component in a process network is checked for consistency with its corresponding interface automaton, namely, it communicates with the environment in a way that conforms to the external interaction protocol described by the automaton. More specifically, all the outputs which can be gener-
The term consistency has been used by the research community with different meanings in different contexts, e.g. the cache consistency of cache coherent protocols (Delzanno 2000), the consistency between multiple viewpoints of systems (Fradet, Métayer & Perin 1999, Sunetnante & Finkelstein 2001, Nuseibeh, Easterbrook & Russo 2001), and the compatibility and substitutability of components in component-based systems (van der Aalst, van Hee & van der Toorn 2002, Yellin & Storm 1997, Inverardi, Wolf & Yankelevich 2000, Uchitel & Yankelevich 2000). Our focus is on component-based systems.

First of all, our interpretation of consistency is inspired by (van der Aalst et al. 2002). There, components and their interface behaviour requirements are described by a variant of classical Petri Nets, called component nets (C-nets). The consistency between components and their substitutability are defined in terms of projection inheritance. More specifically, a component model is said to be a subclass of its behaviour requirement model under projection inheritance if and only if the former is a branching bisimulation (van Glabbeek & Weijland 1996) of the latter after hiding all additional methods. This relation-servies than its requirement model, which may limit the reusability of components. In our approach, alternating simulation (de Alfaro & Henzinger 2001) is employed to define consistency, which allows implementations to handle more legal inputs (or service requests) than specified by its requirement. Furthermore, the components in (van der Aalst et al. 2002) are different in nature from ours. Their components are not input-universal (i.e., an input can be refused) and the decision when to fetch an input is controlled by the component itself. In our approach components are required to be input-universal (i.e., an input can never refused) and hence the environment controls when a component receives an input. In addition, in our approach the substitutability of heterogeneous components can be checked with the aid of interface automata.

Interface automata were first introduced in (de Alfaro & Henzinger 2001). The authors established simple but well-defined semantics for them and defined their composition by two-party synchronization. Also, alternating simulation was proposed to determine a refinement relationship between interface automata. This relationship takes an optimistic view of the environment by assuming that it is always helpful, only supplying inputs on request and always accepting an output produced by the automaton. This optimistic view allows more possible implementations than a pessimistic approach where the environment can behave as it pleases. Furthermore, an algorithm for refinement checking between two interface automata was given, which first computes the Cartesian product of the state spaces of the automata and then recursively removes from the product states that do not meet the refinement conditions until a fix-point is reached. In our approach, alternating simulation is adapted to define the consistency of discrete-event components with interface automata, which takes into account data values in components. As components generally have infinite state spaces, the same checking algorithm cannot apply. Instead, we propose a different method where the mirror of an interface automaton is constructed that represents all helpful environments of a component to be checked. The consistency is then determined by the absence of error states in the product of the component and the mirror. Our method is simpler as it does not require the construction of the Cartesian product of the state spaces of the specification and the implementation — only the reachable states in the product needs to be constructed. Also, in contrast to their simple composition scheme of interface automata, we allow interface automata to be composed in many more ways reflecting how process networks can be constructed.

The construction of mirrors in our approach is inspired by (Rajamani & Rehof 2002), where mirrors are built to check the conformance (or refinement) relationship between models of asynchronous message passing software written in the Calculus of Communicating Systems (CCS) (Milner 1989). There, mirrors are used to represent all possible environments of component models. Similar to other pessimistic approaches, the authors consider that the conformance must hold under an arbitrary environment. This restriction on implementation models is stronger than in our approach. Furthermore, this approach requires that not only the specification but also the implementation models have no mixed states (where both input and output transitions originate), while in our approach this is only required of the specification.

There are some other approaches which also utilize the assumptions that components can make on the environment for the verification of component-based
3 Consistency of components

Components are a critical part of a component-based system design. Systems, especially embedded systems, are often composed of components with distinct characteristics, e.g., state-based or dataflow-oriented. Here it is desirable to design each component using the most suitable description language. In order to support this kind of heterogeneous component-based modelling, a formal model of discrete-event components (Janncek 2000) is defined in section 3.1. This model is sufficiently general so that the semantics of components written in various formalisms can be easily defined.

In order to facilitate stand-alone development and analysis of components, we employ interface automata to specify the desired interaction protocols of components with the environment. The protocols cover both the output requirements of components and also the input assumptions that components can make. In section 3.2, the use of interface automata in this approach is given. In the next section, the consistency of components with respect to interface automata is defined. Following two auxiliary definitions of derived interface automata in section 3.4, a method of checking the consistency is proposed in section 3.5.

3.1 Discrete-event components

In Moses, a component can be represented as a discrete-event component that consumes data streams fed to its input ports, and produces data streams from its output ports. The input and output ports form a component’s view of the rest of the system and decouple the outside world and the component. This separation allows the behaviour of the component to be described independently from the component’s ultimate context. Likewise, the outside world learns about a component only from the communication through its ports. In defining components, we assume a universal set \(U^{port} \) of ports, and a finite universal set \(U^{val} \) of values of data flowing through the ports.

Definition 1. A discrete-event component (DEC)\(^1\) is defined by \(C = (\Sigma^0, S, \Sigma, \rightarrow) \), where:

\(^1\)The definition of DECs in (Janncek 2000) allows a component to have more than one output when firing an output transition. This introduces true concurrency at component boundaries. This can be handled by employing true concurrency semantics such as event structures (Winskel 1987) and Mazurkiewicz traces (Mazurkiewicz 1989). However, we restrict our attention to the interleaving semantics of components. That is, we require that firing an output transition can generate only one output. The handling of true concurrency is left for future work.

