Top Down Parsing

- When we are parsing, we produce a unique syntax tree from a legal sentence.
 - An unambiguous grammar gives rise to a single leftmost derivation for any sentence in the language.
- So, if we are trying to recognise a sentence, what we are trying to do is grow a parse tree corresponding to that sentence.
 - We are trying to find the leftmost derivation.
- A top-down parser constructs a leftmost parse.
 - We will always be looking at the leftmost nonterminal.
- This follows the push down automaton model of the previous lecture.
- The parser must choose the correct production from the set of productions that correspond to the current state of the parse.
- If at any time there is no candidate production corresponding to the state of the parse, we must have made a wrong turn at some earlier stage and we will need to backtrack.

Example

Suppose we have a grammar:

\[
\begin{align*}
S & \rightarrow E \\
E & \rightarrow T \mid E + T \\
T & \rightarrow F \mid T * F \\
F & \rightarrow \text{unit} \mid (E)
\end{align*}
\]

and the expression:
\[1 + 2 * 3\]

A legal parse would be:

1. \[S \rightarrow E\]
2. \[E \rightarrow T \mid E + T\]
3. \[E + T \rightarrow E + T\]
4. \[E + T + T \rightarrow E + T\]
5. \[1 + 2 * 3\]

This means that to parse this sentence some backtracking is required, i.e., put input symbols back! Backtracking in compilers is nontrivial and to be avoided!!

Example #2

Suppose we have a grammar:

\[
\begin{align*}
S & \rightarrow E \\
E & \rightarrow T \mid E + T \\
T & \rightarrow F \mid T * F \\
F & \rightarrow \text{unit} \mid (E)
\end{align*}
\]

and the expression:
\[1 + 2 * 3\]

The problem is simple: Left Recursion!

Solutions?

- We could rearrange the productions so that the left recursive ones come at the end, and always choose the first matching production.
- For the previous examples, this has already been done. The left recursive ones are at the end of the list!
- Note that this is not an easy task in general since mutually recursive grammars have the same problems:
 \[
 \begin{align*}
 A & \rightarrow B \mid C \mid D \\
 B & \rightarrow E \mid A \mid F \\
 C & \rightarrow E \mid A \mid F
 \end{align*}
 \]
- In general, rearranging productions will not help – the parser will still have problems.
 - Even if it does help, a parser which needs to backtrack an arbitrary distance is inefficient.
- What we need is a way to deterministically parse a grammar in a top down fashion without backtracking.
Eliminating left recursion

- An algorithm to eliminate arbitrary left recursion (by replacing it with right recursion) is as follows:
 1. Arbitrarily order the non-terminals: \(N_1, N_2, N_3, \ldots \)
 2. Apply the following steps to the productions for \(N_1 \), then \(N_2, \ldots \)
 3. For \(N_i \):
 a) For all productions \(N_i \rightarrow N_k \alpha \), where \(k < i \) and if the productions for \(N_k \) are \(N_k \rightarrow \beta_1 \) \(\mid \beta_2 \) \(\mid \beta_3 \) \(\mid \ldots \) then expand the reference to \(N_k \), i.e. replace the production \(N_i \rightarrow N_k \alpha \) by \(N_i \rightarrow \beta_1 \alpha \) \(\mid \beta_2 \alpha \) \(\mid \ldots \)
 b) If the productions for \(N_i \) are now \(N_i \rightarrow \alpha_1 \) \(\mid \alpha_2 \) \(\mid \ldots \) \(\mid N_i \beta_1 \) \(\mid N_i \beta_2 \) \(\mid \ldots \) (where the first few are not left recursive while the latter are) then replace them with
 \(N_i \rightarrow \alpha_1 N_i' \) \(\mid \alpha_2 N_i' \) \(\mid \ldots \)
 \(N_i' \rightarrow \varepsilon \) \(\mid \beta_1 N_i' \) \(\mid \beta_2 N_i' \) \(\mid \ldots \)

Example of eliminating left recursion

- Consider the productions:
 \[A \rightarrow a \mid Ba \quad B \rightarrow b \mid Cb \quad C \rightarrow c \mid Ac \]
 1. Arbitrarily order the non-terminals: \(A, B, C \)
 2. Consider the productions for \(A \): no change
 3. Consider the productions for \(B \): no change
 3. Consider the productions for \(C \):
 a) Replace \(C \rightarrow Ac \) by \(C \rightarrow ac \mid Bac \)
 a) Replace \(C \rightarrow Bac \) by \(C \rightarrow bac \mid CbC \)
 b) Replace the productions for \(C \) by:
 \[C \rightarrow cC' \mid acC' \mid bacC' \]
 \[C' \rightarrow \varepsilon \mid bacC' \]

A Workable Solution

Observation

- The trouble which gives rise to nondeterminacy and backtracking in top down parsers shows itself in only one place – that is when a parser has to choose between several alternatives with the same left hand side.
- The only information which we can use to make the correct decision is the input stream itself.
 —In the example, we (humans) could see which alternative to choose by looking at the input yet-to-be-read.
- If we are going to look ahead in order to make the correct decision, we need a buffer in which to store the next few symbols.
- In practice, this buffer is of a fixed length.