\(\Sigma \subset U^{port} \) is a finite set of ports, consisting of two disjoint sets of input ports \(\Sigma^I \) and output ports \(\Sigma^O \). We let set of labels \(L = \{\tau \} \cup (\Sigma \times U^{val}) \), where \(\tau \notin U^{port} \times U^{val} \) is used to label transitions with no external effects.

\(\rightarrow \subseteq S \times L \times S \) is a set of transitions such that an input-universal requirement holds, that is, \(\forall s \in S, e \in \Sigma^I \times U^{val}, \delta(s, e, s') \in \rightarrow \).

A component \(C \) is called closed if \(\Sigma^I = \Sigma^O = \emptyset \); otherwise, it is said to be open. An execution fragment of \(C \) is a finite alternating sequence of states and labels \(s_1, l_2, s_2, \ldots , l_k, s_k \) such that \(\forall j : 2 \leq j \leq k, s_j, l_j \in S, l_j \in L, (s_{j-1}, l_j, s_j) \in \rightarrow \). For the execution fragment, \(s_k \) is called reachable from \(s_1 \). Also, \(s_k \) is said to be internally reachable from \(s_j \) if \(\forall j : 2 \leq j \leq k, l_j = \tau \), and to be reachable in \(C \) if \(s_1 \) is the initial state \(s^0 \).

In the sequel, we simply write \(s \mapsto s' \) to denote \((s,l,s') \in \rightarrow \). We also write \(s \mapsto s' \) to denote the fact that either \(s' = s \) or \(s' \) is internally reachable from \(s \), and \(s \Rightarrow s' \) to denote \(l \neq \tau \land \exists s'' \in S, s \Rightarrow s'' \cup s'' \rightarrow s' \). In addition, we assume a universal set \(U^{event} \) of discrete-event components, and that ports of all components are distinct.

Figure 1 gives an example DEC depicted in a variant of Petri Nets (Janncek 2000), where triangles represent the input and output ports of components and where the body of the component is given in the usual Petri Net notation with circles, boxes and arcs representing places, transitions and the flow relationships, respectively. When data comes into a component via its input port, it is added to the place(s) connected to this port. A transition (e.g., “t1”) enabled once all its predecessor places have enough tokens and its guard evaluates to true. As is the case for other high-level Petri nets (e.g., (Jensen 1997)), this binds the tokens to the variable names (e.g., “ns” and “a”) on its incoming arcs, and finally the transition fires. When firing, the transition binds the variable names (e.g., “ns” and “a”) on the outgoing arcs depending on the values of the variables on the incoming arcs. When a firing transition is connected to an output port (e.g., “delivered”), data is sent out via the port to all connected components\(^2\). For a Petri Net component, we require input ports to be connected to places and output ports to transitions to ensure

\(^2\)Ports can be considered to segment arcs into three – that part of the arc prior to the output port, that part between output and input port(s), and that part following the input ports.
connected to any component input. Taking the inter-
leaving semantics of Petri Net components (Jannick
& Esser 2002), the interpretation of such components
in terms of discrete-event components is straightfor-
ward and we omit this for the sake of brevity. See
(Reisig & Rozenberg 1998) for the basic concepts of
Petri Nets, and (Esser & Jannick 2001, Jannick &
Esser 2002) for more descriptions of the Moses ap-
proach to compositional Petri Nets.

The example shown in figure 1 models an online
store that waits for a purchase request from a cus-
tomer and payment acceptance from the customer’s
bank before delivering the goods. If the bank ref-
uses to pay or the goods are out of stock, the request
fails. The store also reports the stock level when being
queried. Initially, the store holds 100 pieces of goods.
A successful order will result in the stock level to be
subtracted by its ordered quantity.

A Moses component is input-universal, i.e. it
never refuses an input and hence writing to a com-
ponent will never block. Typically, each component
has one or more input buffers (generally of infinite
length), which are either implicit or explicit depend-
ing on the modelling language. For instance, a Petri
Net component (Jannick & Esser 2002) may have
multiple places acting as explicit buffers, while a UML
Statechart component (Jin et al. 2002) has only one
implicit buffer for all input ports. These built-in com-
ponent buffers ensure the acceptance of inputs.

3.2 Interface automata

Usually, a component is designed under some assump-
tions about the environment depicting how the com-
ponent can be properly deployed, for example, inter-
action protocols. The assumptions are useful for an-
alyzing the behaviour of the component, especially
when the component is independently developed and
analysed. However, from section 3.1 a component is
required to be input-universal, namely, it cannot con-
strain the environment as to when or what kind of
input to provide. Therefore, these assumptions can-
not be captured by component models themselves. To
solve this problem, we employ interface automata in-
troduced in (de Alfaro & Henzinger 2001) to specify
desirable interaction protocols of components, which
cover both the input assumptions and the output be-
avour of components.

Definition 2. An interface automaton (IA) is
defined as $A = (s^0, S, \Sigma, \to_A)$, where:

- S is a finite set of states and $s^0 \in S$ is the initial
 state;
- Σ is a finite set of events, consisting of three mu-
 tually disjoint sets of input events Σ^I, output
 events Σ^O, and internal events Σ^I;
- $\to_A \subseteq S \times S \times \Sigma$ is a transition relation. We
 write $s \xrightarrow{e} s'$ to denote a transition $(s, e, s') \in \to_A$
 from state s to state s' when event e occurs.

An input event $e \in \Sigma^I$ is called enabled at a state
$s \in S$ if there is a state $s' \in S$ such that $s \xrightarrow{e} s'$.
Otherwise, it is said to be refused. We let $en\{s\}$ be
the set of enabled input events at state s. An execu-
tion fragment of A is a finite alternating se-
quence of states and events $s_1, e_2, s_2, \ldots, e_k, s_k$ such
that $\forall j: 2 \leq j \leq k, s_j, e_j \in S, e_j \in \Sigma, s_{j-1} \xrightarrow{e_j} s_j$. In
the following we assume a universal set \cup^a of IAs.

The information contained in an IA is twofold. On
the one hand, the behaviour of the automaton is ob-
served through a sequence of its output events. On
that the environment should never provide an input
event $e \in \Sigma^I$ if the automaton is in a state $s \in S$ and
e is refused at s. Also, when the automaton wishes
to produce an output $e \in \Sigma^O$, the environment is always
ready to accept the output.

Definitions 1 and 2 indicates a similarity in be-
haviour between IAs and DECs. Here, we consider
an input event of an IA corresponds to an occurrence
of data flow with an arbitrary value through an in-
put port of a component. Similarly, an occurrence of
data flow with an associated value at an output port
of the component corresponds to an output event of
the IA. Put differently, we shall use the terms “event”
and “port” interchangeably when relating behaviour
of IAs and DECs. Abstracting away data values asso-
ciated with an event, IAs are suitable for specifying
the desirable interaction protocols of DECs with the
environment.

The association of IAs with DECs makes it possi-
ble to describe the behaviour of components at a high
level of abstraction and can thus simplify the analysis
of system architectural models, e.g. dataflow process
networks in this case. It is also very useful for sys-
tem analysis since component models are often not
available when designing system architectures.

As we are only interested in the interaction proto-
col of DECs, in contrast to definition 2, we will from
now on assume that all IAs associated with DECs
are deterministic and have no internal transitions.
This is justified by the fact that internal transitions
do not influence the consistency of a network and
also such automata can be transformed into equiva-
 lent deterministic automata with no internal transi-
tions (Meduna 2000). In addition, like (Rajamani
& Rehof 2002, Yellin & Storm 1997), we exclude au-
tomata with mixed states, states where both input
and output transitions originate.

Figure 2 shows two examples of IAs. The assump-
tion described by the automaton in figure 2(a) is that
the environment cannot provide a second purchase re-
quest before the first one has been processed. Also,
after the store receives a purchase request, the envi-
ronment can either produce a “payable” message indi-
cating that the customer can pay for the purchase or a
“deficit” message indicating otherwise. The automa-
ton in figure 2(b) states that the bank will produce ei-
ther a “payable” or a “deficit” message but definitly
not a “paid” message immediately after receiving a
purchase request.

![Figure 2: Two interface automata](image-url)
The association of interface automata with discrete-event components leads to an important issue – the consistency of DECs with respect to IAs. The consistency refers to the fact that a DEC never generates an output which is not allowed by its associated IA if the environment behaves as expected by the IA. If this holds, then in any application context where the IA does not violate a safety property such as the consistency of the composed system, neither does the component. On the other hand, being input-universal, components are able to handle all possible inputs in any state. In other words, components can accept more inputs than IAs. Hence, the consistency cannot be defined by traditional refinement relations, e.g. trace containment and simulation, where the implementation can only have less input and output behaviour than the specification.

For this reason, we adopt alternating simulation (de Alfar & Henzinger 2001) to define the consistency. Alternating simulation is concerned with the relation of an IA with a (helpful) environment. It can be considered as a two-person game, where the automaton will try to perform some action which will cause the environment to block and the environment will try to respond so that the automaton does not succeed in its attempt. Thus, the environment can limit the behaviour of the automaton by not offering certain inputs and the automaton can make things easier for the environment by not generating certain outputs. If an environment is helpful enough for an automaton, then it should also be helpful for a refinement of the automaton. The refinement can offer less outputs (since this will not make as many demands on the environment), and accept more inputs (since the environment will not offer them).

Originally, alternating simulation defines the refinement between two IAs, where no data values are involved. We extend this refinement relation to accommodate the implementation (or DECs) with data values.

Definition 3. Consider an IA A and a DEC C such that $\Sigma_M \subseteq \Sigma_C$ and $\Sigma_C \supseteq \Sigma_M$. C refines A by alternating simulation, written $C \preceq A$, if there exists a relation \preceq such that $s_0^C \preceq s^C$ and if $q \preceq s$ for $q \in S_C$, $s \in S_A$, then $\forall (e,v) \in (\text{mc}(s) \cup \Sigma_C) \times \mathcal{U} \cup \mathcal{D}^s$, $\exists q' \in S_C, q \Rightarrow (e,v) q' \Rightarrow q' \wedge q' \preceq s$.

A DEC C refines an IA A if and only if C conforms to the output guarantee of A with the same helpful environment. In other words, the environment generates an input (e,v) to C at a state $q \in S_C$ only when A at a state $s \in S_A$ (such that $q \preceq s$) is able to accept the input event e. Also, conforming to the output guarantee of A implies that every output event allowed by C at q must also be allowed by A at s. The definition implies an input and output duality that C at state q allows more input events but generates less output events than A at state s. It is worth noting that the set of enabled input events of C at any state always equals Σ_C^I, because C is input-universal. Hence, an event enabled in A is always enabled in C, regardless of the current states of A and C.

Definition 3. A DEC C allows DECs with equal or less output ports to be the implementation of an IA. However, DECs often have not only more input ports but also more output ports in practice, especially when third-party components are deployed which may provide more services than needed in an application domain. To solve this, we define instantiated components for these DECs and relax the conditions of definition 3 in defining the consistency of DECs with IAs. Note in the following definition that $\mathcal{O}_C = C$ if $\Sigma_C \subseteq \mathcal{O}$.