Definitions

- A parser which can make a deterministic decision about which alternative to choose when faced with one, if given a buffer of \(k \) symbols, is called a LL(\(k \)) parser.
 —Left to right scan of input
 —Left most derivation
 —\(k \) symbols of look-ahead
- The grammar that an LL(\(k \)) parser recognizes is an LL(\(k \)) grammar and any language that has an LL(\(k \)) grammar is an LL(\(k \)) language.
 —We are constructing an LL(1) compiler that recognises LL(1) grammars.
 —So the question is How do we know when we have an LL(1) grammar?
- We also have LR(\(k \)) grammars and other variations, but our focus is currently on LL(1) grammars.
Definition of LL(1)

- When faced with a production such as:
 \[A \rightarrow \alpha_1 | \alpha_2 | \alpha_3 \]
- We chose one of the \(\alpha_i \) uniquely by looking at the next input symbol.
- We employ two sets: first and follow, to help us.

Recall:
- First(X) is the set of all terminal symbols that can “start” the production X
- Follow(X) is the set of terminal symbols that can follow an “X”

Definition of First

- To compute FIRST(X) for all grammar symbols X, apply the following algorithm until no more terminals or \(\epsilon \) can be added to any FIRST set.
 1. If X is a terminal, then FIRST(X) is \{X\}
 2. If \(X \rightarrow \epsilon \) is a production, then add \(\epsilon \) to FIRST(X)
 3. If X is a nonterminal and \(X \rightarrow Y_1 Y_2 ... Y_n \) is a production, then place a in FIRST(X) if for some i, a is in FIRST(Y_i), and \(\epsilon \) is in all of FIRST(Y_1), ..., FIRST(Y_{i-1}); that is \(Y_1 Y_2 ... Y_{i-1} \Rightarrow * \epsilon \).

Definition of Follow

- To compute FOLLOW(A) for all nonterminals A, apply the following algorithm until nothing can be added to any FOLLOW set.
 1. Place $ in FOLLOW(S), where S is the start symbol and $ is the input right endmarker.
 2. If there is a production A \(\rightarrow \alpha B \beta \) then everything in FIRST(\(\beta \)) except for \(\epsilon \) is placed in FOLLOW(B).
 3. If there is a production A \(\rightarrow \alpha B \) or a production A \(\rightarrow \alpha B \beta \) where FIRST(\(\beta \)) contains \(\epsilon \) (i.e., \(\beta \Rightarrow * \epsilon \)), then everything in FOLLOW(A) is in FOLLOW(B).

Definition of LL(1) property

Definition: A grammar G is LL(1) if and only if for all rules
\[A \rightarrow \alpha_1 | \alpha_2 | ... | \alpha_n \]
- \(\text{director}(\alpha_i) \cap \text{director}(\alpha_k) = \emptyset \) \(\forall i \neq k \)
where:
- \(\text{director}(\alpha_i) = \text{first}(\alpha_i) \cup \text{follow}(A) \) if \(\alpha_i \Rightarrow * \epsilon \)
- \(\text{first}(\alpha_i) \) otherwise
Making Grammars LL(1)

- We can't always make a grammar which is not LL(1) into an equivalent LL(1) grammar.
- Some tricks to help are factorisation and substitution.

Consider the grammar
\[S \rightarrow T \]
\[T \rightarrow L \, B \mid L \, C \, array \]
\[L \rightarrow \text{long} \mid \varepsilon \]
\[C \rightarrow B \mid \varepsilon \]
\[B \rightarrow \text{real} \mid \text{integer} \]

Transform the grammar by factorisation:
\[S \rightarrow T \]
\[T \rightarrow L \, X \]
\[X \rightarrow B \mid C \, array \]
\[L \rightarrow \text{long} \mid \varepsilon \]
\[C \rightarrow B \mid \varepsilon \]
\[B \rightarrow \text{real} \mid \text{integer} \]

Note that it still is not LL(1)!

Fixing the problem

1. Transform the grammar by factorisation:
 \[S \rightarrow T \]
 \[T \rightarrow L \, X \]
 \[X \rightarrow B \mid C \, array \]
 \[L \rightarrow \text{long} \mid \varepsilon \]
 \[C \rightarrow B \mid \varepsilon \]
 \[B \rightarrow \text{real} \mid \text{integer} \]

2. Substitute for C wherever it occurs:
 \[S \rightarrow T \]
 \[T \rightarrow L \, X \]
 \[X \rightarrow B \mid B \, array \mid \text{array} \]
 \[L \rightarrow \text{long} \mid \varepsilon \]
 \[C \rightarrow B \mid \varepsilon \]
 \[B \rightarrow \text{real} \mid \text{integer} \]

3. Factorisation of B in X gives:
 \[S \rightarrow T \]
 \[T \rightarrow L \, X \]
 \[X \rightarrow B \mid B \, Y \mid \text{array} \]
 \[Y \rightarrow \text{array} \mid \varepsilon \]
 \[L \rightarrow \text{long} \mid \varepsilon \]
 \[C \rightarrow B \mid \varepsilon \]
 \[B \rightarrow \text{real} \mid \text{integer} \]