For a set \mathcal{O} of output ports, the instantiated component of C with respect to \mathcal{O} is defined by $\mathcal{O}_C = (s^0, S, \Sigma_C, \rightarrow_C)$, where $\Sigma' \mathcal{C} = \Sigma'$, $\Sigma'' \mathcal{C} = \Sigma'' \cap \mathcal{O}$, $\rightarrow_C = \{(s, \lambda(l), s') \mid (s, l, s') \in \rightarrow_C\}$, and $\lambda(l)$ returns τ if $l \notin \Sigma'' \mathcal{C}$ or l otherwise.

Definition 5. Consider an IA A and a DEC C such that $\Sigma_C \subseteq \Sigma_C$. C is consistent with A if $\mathcal{O}_C \subseteq \mathcal{O}$.

An algorithm was given in (de Alfar & Henzinger 2001) for checking alternating simulation between two IAs. However, its first step requires the construction of the Cartesian product of the state spaces of the two automata. Hence, it cannot be applied to checking the consistency of DECs with IAs, because DECs generally have infinite state spaces due to their built-in buffers. Instead, we present a method to cope with this by utilizing the environmental assumptions captured by the specifications of IAs. The method is similar to the above algorithm, however it must be ensured that no mixed states are present in the specifications.

3.4 Derived interface automata

Before presenting the method, we need to have two auxiliary definitions – mirrors and input-universal versions of interface automata. The mirror of an IA is built to represent all helpful environments with which A can be composed. A helpful environment of A is one that can always provide inputs expected by A and accept outputs generated by A. Also, any helpful environment of A should be an implementation of the mirror under alternating simulation defined by (de Alfar & Henzinger 2001). In addition, we make explicit the environmental assumptions of IAs by building their input-universal versions, where a refused event will lead to an error state.

Definition 6. Consider a deterministic IA A such that $\Sigma_M = \emptyset$. The mirror of A is an IA $M = (s^A, S_M, \Sigma_M, \rightarrow_M)$, where $\Sigma_M = \Sigma_A \cup \Sigma_M = \Sigma_A$, and $\Sigma_M = \emptyset$.

Definition 7. Consider a deterministic IA A such that $\Sigma_M = \emptyset$. The input-universal version of A is defined as an IA $U = (s^U, S_A \cup \downarrow, \Sigma_A, \rightarrow_U)$, where $\rightarrow_U = \rightarrow_A \cup \{(e, s, s') \mid e \in \Sigma_A^I\}$, $\cup \{(s, e, \downarrow) \mid s \in S_A, e \in \Sigma_A^I, \uparrow(s, e, s') \in \rightarrow_A\}$

In other words, given a deterministic IA with no internal events, its mirror is constructed by interchanging its input and output events. Also, its input-universal version is constructed by adding a transition outgoing from a state $s \in S_A$ to a single error state \downarrow for all the refused input events at s. As input-universal automata are also defined as IAs, to distinguish them from others, we shall call them input-universal automata, while keeping the name “interface automata” for those without \downarrow in their state spaces.

As an example, the derived IAs of the “ia-store” automaton of figure 2(a) are shown in figure 3, where the white triangle “Δ” represents the error state and “$\#” matches any of the input events of the automata.

3.5 Practical consistency checking of DECs

In this section, the method of checking consistency of DECs with IAs is presented. Firstly, the mirror of a given specification IA is constructed. Next, the product of a given DEC and the mirror is built. Here, an output event of the mirror matches all possible transitions of the DEC accepting an input with an arbitrary
data value. Similarly, an output of the DEC with an
associated data value matches an input event of the
mirror. Then the consistency of the DEC with the
IA is determined by the absence of reachable error
states in the product. This approach is justified by
theorem 1 (below). Note that in contrast to the algo-
rithm proposed in (de Alfaro & Henzinger 2001), this
procedure need only build the reachable states in the
product.

Definition 8. Consider a DEC C and an IA M such
that $\bot \notin S_M$ and $\Sigma^O_M \subseteq \Sigma^I_C$. Let U be the
input-universal version of M. Then the product of C and M is a
DEC $\hat{C} = (s_0, s_0, S_0, \bot, \to)$, where:

- $s_0 = (s_0^C, s_0^M),$
- $S_0 \subseteq \Sigma^C \times S_U$ is the smallest set such that $s_0 \in S_0$ and $\forall u \in S_0, u \to u'$ implies $u' \in S_0$;
- $\to = \{(\langle q, s \rangle, \tau, \langle q', s' \rangle) | \exists (e, v) \in \Sigma_M \times \mathcal{U}^o, q \xrightarrow{e,v} q', a \xrightarrow{e,v} u \wedge s \xrightarrow{e,v} u' \}$
- $u \to u'$ implies $u' \in S_0$;
- $\delta = \{(\langle q, s \rangle, \tau, \langle q', s' \rangle) | \exists (e, v) \in (\Sigma^O_C \setminus \Sigma^I_M) \times \mathcal{U}^o, q \xrightarrow{e,v} q', a \xrightarrow{e,v} u \wedge s \xrightarrow{e,v} u' \}$
- $u \to u'$ implies $u' \in S_0$;
- $\delta = \{(\langle q, s \rangle, \tau, \langle q', s' \rangle) | \exists (e, v) \in (\Sigma^O_C \setminus \Sigma^I_M) \times \mathcal{U}^o, q \xrightarrow{e,v} q', a \xrightarrow{e,v} u \wedge s \xrightarrow{e,v} u' \}$
- $u \to u'$ implies $u' \in S_0$.

Theorem 1. A DEC C is consistent with an IA M if $\Sigma^I_M \subseteq \Sigma^I_C$ and no error state is reachable in the
product \hat{C} of C and the mirror of M, i.e. $\forall (q, s) \in S_0$.

Proof. Let \hat{C} represent $\hat{C} = (s_0^C, s_0^M, \bot, \to)$, ϕ be a relation $\{s, q \in S \mid q \in S_C, s \in S_A\}$, and prove ϕ is an alternating simulation between \hat{C} and \hat{A} by induction. Let M be the mirror of A and U be the input Universal version of M. First, because $s_A = s_0^C \wedge s_A = s_0^M \wedge (s_0^C, s_0^M) \in \phi$, we have $(s_0^C, s_0^M) \in \phi$. Next, suppose $(q, s) \in \phi$.

1. If $q \xrightarrow{c} q'$ or $\exists (e, v) \in (\Sigma^O_C \setminus \Sigma^I_M) \times \mathcal{U}^o, q \xrightarrow{c} q'$, then $q \xrightarrow{\tau} q'$. Thus $(q, s) \xrightarrow{\tau} \{q', s\}$ and $(q', s) \in \phi$.
2. For $(e, v) \in (\Sigma^I_C(s) \cup \Sigma^O_M) \times \mathcal{U}^o$, if $\exists q'' \in S_C$ such that $q \xrightarrow{c} q''$, then $q'' \in S_C \wedge q \xrightarrow{c} q''$. For $(e, v) \in (\Sigma^I_C(s), s) \xrightarrow{\tau} (q', s')$, i.e. $s \xrightarrow{\tau} U s'$.

4 Consistency of component networks

In this section, we extend the work on consistency to
networks of components, where the structural informa-
tion of networks is utilised to facilitate consistency
checking. First of all, the language of dataflow pro-
cess networks (DPNs) used in this paper is defined. A
DPN model graphically specifies a DEC by intercon-
necting a collection of DECs via ports. The interpre-
tation of DPNs in terms of DECs is also given, which
involves not only the synchronization of communica-
tion among its component DECs but also the inter-
leaving of their internal steps. Hence, the state space
of a DPN may grow exponentially with the number
of components.

In order to alleviate this state space explosion
problem, the consistency of an open DPN with an
IA specifying the interaction protocol of the DPN
is not analysed directly. Instead, the IAs with which
its component DECs prove to be consistent are uti-
lized to determine the consistency of the DPN. This
involves the construction of an interface automaton
network (IAN), which consists of these IAs and shares
the network structure of the DPN, and ensuring the
consistency of the IAN with respect to the specification
IA. As IAs generally have much smaller state
space that DECs, this approach is much cheaper.

Also, this approach is justified by theorem 2 given
in section 4.4.

In addition, with no input or output ports, there is
no need to associate an IA with a closed DPN.
Its consistency on external behaviour always holds.
However, for a closed DPN (or system), system
designers are often more concerned about whether its
components communicate as designed and whether
some invariants can be violated. Often, some safety
properties formalizing these requirements have to be
provided separately so that confidence about the
design can be obtained by model-checking the system
against them. Clearly, the state space explosion
problem may also occur. The proposed approach can
code some safety properties into IAs associated with
system components. By checking the consistency of
the network of these IAs, this can help predict the
internal interaction behaviour of the system.

4.1 Dataflow process networks

There are many kinds of process networks, such as
Kahn’s process networks (Kahn 1974), Karp and
Miller Computation Graphs (Karp & Miller 1966),
and dataflow process networks (Lee & Park 1995,
Skillcorn 1991). In this paper we consider the form
proposed in (Skillcorn 1991).

Basically, a process network consists of a col-
clection of concurrently executing processes with ports
ports of these processes. Often, the channels represent
FIFO buffers between components, but we con-
sider that the buffers are encapsulated in their des-
tination components and the channels represent only
the causality of data flow between components. Due
to the localization of buffers, the semantic definition
of process networks is simplified and thus facilitates
modular consistency analysis. Furthermore, it also
gives us the flexibility to model a variety of buffers	hanks{thanks to the diversity of component modelling
formalisms.}

Definition 9. A network structure is defined by
\(G = (P, \alpha, \Sigma, R) \), where:

- \(P \) is a set of placeholders (or nodes);
- \(\alpha \) consists of two functions \(\alpha^f : P \to \varphi(\U^f) \)
 and \(\alpha^o : P \to \varphi(\U^o) \), mapping from all
 placeholders to their input and output ports respect-
 ively, where \(\varphi \) is the power set operator. We let
 \(\alpha_f^p = \bigcup_{p \in P} \alpha^f(p) \) be the set of input
 ports of all placeholders and \(\alpha_o^p = \bigcup_{p \in P} \alpha^o(p) \)
 be the set of output ports of all placeholders. \(\alpha_f^p \)
 and \(\alpha_o^p \) can be thought as the set of internal
 input ports and of internal output ports of the network,
 respectively.
- \(\Sigma \subset \U^f \) is a finite set of external ports of
 the network, consisting of two disjoint sets of input
 ports \(\Sigma^f \) and output ports \(\Sigma^o \).
- \(R \subseteq (\Sigma^f \times \alpha_f^p) \cup (\alpha_o^p \times \Sigma^o) \cup (\alpha_o^p \times \Sigma^o) \) is a set of
 connections, relating internal or external inputs
 with internal or external outputs, such that the
 following well-formed requirements hold:

 - no self loops, i.e. \((o, i) \in R \land (o^o \times o^f)\)
 implies \(\rho(o) \neq \rho(i) \);
 - no duplicated output to the same place-
 holder, i.e. \((o, i), (o, i^) \in R \land i^ \neq i \) implies
 \(\rho(i^) \neq \rho(i) \);

 where \(\rho(c) = \begin{cases}
 \{ p \in P \mid e \in \alpha(p) & \text{Env} \\
 \text{if } e \in \Sigma^f \cup \Sigma^o \end{cases} \).

 The function \(\rho(c) \) returns the placeholder or Env
 associated with the port \(e \), where Env represents
 the environment of a network with a structure \(G \). The
 input and output ports of Env corresponds to the
 output and input ports of the network, respectively.
 The first well-formed condition claims that there must not
 be a connection from an output port of a placeholder to
 any of its own input ports. The second condition
 requires that any output port of one placeholder (or the
 environment) should not be connected more than one
 output port of any other placeholder (or the envi-
 ronment).

Definition 10. Given a network structure \(G \) and a
instantiation function \(\mathcal{C} : \mathcal{P} \to \U^c \) mapping every
placeholder \(p \) to a DEC \(c \) such that \(\alpha_f^f(p) \subseteq \Sigma^f, \) a
dataflow process network (DPN) is defined as a tuple
\(D = (Q, \Sigma, R) \) where \(Q = \{ \mathcal{C}(p) \mid p \in P \} \), and \(\Sigma \) and
\(R \) are the same as for \(G \).

A DPN is called closed if \(\Sigma^f = \Sigma^o = \emptyset \); otherwise,
it is said to be open. Graphically, a DPN is depicted
as a directed graph. At this level of abstraction, each
node represents a placeholder, each triangle associated
with a node represents an input or output port
of the node, and each edge represents a connection
between ports. When the DPN is being constructed
at runtime, the component associated with a placeholder

Meanwhile, the ports of the placeholder are substi-
tuted by the ports of the component with equivalent
names. Correspondingly, connections are then estab-
lished between concrete ports of these components.

Figure 4 shows the network structure of an online
purchase DPN. The instantiation function maps “es-
store” to the Petri Net model of figure 1 and “bank”
to a bank model (omitted for the sake of brevity).
This model accepts purchase requests from customers
and reports back whether the purchase succeeds or
fails. In order to avoid the complexity of different
values, we assume that the online store sells only
one kind of goods. Also, as it is open, this network
can be instantiated in a larger DPN including the
 customer.

DPNs are considered as a special case of DECs.
Hence their semantics can be interpreted in terms of
DECs, given by the following definition.

Definition 11. Consider a DPN \(D = (Q, \Sigma, R) \). Let
\(n = |Q|, 1 \leq j \leq n \) and \(C_j \in Q \). Then the DEC
represented by \(D \) is defined by \(C = (s^0, \Sigma, \rightarrow_C) \),
where

- \(S \subseteq S_C \times \cdots \times S_C \) and \(s^0 = (s^0_C, \ldots, s^0_C) \);
- \(\rightarrow_C \) consists of
 - input transitions
 \(\{(s, (i, v), s^j) \mid (i, v) \in \Sigma^f \times \U^c, \forall j \neq \delta(s, i, v) \} \)
 - output transitions
 \(\{(s, (o, v), s^j) \mid (o, v) \in \Sigma^o \times \U^c, 1 \leq k \leq n, \}
 e \in \Sigma^o, (e, o) \in R \land s_k \rightarrow_C s^j \)
 \(\land \forall j \neq k, s^j \neq \delta(s, e, v) \}\),
 - internal transitions
 \(\{(s, (e, o), s^j) \mid 1 \leq k \leq n, (e, o) \in \Sigma^o, (e, o) \notin R \land \}
 s_k \rightarrow_C s^j \land \forall j \neq k, s^j \neq \delta(s, e, v) \}\);

where \(s = (s_1, \ldots, s_n) \), \(s^j = (s_1, \ldots, s_n) \), and
\(\delta(s, i, v) = \begin{cases}
q \quad \text{if } \exists f \in \Sigma_f, q \in S_C, \}
\quad (i, f) \in R \land s \rightarrow_C (i, v) \}
\quad \text{otherwise} \)

A state of a DPN is a vector of states of all its
components, and its initial state is a vector of their
initial states. A DPN is executed by simply executing
its components and directing data flow according to
the connections \(R \). An input transition of the network
is a transition accepting data at an input port of the
network. The transition may involve the synchro-
nization of multiple input transitions of the components,
port “purchase” of figure 4 consists of two simultaneous input transitions at the “purchase” ports of the bank and the e-store. In the definition, the function \(\delta(s_j, i, v) \) returns the successor state \(q \) of \(s_j \) if an input port of \(C_j \) is connected with the internal or external input port \(i \). Otherwise, it returns \(s_j \).

Similarly, an output transition of the network is a transition resulting in data flow through an output port of the network. The transition may be a single output transition of a component or may involve the synchronization of an output transition of a component and multiple input transitions of other components. For example, the output transition at port “ok” is the output transition of the bank at port “paid”.

Finally, an internal transition of the network is either an internal transition or an output transition of a component. The latter may result in simultaneous data acceptance by other components, but has no external effects such as causing data flow at the network boundary. For example, the output transition of the bank at its port “payable” is internal to the network. Also, it is synchronously executed with the input transition of the e-store at its port “payable”.

Hence, an execution fragment of a DPN can also be understood to be a finite alternating sequence of states and labels as defined in section 3.1 for DECs.

From the definition, one can see that, in the execution of a DPN, data can be relayed between components in three ways (Note that we regard here the environment as a special component, the input or output ports of which correspond to output or input ports of the DPN, respectively.) First, when there is only one connection outgoing from an output port of a component, e.g., the connection between the “payable” ports of the bank and the e-store, data from the source port is simply directed to the destination port of the connection. Second, when more than one connection originates from one output port, e.g., the two connections starting from the port “purchase” of the network, data from the source port is duplicated into multiple destination ports simultaneously. Last, when an input port is connected by multiple output ports, e.g., the connections ending at the port “fail” of the network, data from these output ports is merged into one data flow at the input port.

In all these situations, the generation of an output from a component occurs synchronously with the acceptance of inputs by the components connected by \(R \). In other words, the output transition of the source component is executed atomically with the corresponding input transitions of the involved destination components. Therefore, these cases realize two-party or multi-party synchronization between components.

Note that a component could have more input or output ports than the placeholder it substitutes, e.g., the Petri Net component in figure 1 vs. the e-store placeholder in figure 4. From definition 11, one can see that disconnecting an input port implies that data is received via the port, while disconnecting an output port means that any data sent out via the port is lost. In the latter case, one can consider that there is a sink connected to the output port and consumes the data. More precisely, disconnecting an output port of a DEC makes the associated output transition occur independendy, while disconnecting an input port of a DEC disables the associated input transition.

4.2 Extended process networks and interface automaton networks

In order to make use of the IAs with which its component DECs prove to be consistent, we define extended automaton networks for them.

Definition 12. An extended process network (XPN) is defined as a tuple \(X = (G, \mathcal{C}, A) \), where \(G \) and \(\mathcal{C} \) are the same as in definitions 9 and 10, respectively, and \(A : P \rightarrow \mathcal{U}^n \) is a function mapping every placeholder \(p \) to an IA \(a \), such that \(\alpha^D(p) = \Sigma^D_a \) and \(\alpha^O(p) = \Sigma^O_a \).

Definition 13. The interface automaton network (IAN) \(N \) derived from \(X \) is defined by \(N = (W, \Sigma, R) \) where \(W = \{ A(p) \mid p \in P \} \), and \(\Sigma \) and \(R \) are the same as for \(G \) (definition 9).

Consider the online purchase DPN in figure 4. Its XPN and derived IAN share the same structure with its DPN. The function \(A \) maps the e-store and bank processes to the automata in figure 2(a) and 2(b) respectively. Thus, the set \(W \) consists of these two automata.

Suppose that we have the automaton in figure 5 specifying the external interaction protocol of the example DPN. Instead of proving the consistency of the DPN with the specification IA directly, we can prove the consistency of the DECs with their associated IAs and also the consistency of the above-mentioned IAN with the specification IA. The method to ensure the former has been presented in section 3.3, while the method to ensure the latter will be described in the next section.

Figure 5: A specification IA “ia-spec”

4.3 Consistency of IANs

The consistency of an IAN with a given IA can be informally described as follows (regarding the mirror of the IA as the environment of the IAN): any IA in the IAN or the mirror does not generate an output event which causes an input event violating the assumptions of any other automata (including the mirror). In other words, any legal output will not lead to a refused input event of any other automata (including the mirror). Note that the assumption of the mirror indicates that the IAN never generates more outputs than \(A \) does.

Definition 14. Consider an IAN \(N = (W, \Sigma_N, R) \) and an IA \(M \) such that \(\Sigma^O_M \subseteq \Sigma^O_N \). Let \(n = |W| \), \(U_j \) be the input-universal version of \(A_j \in W \) for \(1 \leq j \leq n \), and \(U_{n+1} \) be the input-universal version of \(M \). Then the product of \(N \) and \(M \) is defined as an IA \(A_{\otimes} = (\mathcal{S}_0^{\otimes}, \mathcal{S}_\otimes, \otimes, \rightarrow) \) such that:

- \(\mathcal{S}_0^{\otimes} = \{ s_{U_1}, \ldots, s_{U_n}, s_{U_{n+1}} \} \);

- \(\mathcal{S}_\otimes \subseteq S_{U_1} \times \cdots \times S_{U_n} \times S_{U_{n+1}} \) is the smallest set such that \(s_{0}^{\otimes} \in \mathcal{S}_0^{\otimes} \) and \(\forall s \in S_0, s \rightarrow \otimes s' \) implies \(s' \in \mathcal{S}_\otimes \);

- \(\Sigma^O_\otimes = \Sigma^O_M = \emptyset \), and \(\Sigma^D_\otimes = \bigcup_{1 \leq j \leq n+1} \Sigma^D_{U_j} \);

- \(\rightarrow = \{ (s_{1}, \ldots, s_{n+1}, e, (s'_{1}, \ldots, s'_{n+1}), e) \mid 1 \leq j,k \leq n + 1, e \in \Sigma^D_{U_j}, s_k \rightarrow_{U_k} s'_k \) \land \forall j \neq k, s'_j = \delta(s_j, e) \} \), where
Note that the product construction uses the input-universal version of each automaton in an IAN or that of the mirror so that any illegal output of an IA can be detected by the reachability of error states. Different from the product construction for DECs and IAs which involves handling data communications of DECs, this procedure for IANs only deals with the interaction protocols of DECs and does not involve data values. Thus, the latter is simpler and cheaper.

Definition 15. Consider an IAN N and an IA A such that $\Sigma_{IA} \subseteq \Sigma_{IA'}$. N is consistent with A if no error state is reachable in the product of N and the mirror of A, i.e., $\forall (s_1, \ldots, s_{n+1}) \in S_C, 1 \leq j \leq n+1, s_j \neq \bot$.

The consistency of an IAN with an IA is determined by the absence of error states in the product of the IAN and the mirror of the IA. Hence, this guarantees both the compatibility between IAs in the IAN and also the compatibility between the IAN and the mirror, where compatibility between IAs refers to the agreement of the IAs on interaction protocols. Figure 6 shows the product of the example IAN and the mirror of the “ia-spec” automaton of figure 5. As the product state space contains no error state, we can say that the IAN is consistent with the “ia-spec” automaton.

![Figure 6](image)

4.4 Consistency deduction of DPNs

DPNs are a special case of DECs. Hence definition 5 is also applicable to them. The following theorem gives a sufficient condition of determining the consistency of DPNs.

Theorem 2. Consider an extended process network $X = (G, C, A)$. Let $D = (Q, \Sigma, R)$ and $N = (W, \Sigma, R)$ be its derived DPN and IAN, respectively. Then D is consistent with an IA A if

1. $\Sigma_{IA} \subseteq \Sigma_{IA'}$;
2. N is consistent with A;
3. $\forall j: 1 \leq j \leq |P|, p_j \in P, A_j = A(p_j), C_j = C(p_j)$, and C_j is consistent with A_j (see definition 5).

Proof. Let $n = |P|$, C_{A_0} be the product of D and M, and A_0 be the product of N and M, where M is the mirror of A. We shall prove by induction that for all $\langle q, s \rangle \in S_0$, (a) $s \neq \bot$; (b) Let $q = \langle q_1, \ldots, q_n \rangle$ such that $q_j, q_j' \in S_{C_j}$, then $\exists u_j \in S_A$ such that $q_j \preceq u_j$, $u = \langle u_1, \ldots, u_n \rangle$ and $\langle q, s \rangle \in S_0$. Clearly, these hold for $s_{A_0} = \langle s_0, s_{A_0} \rangle$ from definitions 3, 5 and 14. Consider $\langle q, s \rangle \in S_0$. Suppose (a) and (b) hold, then

i. If $\exists j, q_j \preceq_{C_j} q_j'$, then $q \preceq_{D} q'$ and $\langle q, s' \rangle \in S_0$, where $q' = \langle q_1, \ldots, q_j', \ldots, q_n \rangle$. Thus (a) holds.

ii. If $\exists (e, v) \in \Sigma_{IA} \times U_{IA} \cap V \cup A \Rightarrow q_j \preceq_{D} q_j'$, then for all j', either $q_j' = q_j$ or $\exists (e, v) \in \Sigma_{IA} \times U_{IA} \cap V \cup A \Rightarrow q_j \preceq_{D} q_j'$ holds. In the former case, we let $u_j' = u_j$. In the latter case, $e \in \mathcal{M}_D(u_j)$ must hold. Hence d_j holds due to condition 2. Then because C_j is consistent with A_j, $\exists u_j' \in S_{A_j}, u_j \rightarrow A_j u_j' \land d_j \preceq u_j'$. Let $u' = \langle u_1', \ldots, u_n' \rangle$, then $\exists (u, s) \rightarrow_{\Sigma} \langle u', s' \rangle$, and $s' \neq \bot$ (due to definition 14 and condition 2). Clearly, (b) also holds.

iii. If $\exists k: 1 \leq k \leq n, (e, v) \in \Sigma_{IA} \times U_{IA} \cap V \cup A \Rightarrow q_k$, then $\exists (q', s') \in S_0$. Because C_j is consistent with A_j, $\exists u_k' \in S_{A_k}, u_k \rightarrow A_k u_k' \land d_k \preceq u_k'$. The same as above, we can get u_k' for all $j \neq k$ and also u'. Because D and N share the same structure, $\exists (u, s) \rightarrow_{\Sigma} \langle u', s' \rangle$. Hence $s' \neq \bot$ and (b) holds (due to condition 2).

Therefore, $\forall (q, s) \in S_0, s \neq \bot$. From theorem 1, this theorem holds.

With this theorem, we can conclude the example DPN of figure 4 is consistent with the “ia-spec” IA of figure 5, provided that the concrete model of the bank is consistent with the “ia-bank” IA of figure 2(b).

In the context of Moses, we have implemented the check for consistency of an IAN with an IA as specified by condition 2 of theorem 2. This, together with the check based on theorem 1, gives us consistency checking of DPNs.

5 Conclusion

In this paper a modular consistency analysis method for dataflow process networks is presented, where interface automata are associated with components to specify the contracts between components and the process networks comprising them. In this way, highly independent development of components and the communication structure among components is supported. Also, a divide-and-conquer approach to checking the consistency of process networks is advocated, where a traditional monolithic checking task is divided into a series of independent tasks at both the architecture level and the component level. As these tasks usually need to handle smaller state spaces than the single monolithic check, the state space explosion problem can be alleviated. Furthermore, on the basis of an optimistic view of the environment, this method can check not only closed process networks but also open ones. This is very helpful for checking the consistency of a subsystem independently from other subsystems and system architectures with which it will be composed.

In addition, the proposed method simplifies substitutability checking between heterogeneous components using an intermediate interface automaton. That is to say, a component can be substituted with another component in a process network if they are both consistent with the same interface automaton. Hence, the evolution of systems is supported both at the abstract level by the substitutability of interface automata and also at the component level by the substitutability of components.

In the context of the Moses tool, we have fully implemented the consistency checking of interface automaton networks with the development of a visual notation for interface automata and algorithms and tools for their composition and compatibility checking. The consistency checking of components
space exploration capabilities for heterogeneous components. We are still working on the automation of this checking.

The research presented here is a step towards the automated consistency checking of heterogeneous systems where system components as well as the system architectures are potentially expressed in different description languages. We are investigating the application of this method to architectural models described in other languages such as Petri Nets. Currently the assumptions of components on data values are not captured in this method. A possible way to improve this is to enhance the formalism of interface automata to support data values on input and output events. Furthermore, true concurrency at component boundaries is not considered here and will be the subject of future work.

References

Sunetnanta, T. & Finkeleisteg, A. (2001), Automated consistency checking for multiperspective software specifications, in ‘Proceedings of the workshop on Advanced Separation of Concerns (ICSE 01)’.

